
jonas.kvarnstrom@liu.se – 2019

Automated Planning
Domain-Configurable Planning:

Hierarchical Task Networks

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Assumptions
 Recall the fundamental assumption that we only specify

 Structure: Objects and state variables

 Initial state and goal

 Physical preconditions and physical effects of actions

We only specify what can be done

The planner should decide what should be done

But even the most sophisticated heuristics and domain analysis methods

lack our intuitions and background knowledge…

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Domain-Configurable Planners

 Planners taking advantage of additional knowledge can be called:

▪ Knowledge-rich

▪ Domain-configurable

▪ (Sometimes incorrectly called “domain-dependent”)

How can we make a planner take advantage

of what we know?

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Comparisons (1)

Domain-specific

Must write an entire planner

Can specialize the planner for very high performance

Domain-configurable

High-level (but sometimes complex) domain definition

Can provide more information for high performance

“Domain-independent”

Provide minimal information about actions

Less efficient

More effort
Higher

performance

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Comparisons (2)

Domain-specific

Only works in a single domain

Domain-configurable

Easier to improve expressivity and efficiency

 Often practically useful for a larger set of domains!

“Domain-independent”

Should be useful for a wide range of domains

Larger problem classes

can be handled efficiently

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6HTNs: Ideas
 Classical Planning vs. Hierarchical Task Networks:

Objective is to achieve a goal:

at(TimesSquare)

{ on(A,B), on(C,D) }

…

Objective is to perform a task:

travel-to(TimesSquare)

place-blocks-correctly

…

Find any sequence of actions

that achieves the goal

Use "templates"

to incrementally refine the task

until you reach primitive actions

travel-to(TimesSquare)

taxi-to(airport); fly-to(JFK); …

Provides guidance but still requires planning

A simple form of Hierarchical Task Network,

as defined in the book

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Terminology 1: Primitive Task
 A primitive task corresponds directly to an action

 As in classical planning, what is primitive depends on:

▪ The execution system

▪ How detailed you want your plans to be

 Example:

▪ For you, fly(here,there) may be a primitive task

▪ For the pilot, it may be decomposed into many smaller steps

 Tasks can be ground or non-ground:

▪ No separate terminology, as in operator/action

stack(A,B) load(crane1, loc3, cont5, …)

Primitive tasks: Dark green

(in this presentation)

stack(A,B) load(crane1, loc3, cont5, …)
Corresponding actions: Black

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Terminology 2: Non-Primitive Task
 A non-primitive task:

 Cannot be directly executed

 Must be decomposed into 0 or more subtasks

put-all-blocks-in-place()

make-tower(A,B,C,D,E)

move-stack-of-blocks(x, y)

Orange:

There's a "problem"

that we need to solve

Should be decomposed to

pickup, putdown, stack, unstack

tasks / actions!

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Terminology 3: Method
 A method specifies one way to decompose a non-primitive task

 The decomposition is a graph 〈𝑁, 𝐸〉
 Nodes in 𝑁 correspond to subtasks to perform

▪ Can be primitive or not!

 Edges in 𝐸 correspond to ordering relations

Method: go-by-plane(from, to)

Turns a single travel task into a graph with more details:

Task: travel(from, to)

buy-ticket (airport(x), airport(y))

travel (x, airport(x))

fly(airport(x), airport(y)) travel (airport(y), y)

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Totally Ordered STNs
In Totally Ordered Simple Task Networks (STN),

each method must specify a sequence of subtasks

 Can still be modeled as a graph 〈𝑁, 𝐸〉

 Alternatively: A sequence 〈𝑡1, … , 𝑡𝑘〉

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Totally Ordered STNs (2)

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

go-by-plane(x,y)

Task

Method name

We can illustrate the entire decomposition in this way

(horizontal arrow sequence)

The “travel” task has a method

called “go-by-plane”

travel(x,y)

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Multiple Methods
 A non-primitive task can have many methods

 So: You still need to search, to determine which method to use

 …and to determine parameters (shown later)

travel(x,y)

get-taxi-at(x) ride-taxi(x, y) pay-driver

taxi-travel(x,y)

Task

Method

travel(x,y)

walk(x, y)

foot-travel(x,y)

Task

Method

Non-primitive

subtasks

Primitive subtask

walk(x, y) Corresponding action

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Composition
 An HTN plan:

 Hierarchical

 Consist of tasks

 Based on graphs ≈ networks

travel(x,y)

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly (airport(x), airport(y)) travel (airport(y), y)

go-by-plane(x,y)

Task

Method

get-taxi-at(x) ride-taxi(x, airport(x)) pay-driver

taxi-travel(x,airport(x))

walk(x, y)

foot-travel(x,y)

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Domains, Problems, Solutions
 An STN planning domain specifies:

 A set of tasks

 A set of operators used for primitive tasks

 A set of methods

 An STN problem instance specifies:

 An STN planning domain

 An initial state

 An initial task network, which should be ground (no variables)

▪ Total Order STN example:
<

General HTNs:

Can have additional

constraints to be

enforced

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Domains, Problems, Solutions (2)
 Suppose you:

 Start with the initial task network

 Recursively apply methods to non-primitive tasks, expanding them

 Continue until all non-primitive tasks are expanded

 Totally ordered yields an action sequence

 If this is executable: A solution

 (No goals to check – implicit in the method structure!)

travel(x,y)

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly (airport(x), airport(y)) travel (airport(y), y)

go-by-plane(x,y)

get-taxi-at(x) ride-taxi(x, airport(x)) pay-driver

taxi-travel(x,airport(x))

walk(x, y)

foot-travel(x,y)

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Domains, Problems, Solutions (3)
 HTN planning uses only the methods specified for a given task

 Will not try arbitrary actions…

 For this to be useful, you must have useful “recipes” for all tasks

A simple "template expansion"

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19DWR
 Let’s switch to Dock Worker Robots…

 Example Tasks:

 Primitive – all DWR actions

 Move the topmost container between piles

 Move an entire stack from one pile to another

 Move a stack, but keep it in the same order

 Move several stacks in the same order

p1
c1
c3 p2

loc1

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Methods
 To move the topmost container from one pile to another:

The task has parameters

given from above

A method can have

additional parameters,

whose values are

chosen by the planner –

just as in classical planning!

The precond adds constraints:
must be some crane

in the same as the piles,

must be the topmost

container of , …

Interpretation:
If you are asked to

check all possible values for where the preconds are satisfied

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Methods (2)
 To move the topmost container from one pile to another:

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

Iteration with no predetermined bound

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Moving a Stack of Containers
 How can we implement the task ?

 Should move all containers in a stack

 There is no limit on how many there might be…

A

B

C

C

B

A

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Recursion (1)
 We need a loop with a termination condition

 HTN planning allows recursion

▪ Move the topmost container (we know how to do that!)

▪ Then move the rest

 First attempt:

▪

▪ :

▪ :

▪ :

move-topmost-container(pile1, pile2)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Recursion (2)
 But consider the BW and DWR "pile models"…

BW DWR

A

B

C

A

B

C

The bottom block

is not "on" anything

The bottom block

is "on" the pallet, a "special container"

What if the pallet is "topmost"?

We don't want to move it!

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Recursion (3)
 To fix this:

▪

▪ :

▪ :

cont is on top of something (x), so cont can’t be the pallet

Add two method params –

"non-natural", as in "ordinary" planning;

does not give the planner a real choice

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Recursion (4)
 The planner can now create a structure like this:

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

But when will the recursion end?

move-topmost move-stack

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Recursion (5)
 At some point, only the pallet will be left in the stack

 Then recursive-move will not be applicable

 But we must execute some form of move-stack!

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

is empty!

No applicable methods…

Planner would backtrack!

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Recursion (6)
 We need a method that terminates the recursion

 :

▪ :

▪ :

▪ :

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

already-moved(pile1,pile2)

Method preconds satisfied

Zero subtasks!

Unique pallet object –

not a variable!

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Ordering (1)
 Using move-stack inverts a stack:

A

B

C

B

C

A

C

B

A

C

B

A

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Ordering (2)
 To avoid this: Use an intermediate pile

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Ordering (3)
 Example:

▪

▪

▪

Why does pileX have to be empty initially?

Because the second move-stack moves all containers from the intermediate pile…

Unlike classical planning,

someone specifies
the task + and

The planner must choose

a matching method
(”implementation”) to use

The planner must choose

added method params

pileX and loc
to satisfy the precond

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Overall Objective
 Our overall objective is:

 Moving three entire stacks of containers, preserving order

Initial state, with 3 locations, 3 piles to move

Corresponding objective, all piles moved

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Overall Objective: Defining a Task
 Define a task for this objective

 :

▪ :

▪ :

▪ :

 Use this task

as the initial task network

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Goal Predicates in HTNs
 Here the entire objective was encoded in the initial network

▪

 To avoid this:

 New predicate should-move-same-order(pile, pile) encoding the goal

 :

▪ :

▪ :

▪ :

 :

▪ :

▪ :

▪ :

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Uninformed Planning in HTNs
 Can even do uninformed unguided planning

 Doing something, anything:

▪ Task do-something operator pickup(x)

▪ Task do-something operator putdown(x)

▪ Task do-something operator stack(x,y)

▪ Task do-something operator unstack(x,y)

 Repeating:

▪ Task achieve-goals <do-something, achieve-goals>

 Ending:

▪ Task achieve-goals <>, with precond: entire goal is satisfied

Or combine aspects of this model

with other aspects of ”standard” HTN models!

Planner chooses

all parameters

Modeling "conditional" actions

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Delivery 1: First Variation
 Delivery:

 A single truck

 Pick up a package, drive to its destination, unload

▪

▪

▪

What if the truck is already at the package location?

First driveto is unnecessary!

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Delivery 2: Second Variation
 Alternative: Two alternative methods for deliver

▪

▪

▪

▪

▪

▪

Do we really have to repeat the entire task?

Many "conditional" subtasks combinatorial explosion

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Delivery 3: Third variation
 Make the choice in the subtask instead!

▪

▪

▪

▪

▪

▪

▪

▪

▪

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Search Spaces
 Need a search space

1) A node structure defining what

information is in a node

2) A way of creating an initial node

from a problem instance

3) A successor function / branching

rule returning all successors

4) A solution criterion, detecting if

a node corresponds to a solution

5) A plan extractor, telling us which

plan a solution node corresponds to

Different alternatives exist!

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Total Order?
 Basic assumption: Total Order Simple Task Networks

 Any initial task is totally ordered

 Any decomposition method is totally ordered

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

go-by-plane(x,y)

travel(x,y)

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Forward Decomposition?
 Different decomposition orders are still possible:

1. Start with this initial task

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

go-by-plane(x,y)

travel(x,y)

2. Decompose using this method

3. Multiple alternatives;

which to decompose next?

Choose what to decompose,

which method to use,

how to parameterize it

Need search!

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Forward Decomposition!
 Forward decomposition: One of many possibilities

 Go ”depth first, left to right”

 Like forward state space search:

▪ Generates actions in the same order in which they’ll be executed

▪ When we decompose a task,

we know the “current” state of the world!

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

go-by-plane(x,y)

travel(x,y)

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49Total Order Forward Decomposition

mtc(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

mtc(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-topmost move-stack

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

Initial task, specified in the

problem instance

Check preconds in 𝑠0 first!

Check

preconds…

Check

preconds…

Check

preconds…

Strategy chooses

method, parameters

take(…) put(…)

take(…) put(…)

Forward: Must deal with

mtc before move-stack!

Total Order Forward Decomposition:

The Search Space

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51TFD Node Structure
 A node structure defining what information is in a node

 Plan so far

 Current state – possible due to forward decomposition

 Remaining tasks to expand

 A way of creating an initial search node:

 Examples: Nodes visited on the previous slide

move-stack(pile1, pile2)

mtc(pile1, pile2) move-stack(pile1, pile2)

take(…) put(…) 𝑠2 move-stack(pile1, pile2)

take(…) put(…) 𝑠2 move-stack(pile1, pile2)mtc(pile1, pile2)

take(…) put(…) 𝑠4 move-stack(pile1, pile2)take(…) put(…)

No actions so far

Current state 𝑠0
Remaining tasks = the initial

tasks from the problem

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52TFD Successors
 Successors:

 We know which task to decompose

 Find all applicable methods and apply them

 Solution test

 No more tasks done

 Solution extraction

 The resulting search node contains a sequential plan

take(…) put(…) 𝑠2 move-stack(pile1, pile2)mtc(pile1, pile2)

Total Order Forward Decomposition:

The Search Space

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54Solving Total-Order STN Problems
 TFD takes a search node

 𝜋 – a sequence of actions

 – the current state

 – a list of tasks to be achieved in the specified order

 We also assume:

 – the available operators (with params, preconds, effects)

 – the available methods (with params, preconds, subtasks)

 Returns:

 A sequential plan

▪ Loses the hierarchical structure of the final plan

▪ Simplifies the presentation – but the structure could also be kept!

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55TFD 1: Base case

 〈 〉

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56TFD 2: Ground Primitive Tasks

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋

𝑡1

 ∈
𝑡1

a = take(…)

t1 = take(…) t2 = put(…) Waiting in line

to be decomposed

in the next stepcandidates…

For simplicity: The case where

all tasks to achieve are ground

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57TFD 3: Successors

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋

𝑡1

 ∈
𝑡1

∈
𝜋′ 𝜋 + 𝑎
𝑠′ 𝛾(𝑠, 𝑎)

 ∪ 〈𝜋′, 𝑠′, 〉

a = take(…)

t1 = take(…) t2 = put(…)
𝑠′

rest

For simplicity: The case where

all tasks to achieve are ground

Total Order Forward Decomposition:

Non-Ground Primitive Tasks

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59TFD 4: Lifted Primitive Tasks

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋

𝑡1

 σ ∈
σ σ 𝒕𝟏

take(crane1, loc1, cont2, cont5, pile8)

t1 = take(crane, loc1, cont2, cont, pile8) t2=put(crane, …)

(italics = variables)

take(crane2, loc1, cont2, cont5, pile8)
candidates

σ ↦ ↦

σ ↦ ↦

Basically, σ can specify variable

bindings for parameters of …

The case where tasks to achieve are
non-ground:

The plan will still be ground!

60

jo
nk

v@
id

a
jo

nk
v@

id
a

60TFD 5: Lifted Primitive Successors

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋

𝑡1

 σ ∈
σ σ 𝒕𝟏

(𝑎, 𝜎) ∈
𝜋′ 𝜋 + 𝑎
𝑠′ 𝛾(𝑠, 𝑎)

 𝜎
 ∪ 〈𝜋′, 𝑠′, 〉

a = take(crane1, loc1, cont2, cont5, pile8)

t1 = take(crane, loc1, cont2, cont, pile8) t2=put(crane, …)

(italics = variables)

take(crane2, loc1, cont2, cont5, pile8)

chosen: σ ↦ ↦

↦ ↦

σ

The case where tasks to achieve are
non-ground:

Total Order Forward Decomposition:

(Non-Ground) Non-Primitive Tasks

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62TFD 6: Non-Primitive Tasks

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋
𝑡1

 σ ∈
σ σ 𝑡1

travel(x,y)

get-taxi-at(x) ride-taxi(x, y) pay-driver

taxi-travel(x,y)

As before,

but

methods

instead of

actions

63

jo
nk

v@
id

a
jo

nk
v@

id
a

63TFD 6: Non-Primitive Tasks

≠ ∅
〈𝜋, 𝑠, < 𝑡1, … , 𝑡𝑘 >〉

𝜋
𝑡1

 σ ∈
σ σ 𝑡1

(𝑚, 𝜎) ∈
𝜋′ 𝜋
𝑠′ 𝑠

 𝜎
 ∪ 〈𝜋′, 𝑠′, 〉

travel(x,y)

get-taxi-at(x) ride-taxi(x, y) pay-driver

taxi-travel(x,y)
In TFD

the "origin" of a task is discarded:

No longer needed,

only the subtasks are relevant

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65Limitation of Ordered-Task Planning
 TFD requires totally ordered methods

 Can’t interleave subtasks of different tasks

 Suppose we want to fetch one object somewhere,

then return to where we are now

 Task:

▪ method:

▪ precond:

▪ subtasks:

 Task:

▪ method:

▪ method:

pickup(p)travel(a,b) travel(b,a)

I’m at A, the thing to fetch is at B

fetch(p)

get(p, a, b)

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66Limitation of Ordered-Task Planning
 Suppose we want to fetch two objects somewhere, and return

 (Simplified example – consider “fetching all the objects we need”)

 One idea: Just “fetch” each object in sequence

 Task:

▪ method:

▪ precond:

▪ subtasks:

get(p) get(q)

pickup(p)travel(a,b) travel(b,a) pickup(q)travel(a,b) travel(b,a)

I’m at A, both objects are at B

Have to start with the first Fetch… I’m back at A and have to walk again!

fetch-both(p, q)

get-both(p,q)

fetch(p) fetch(q)

67

jo
nk

v@
id

a
jo

nk
v@

id
a

67Alternative Methods
 To generate more efficient plans using total-order STNs:

 Use a different domain model!

▪

▪

▪

▪

▪

▪

Or: load-all; drive-truck; unload-all

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69Partially Ordered Methods
 Partially ordered method:

 The subtasks are a partially ordered set {t1, …, tk} – a network

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

go-by-plane(x,y)

travel(x,y)

No horizontal arrow

ordering all tasks

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70Partially Ordered Methods
 With partially ordered methods, subtasks can be interleaved

 Requires a more complicated planning algorithm: PFD

 SHOP2: implementation of PFD-like algorithm + generalizations

travel(a,b) pickup(p) travel(b,b) pickup(q) travel(b,a) travel(a,a)

fetch-both(p, q)

get-both(p,q)

fetch(p) fetch(q)

walk(a,b) stay-at(b) walk(b,a) stay-at(a)

get(p) get(q)

