
jonas.kvarnstrom@liu.se – 2019

Automated Planning
Heuristics: An Overview

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Heuristic Search
 General Search-Based Planning Algorithm (repetition)





≠ ∅


∈

A heuristic strategy bases decisions on:

 Heuristic value h(n)

 Often other factors, such as g(n)

= cost of reaching n

How do we calculate 𝒉(𝒏)?
Landmarks,

pattern databases,

…

Requires a heuristic function

Best first search: Greedy, A*, …

Modifications: IDA*, D*, …

Simulated annealing, hill-climbing, …

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4

We now have
open node,

which is unexpanded

Example (1)
Example: 3 blocks, all on the table in s0

s0

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5

We now have

3 open nodes,

which are unexpanded

Example (2)
We visit 𝑠0 and expand it

A heuristic function estimates the distance from each open node to the goal:
We calculate 𝒉(𝒔𝟏), 𝒉(𝒔𝟐), 𝒉(𝒔𝟑)

A heuristic strategy uses this value (and other info) to prioritize

Forward search: node ≈ state,

so we may write 𝒉(𝒏) or 𝒉 𝒔

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6

We now have

4 open nodes,

which are unexpanded

Example (3)
Suppose the strategy chooses to visit 𝑠1:

2 new heuristic values are calculated: 𝒉(𝒔𝟏𝟔), 𝒉(𝒔𝟏𝟕)

The search strategy now has 4 nodes to prioritize

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8What to Measure?

 A heuristic strategy bases its decisions on:

 Heuristic value h(s)

 Often other factors, such as g(s) = cost of reaching s

Question 1A: What should a heuristic function measure?

Very general definition

 could measure anything that some strategy might find useful!

Often: h(s) tries to approximate the cost of achieving the goal from s

 Question 1B: What is ”cost”?

Useful for finding cheap plans –

and often, as a side effect, for finding plans cheaply

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Plan Quality and Action Costs
 Maybe: Long plan = expensive plan

 𝑐 𝜋 = |𝜋| (number of actions in plan 𝜋)

▪ Reasonable in Towers of Hanoi

▪ But: How to make sure your car is clean?

 Would prefer to support different action costs

 Supported by most current planners

▪ Each action 𝑎 ∈ 𝐴 associated with a cost 𝑐(𝑎)

 Total cost:

c 𝜋 = ෍

𝑎∈𝜋

𝑐(𝑎)

wash car

shortest plan is best?go to car dealer

go to car wash

buy new car

get supplies

Heuristic ℎ(𝑠) estimates:

”How many actions will I need

to reach the goal from s?”

Heuristic ℎ(𝑠) estimates:

”How expensive actions will I need

to reach the goal from s?”

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10

Built-in type

supported by

cost-based

planners

Action Costs in PDDL
 PDDL: Specify requirements

▪

 Numeric state variable for the total cost, called (total-cost)

▪ And possibly numeric state variables to calculate action costs

▪

 Initial state

▪

 Special increase effects to increase total cost

▪

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Remaining Costs
 The remaining cost in any search state s:

 The cost of a cheapest (optimal) solution starting in s

 Denoted by ℎ∗(𝑠)

 Star *  the best, optimal, estimate: exact cost

 The cost of an optimal solution to Σ, 𝑠0, 𝑆𝑔 :

 h∗(𝑠0)

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12True Remaining Costs (1)

goal: 0

𝒉∗ 𝒔𝟒 = 𝟏

3

5

5

6

7

8

8

10 2

4

5

7 7 7

8 8 8

10 10 10

True Cost of Reaching a Goal from 𝒏: 𝒉∗(𝒏)

Initially: on the table

, cost 1

, cost 2 (must be more careful)

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13True Remaining Costs (2)

2

3

5

8

7

10goal: 0

goal: 0

𝒉∗ 𝒔𝟒 = 𝟏

3

5

6

82

4

5

7 7

8 8

10 10

True Cost of Reaching a Goal: 𝒉∗(𝒏)

Two reachable goal nodes

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14True Remaining Costs (3)

2

3

5

8

7

10goal: 0

goal: 0

1

3

5

6

82

4

3

1 5

6

2 8

goal: 0

True Cost of Reaching a Goal: 𝒉∗(𝒏)

Three reachable goal nodes

(there can be many)

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15True Remaining Costs (4)





If we knew the true remaining cost 𝒉∗(𝒏) for every node:

Trivial straight-line path

minimizing h* values

gives an optimal solution!

5

goal: 0

1

3

5

4

3

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Reflections
 What does this mean?

 Calculating ℎ∗(𝑛) is a good idea,

because then we can easily find optimal plans?

 No – because we can prove that finding optimal plans is hard!

 So the hard part must be calculating ℎ∗(𝑛)…

2. Given h*(n),

we can quickly find optimal solutions

1. We can always quickly compute h*(n)
3. We can quickly find optimal solutions

for any classical planning problem

4. Known to be false!

(PSPACE-complete)

5. …so one of these premises

must be false

Must settle for an estimate that helps us search less than otherwise

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Minimization: Intro
Example Strategy: Depth first search; select a child with minimal ℎ(𝑠)

h*(s1)=55 h*(s2)=57 h*(s3)=62

If I start with pickup(A),

then make optimal choices:

Plan cost = 55

If I start with pickup(C),

then make optimal choices:

Plan cost = 62

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Minimization, case 1
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=4 hB=20 hB=21

Close!

Far from the truth…

Which is best?

The strategy only cares

about relative values

h*, hA, hB result in

identical choices: 𝒔𝟏 first!

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Minimization, case 2
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

0

100

200

300

400

500

600

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=107 hB=258 hB=522

Close!

Large overestimate!

Which is best?

The strategy only cares

about relative values

h*, hA, hB result in

identical choices: 𝒔𝟏 first!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Minimization, case 3
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=54 hA=53 hA=47

hB=4 hB=20 hB=21

Which is best?

h* and hB result in

identical choices

hA is worse for this strategy,

despite being closer to h*:

Goes to 𝒔𝟑 first

Even if we continue optimally,

cost ≥ 62!

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22A*, case 1
Back to case 1 – but suppose the strategy is A*

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=4 hB=20 hB=21

Which is best?

A* expands all nodes

where 𝒈 𝒔 + 𝒉 𝒔 ≤ optcost

As long as 𝒉 is admissible

[∀𝒔: 𝒉 𝒔 ≤ 𝒉∗(𝒔)],

increasing it is always better

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23A*, case 2
Case 2: Suppose the strategy is A*

0

100

200

300

400

500

600

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=107 hB=258 hB=522

Which is best?

A* expands all nodes

where 𝒈 𝒔 + 𝒉 𝒔 ≤ optcost

Because hB is not admissible,

optimal solutions

may be missed!

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24A*, case 3
Case 3: Suppose the strategy is A*

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=54 hA=53 hA=47

hB=4 hB=20 hB=21

Which is best?

A* expands all nodes

where 𝒈 𝒔 + 𝒉 𝒔 ≤ optcost

As long as 𝒉(𝒔) is admissible

[𝒉 𝒔 ≤ 𝒉∗(𝒔)],

increasing it is always better

hA better than hB

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Two Requirements for Heuristic Guidance
 Heuristic planners must consider two requirements

Examples:

A* uses a heuristic function

Hill-climbing uses a heuristic… differently!

Example:

Find a heuristic function

suitable specifically for A* or hill-climbing

Define a search strategy

able to take guidance into account

Find a heuristic function

suitable for the selected strategy

Can be domain-specific,

given as input in the planning problem

Can be domain-independent,

generated automatically by the planner

given the problem domain

We will consider both – heuristics more than strategies

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Some Desired Properties (1)
 What properties do good heuristic functions have?

 Informative, of course:

Provide good guidance to the specific search strategy we use

▪ Admissible?

▪ Close to ℎ∗ 𝑛 ?

▪ Correct ”ordering”?

▪ …

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Some Desired Properties (2)
 What properties do good heuristic functions have?

 Efficiently computable!

▪ Spend as little time as possible deciding which nodes to expand

 Balanced…

▪ Many planners spend almost all their time calculating heuristics

▪ But: Don’t spend more time computing h than you gain by expanding fewer nodes!

▪ Illustrative (made-up) example:

Heuristic

quality

Nodes

expanded

Expanding one

node

Calculating h

for one node

Total time

Worst μ μ

Better μ μ

… μ μ

… μ μ

… μ μ

Best μ μ

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Some Desired Properties (3)
 [Table copy for the online lecture notes!]

Heuristic

quality

Nodes

expanded

Expanding one

node

Calculating h

for one node

Total time

Worst μ μ

Better μ μ

… μ μ

… μ μ

… μ μ

Best μ μ

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Cheap Plans, Cheap Planning?
 Cost can be indirectly related

to plan generation time

If we can find a cheap plan ”under” 𝑠16
 might find a plan in few steps

 might not need to search so many nodes

 might find a plan cheaply

Maybe!

Or maybe s16 opens up

a vast number of alternatives,

so finding a solution takes more time…

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31

Open nodes

Prioritizing Speed or Plan Cost
Can design strategies to prioritize speed or plan cost

Expand nodes where you think

you can easily find a way

to a goal node

Expand nodes where you think

you can find a way

to a good (high quality) solution,

even if finding it will be difficult

Find a solution quickly Find a good solution

Often one strategy+heuristic can achieve both reasonably well,

but for optimum performance, the distinction can be important!

Should prefer Should prefer

