‘4% Linkdping University !
(&%s wﬁ“‘@

Automated Planning

Heuristics: An Overview

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

9
jonkv@ida

Heuristic Search

General Search-Based Planning Algorithm (repetition)

search(problem) {
initial-node € make-initial-node(problem) // N PN AT TR E S A A R LR
open € { initial-node }
while (open # 0) {
node € search-strategy-remove-from(c Often other factors, such as g(n)
if is-solution(node) then // [4] = cost of reaching n
return extract-plan-from(node) // [}

Heuristic value h(n)

Best first search: Greedy, A%, ...

foreach newnode € successors(node) { // | Modifications: IDA*. D*
add newnode to open ; >
} Simulated annealing, hill-climbing, ...
}
// Expanded the entire search space witho
return failure; Requires a heuristic function

How do we calculate h(n)?

Landmarks,
pattern databases,

Heuristics in Forward State Space Search:

Introduction

Example (1)

We now have
1 open node,
which is unexpanded

3
jonkv@ida

Example (2)

Forward search: node = state,
so we may write h(n) or h(s)

We now have
3 open nodes,
which are unexpanded

A heuristic function estimates the distance from each open node to the goal:
We calculate h(sq), h(s;), h(s3)

A heuristic strategy uses this value (and other info) to prioritize

jonkv@ida

Example (3)

We now have
4 open nodes,
which are unexpanded

2 new heuristic values are calculated: h(s1¢), h(S17)

The search strategy now has 4 nodes to prioritize

Heuristic Functions: What to Measure?

What to Measure?

A heuristic strategy bases its decisions on:

jonkv@ida

Heuristic value h(s)

Often other factors, such as g(s) = cost of reaching s

Very general definition
=> could measure anything that some strategy might find useful!

Often: h(s) tries to approximate the cost of achieving the goal from s

Useful for finding cheap plans —
and often, as a side effect, for finding plans cheaply

= Question |B: What is ”’cost’’?

9
jonkv@ida

Plan Quality and Action Costs

Maybe: @g Plan = expensive Plan Heuristic h(s) estimates:
c(mr) = |m| (number of actions in plan)

”"How many actions will | need
to reach the goal from s?”

= Reasonable in Towers of Hanoi

= But: How to make sure your car is clean?

go to car wash get supplies wash car

go to car dealer buy new car shortest plan is best!?

Would prefer to support different action costs

Supported by most current planners
= Each action a € A associated with a cost c(a)

Total cost:

Heuristic h(s) estimates:

C(ﬂ') — z C((l) ”"How expensive actions will | need

to reach the goal from s?”

aEeT

Action Costs in PDDL

@
jonkv@ida

PDDL: Specify requirements

= (:requirements :action-costs)

Numeric state variable for the total cost, called (total-cost)

= And possibly numeric state variables to calculate action costs

= (:functions (total-cost) -number Built-in type
(travel-slow-cost ?fl - count ?f2 - count) | - number supported by
(travel-fast-cost ?fl - count ?f2 - count) | - number) cost-based
planners

Initial state

= (:init (= (total-cost) 0)
(= (travel-slow-cost n0 nl) 6) (= (travel-slow-cost n0 n2) 7)
(= (travel-slow-cost n0 n3) 8) (= (travel-slow-cost n0 n4) 9)

..)

Special increase effects to increase total cost
= (:action move-up-slow
:;parameters (?lift - slow-elevator ?f1 - count ?f2 - count)
:precondition (and (lift-at ?lift ?f1) (above ?f1 ?f2) (reachable-floor ?lift ?f2))
effect (and (lift-at ?lift ?f2) (not (lift-at ?lift ?f1))
(increase (total-cost) (travel-slow-cost ?f1 ?£2))))

jonkv@ida

Remaining Costs

The remaining cost in any search state s:

The cost of a cheapest (optimal) solution starting in s
Denoted by h*(s)

Star * =» the best, optimal, estimate: exact cost

The cost of an optimal solution to (Z, SO,Sg)I
h™(so)

jonkv@ida

True Remaining Costs (1)

True Cost of Reaching a Goal from n: h*(n)

Initially: A,B,C on the table
pickup, putdown cost |
stack, unstack cost 2 (must be more careful)

pickup(C) putdown(C)

pickup(B) Yutdown(B)
S . C '

stack(B,C) Junstack(B,C) nstack(A,C)

True Remaining Costs (2)

True Cost of Reaching a Goal: h*(n)

Two reachable goal nodes

pickup(C)

putdown(C)

icku@utdown(B)
S . C '

stack(B,C) Junstack(B,C) nstack(A,C)

jonkv@ida

jonkv@ida

True Remaining Costs (3)

True Cost of Reaching a Goal: h*(n)

Three reachable goal nodes
(there can be many)

True Remaining Costs (4)

If we knew the true remaining cost h*(n) for every node:

Algorithm simplePlan:
node < initial-node
while (not reached goal) {
node € a successor of node with minimal h*(n)

Trivial straight-line path
minimizing h* values
gives an optimal solution!

icku@utdown{B)

jonkv@ida

a
jonkv@ida

Reflections

What does this mean!?

Calculating h*(n) is a good idea,
because then we can easily find optimal plans?

No — because we can prove that finding optimal plans is hard!
So the hard part must be calculating h*(n)...

|.W | ickl te h*
© can always quickly compute h*(n) 3.We can quickly find optimal solutions

2. Given h*(n), for any classical planning problem

we can quickly find optimal solutions

5....so0 one of these premises 4. Known to be false!
must be false (PSPACE-complete)

Must settle for an estimate that helps us search less than otherwise

Heuristic Functions:

What properties should an estimate have /

jonkv@ida

Minimization: Intro

h*(s1)=55 h*(s2)=57 h*(s3)=62

If | start with pickup(A), If | start with pickup(C),

then make optimal choices: then make optimal choices:
Plan cost = 55 Plan cost = 62

jonkv@ida

Minimization, case |

Which is best?

The strategy only cares
about relative values

h* hA, hB result in
identical choices: s first!

h*=55 h*=57 h*=62
hA=50 hA=53 hA=55 Close!
hB=4 hB=20 hB=21 Far from the truth...

70
60
50
40
30

20

sl s2 s3

Minimization, case 2

600
500
400
300
200
100

h*=55
hA=50
hB=107

sl

h*=57
hA=53
hB=258

hA=55
hB=522

jonkv@ida

Which is best?

The strategy only cares
about relative values

h* hA, hB result in
identical choices: s first!

Close!

Large overestimate!

jonkv@ida

Minimization, case 3

Strategy: Depth first search; select a child with minimal h(s)

Which is best?

h* and hB result in
identical choices

hA is worse for this strategy,
despite being closer to h*:
Goes to s; first

h*=55 h*=57 h*=62
hA= hA=53 hA= Even if we continue optimally,
hB=4 hB=20 hB=21 cost = 62!

70
60
50
40
30

20

sl s2 s3

A* case |

70
60
50
40
30
20
10

h*=55
hA=50
hB=4

h*=57
hA=53
hB=20

hA=55

hB=2]

-

sl

s2

s3

Which is best?

A* expands all nodes
where g(s) + h(s) < optcost

As long as h is admissible
[Vs: h(s) < h*(s)],
increasing it is always better

A* case 2

600
500
400
300
200
100

h*=55
hA=50
hB=107

sl

h*=57
hA=53
hB=258

hA=55
hB=522

Which is best?

A* expands all nodes
where g(s) + h(s) < optcost

Because hB is not admissible,
optimal solutions
may be missed!

A* case 3

Which is best?

A* expands all nodes
where g(s) + h(s) < optcost

As long as h(s) is admissible

[A(s) < h*(s)],
h*=55 h#*=57 h¥#=62 increasing it is always better
hA better than hB
hA= hA=53 hA=
hB=4 hB=20 hB=2I

70
60
50
40
30

20

sl s2 s3

jonkv@ida

Two Requirements for Heuristic Guidance

Heuristic planners must consider two requirements

Define a search strategy Find a heuristic function
able to take guidance into account suitable for the selected strategy

Examples: Example:
A* uses a heuristic function Find a heuristic function
Hill-climbing uses a heuristic... differently! suitable specifically for A* or hill-climbing

Can be domain-specific,
given as input in the planning problem

Can be domain-independent,
generated automatically by the planner
given the problem domain

We will consider both - heuristics more than strategies

NY
9
jonkv@ida

Some Desired Properties (1)

What properties do good heuristic functions have!

Informative, of course:
Provide good guidance to the specific search strategy we use

= Admissible?
= Close to h*(n)?

= Correct ’ordering™?

jonkv@ida

Some Desired Properties (2)

What properties do good heuristic functions have!

Efficiently computable!
= Spend as little time as possible deciding which nodes to expand

Balanced...
= Many planners spend almost all their time calculating heuristics

= But: Don’t spend more time computing h than you gain by expanding fewer nodes!

= |llustrative (made-up) example:

Heuristic Nodes | Expanding one Calculating h JTotal time
J_) <4 <4

quality eEXpanded hode for one node

Worst 100000 100 ps 1us 10100 ms

Better 20000 100 ps 10 ps 2200 ms

Some Desired Properties (3)

[Table copy for the online lecture notes!]

Heuristic
quality
Worst

Better

Best

Nodes

eEXpanded

100000
20000
5000
2000
500
200

Expanding one

hode
100 pus
100 pus
100 pus
100 ps
100 pus
100 pus

Calculating h

for one node
1 us

10 ps

100 ps

1000 ps
10000 ps
100000 ps

10100 ms
2200 ms
1000 ms
2200 ms
5050 ms

20020 ms

jonkv@ida

Speed vs. Cost

Cost can be indirectly related
to plan generation time

stack(A,B)\stack(A,C)

If we can find a cheap plan ”under” s44
=> might find a plan in few steps
=> might not need to search so many nodes

=> might find a plan cheaply

Or maybe sl 6 opens up
a vast number of alternatives,
so finding a solution takes more time...

jonkv@ida

D
jonkv@ida

Prioritizing Speed or Plan Cost

Can design strategies to prioritize speed or plan cost

Find a solution quickly Find a good solution

Expand nodes where you think
you can find a way
to a good (high quality) solution,
even if finding it will be difficult

Expand nodes where you think
you can easily find a way
to a goal node

Should prefer Should prefer
Open nodes
v v
Accumulated plan cost g(n)=50, Accumulated plan g(n)=5,
estimated "cost distance" h(n)=10 estimated "cost distance" h(n)=30

Often one strategy+theuristic can achieve both reasonably well,

but for optimum performance, the distinction can be important!

