o

‘4% Linkdping University g

Automated Planning

General Search Strategies

Assumes you have some previous
experience of search algorithms!

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

Important distinction:

Optimizing / Satisficing

jonkv@ida

Optimal Planning

Optimal plan generation:

There is a quality measure for plans

= (Minimal number of actions)

= Minimal sum of action costs

We must find an optimal plan!

= Suboptimal plans
(0.5% more expensive):

Guaranteeing optimality is sometimes useful, always expensive

Satisficing Planning

Satisficing (satisfy/suffice) in general:

”Searching until an acceptability threshold is met”

Motivation: High-quality non-optimal solutions are also useful

= And can often be found in reasonable time

Satisficing in planning (typically):
No well-defined threshold: Any form of non-optimal planning

Try to find strategies and heuristics
that seem reasonably quick
and give reasonable results in our tests

Investigate many different points on the efficiency/quality spectrum!

jonkv@ida

Important distinction:

Informed / Uninformed

Informed / Uninformed Search

a
jonkv@ida

Uninformed search strategies:

No domain-specific knowledge

Can only take into account search space structure and cost so far

= g(n) = cost of reaching node n from starting point

Informed search strategies:

Take additional information into account, such as heuristics

Applicable to all search spaces we have seen

May work better in some of them...

Dijkstra’s Algorithm

(Optimal, Uninformed)

jonkv@ida

Dijkstra’s Algorithm

First search strategy: Dijkstra’s algorithm

Matches the given forward search "template”

= use a strategy to select and remove node from open

= Selects a node n with minimal g(n):
Cost of reaching n from the initial node

Efficient graph search algorithm: O(|E| + |V|log|V])

E| = the number of edges (transitions), || = the number of nodes (states)

Optimal: Returns minimum-cost plans

search(problem) {

initial-node € make-initial-node(problem) // [2]

open € { initial-node }

while (open # @) { Typical

node € search-strategy-remove-from(open) // [6] SN ENEREIE

if is-solution(node) then // [4] Priority queue
return extract-plan-from(node) // [5]

-~ - - Vs - N £ F P FewT

S
9 JE
=1

Dijkstra’s Algorithm

Explores nodes in order of cost

Goal nodes

Cost = number of cost |6 (would not actually be exﬁanded) (initially

cost 14
actions: There are no cost 12 unknown, "'<))t
cost 9 expanded.
plans of cost 2 - cos?
cost 5
cost 3
cost |
More goal
nodes, still
unknown, not —

expanded

jonkv@ida

Dijkstra: ToH

Running Dijkstra, assuming all ToH actions are equally expensive:

Expands one node at a time,
but we can identify "levels”
of equal distance

Move DiskC
From Pegl
To Peg3

Dijkstra: Blocks Wo

Running Dijkstra, assuming all BWV actions are equally expensive:

rid

putdown{A p

stack(B.A)

Pée

7

!

putdown(B)

pickup{C) putdown(C)

wl

L.

°»

kfack(A,B)

stack(B,C) nstack(C,B)

j

9..

w putdown(
» nstack(A,C)

down(C) utdown(A) putdown(B)

nstack(C,B)

nstack(A,B)

nstack(B,C)

jonkv@ida

No problems ¢

Dijkstra’s Algorithm

and the Difficulty of Planning

Dijkstra’s Algorithm: Example

3
jonkv@ida

A small instance:
m Optimal solution

“ “ on(A,B) unstack(A,B) pickup(D)
putdown(A) stack(D,F)

il $/C) unstack(B,C) pickup(C)

on(C,D) putdown(B) stack(C,D)
on(D,F) unstack(C,D) pickup(B)

ﬂ E ontable(E) putdown(C) stack(B,C)
ontable(F) unstack(D,E) pickup(A)

stack(D,F) stack(A,B)

bw-tower06-dijkstra: Only 6 blocks, Dijkstra, state space, no heuristic

[£] jonkva2: bw-tower06-astar-blind

Actions: 14
States: 8706 created, 2692 visited/expanded

400 blocks

a
jonkv@ida

Blocks world, 400 blocks

2
on +3n+1 _ 2161201 > 1048526

Standard formulation: states

But we don’t have to visit every one... Fewer reachable states!

400 blocks

Blocks world, 400 blocks initially on the table, goal is a 400-block tower

jonkv@ida

= Given state space search with uniform action costs (same cost for all actions),
Dijkstra will always consider all plans that stack less than 400 blocks!

Stacking 1 block: = 400*399 plans,
Stacking 2 blocks: > 400*399 * 399*398 plans,

= Will visit more than

163056983907893105864579679373347287756459484163478267225862419762304263994207997664258213955766581163654137118
163119220488226383169161648320459490283410635798745232698971132939284479800304096674354974038722588873480963719
240642724363629154726632939764177236010315694148636819334217252836414001487277618002966608761037018087769490614
847887418744402606226134803936935233568418055950371185351837140548515949431309313875210827888943337113613660928
318086299617953892953722006734158933276576470475640607391701026030959040303548174221274052329579637773658722452
54973845940445258650369316934 0912754853265795909113444084441'755664211796
27432025699299231777374983037 * 1 73 5 1882657444844563187930907779661572990289194
81058521781914647662930023360 1 6 3 1 0 1372350568748665249021991849760646988031691
39438655119417119333314403154 1302649432305620215568850657684229678385177
72535893398611212735245298803 3087201742432360729162527387508073225578630
777685901637435541458440833873 448835191721077333875230695681480990867109
051332104820413607822206465635272711073906611800376194410428900071013695438359094641682253856394743335678545824
320932106973317498515711006719985304982604755110167254854766188619128917053933547098435020659778689499606904157
077005797632287669764145095581565056589811721520434612770594950613701730879307727141093526534328671360002096924
483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572434616042404375
21105232403822580540571315732915984635193126556273109603937188229504400 states

Dijkstra is efficient in terms of the search space size: O(|E| + |V| log |V])

The search space is exponential in the size of the input description...

Fast Computers, Many Cores

jonkv@ida

But computers are getting very fast!

Suppose we can check 102° states per second

= >10 billion states per clock cycle for today’s computers,
each state involving complex operations

Then it will only take 10173 / 102° = 10171> seconds...

But we have multiple cores!

The universe has at most 1087
particles, including electrons, ...

Let’s suppose every one
is a CPU core

=> only 101628 seconds
> 101620 years

The universe is around 101°
years old

3
jonkv@ida

Impractical Algorithms

Dijkstra’s algorithm is completely impractical here

Visits all nodes with cost < cost(optimal solution)

If we don’t guarantee optimality: Depth first search!?

Could be faster, by pure luck...
but normally finds very inefficient plans

The state space is fine,

but we need some guidance!

Best First Search

(a general idea)

Best First Search: A Very General Idea

9
jonkv@ida

search(problem) {
initial-node € make-initial-node(problem) // [2] Keep track of a set of
open € { initial-node } open nodes
while (open # 0) {
node € search-strategy-remove-from(ope -
if is-solution(node) then // [4] h(node)

return extract-plan-from(node) // [5] to select the open node
that seems "best”

Use a heuristic function

foreach newnode € successors(node) { // [3]

add newnode to open (As opposed to depth

} first, breadth first, ...

} .) o which only consider
// Expanded the entire search space without finding tree structure!)

return failure;

(As opposed to hill (As opposed to
climbing and others that Dijkstra’s algorithm etc,

“throw away”’ nodes considering cost so far
instead of keeping all but having no idea where
nodes in open) to go next)

Greedy Best First Search

(Non-Optimal, Informed, Greedy)

Greedy Best First

NY
9
jonkv@ida

search(problem) {
initial-node € make-initial-node(problem) // [2]
open € { initial-node }

while (open # 0) { Choose an open node
node € search-strategy-remove-from(ope . that minimizes h(n)
if is-solution(node) then // [4]

return extract-plan-from(node) // [5]
Ilgnore the cost of

foreach newnode € successors(node) { // [3] reaching the node, g(n)
add newnode to open
} Try to minimize the
} (apparent) amount of
// Expanded the entire search space without finding search left to do

return failure;

A* — Another Best First Search Algorithm

(Optimal, Informed, Non-Greedy)

©

jonkv@ida

Optimal Plan Generation: Often uses A*
A* focuses entirely on optimality

= Expand from the initial node, systematically checking possibilities h*(n) = cost

= No point in trying to find a “reasonable” plan before the optimal one! [RaEvigle]
plan from n

Requires admiissible heuristics to guarantee optimality: Vn. h(n) < h*(n)

= Reason: Heuristic used for pruning (skipping some search nodes + all descendants)

Essential: How does admissibility help?

Another node, n:
g(n) = cost of reaching node = 10
h(n) = heuristic value =5

Suppose we found a solution,
exact cost =12

h(n) admissible,

never overestimates,

so any solution found from here
would cost at least 10+5=15

No need to investigate
successors of this node!

E)
~
jonk\;@ida

A* strategy:

Pick nodes from open in order of increasing
f(n) = g(n) [actual cost] + h(n) [heuristic]
Works like a priority queue

Pop - not a Pop - nota Pop - Ignore the rest:
solution solution W g is known, h is an underestimate,

so solutions found by expanding
these nodes will cost > g+h
(and we have one of cost < g+h)

If a2 heuristic never underestimates costs:

Another node, n:
g(n) = cost of reaching node = 10
h(n) = heuristic value =5

Suppose we found a solution,
exact cost =12

h(n) never underestimates,
so any solution found from here

would cost at most 10+5=15

Could find solutions of cost 10
as descendants of node n,
must keep searching

[29 JE

Dijstra vs.A*:The essential difference

Selects from open a node n with Selects from open a node n with
minimal g(n) minimal g(n) + h(n)

+ underestimated cost
of reaching a goal from n

Cost of reaching n from initial node

Uninformed (blind)

Example:

= Hand-coded heuristic function

— Goal

= Can move diagonally =>»
h(n) = Chebyshev distance
from n to goal = < Obstacle
max(abs(n.x-goal.x), abs(n.y-goal.y))

= Related to Manhattan Distance =
sum(abs(n.x-goal.x), abs(n.y-goal.y))

Start P>

[30 JF

A* Search:

Here:
A single
physical obstacle

In general:
Many nodes where
all successors will

increase g+h
(cost + heuristic)

Investigate all nodes
where g+h=15,

- then all nodes

where g+h=16, ...

o
=
®

—
-

=

o
o —

Given an admissible heuristic h, A* is optimal in two ways

Guarantees an optimal plan

Expands the minimum number of nodes
required to guarantee optimality with the given heuristic

Still expands many “unproductive” nodes in the example

Because the heuristic is not perfectly informative

= Even though it is hand-coded

L3 £
o

= Does not take obstacles into account

SRRy
o 0w R e

If we knew actual remaining costs h*(n): CRERRERFRES S
s S EEEEEEE S S Y
= Expand optimal path to the goal e 4 8

R R 2R R F R

sessss0eco
DoRER
LR R R R R R R

=
:
.

]

u u

el

L
iRl

om0 0T

(R R R 3 S B
(R R L RS R
(5 R RS
oL EEE
FHERER

Lo omn s sk ok

*
*
*
|
-

(L E

Variations of A*

Weighted A*

3
w
jonkv@ida

Weighted A*: Use f(n) = g(n) + w : h(n)
Weight w > 1 places greater emphasis on

being (believing you are) close to the goal

Result: At most w times more expensive

Repeated Weighted A*

w
S
jonkv@ida

Repeated weighted A* -- example:

for win (5.0, 3.0, 2.0, 1.5, 1.2, 1.0):
solve problem using given w

Why!?
= Each pass is much faster than the next

= Try to approach optimality,
while still being able to return a plan quickly if necessary

Why not just specify a single weight!?

= Can’t predict how much time any given weight will require

More variations will be discussed in the path planning lecture

Observations about the Open List

Open Lists

w
9
jonkv@ida

With an OPEN list,
we have no ”current position”
during search

search(problem) {
initial-node < make-initial-node(problem) // [2]
open € { initial-node }
while (open # @) {
node € search-strategy-remove-from(open) // [6]

We choose from all open nodes,

not from the nearest one

Without Open Lists

3
~
jonkv@ida

Depth First Search can use
open lists

or recursive search

depth-first-search(problem) {
initial-node < make-initial-node(problem) // [2]
return depth-first-search(initial-node)

}

depth-first-search(node) {
if is-solution(node) then // [4]
return extract-plan-from(node) // [5]

We can only look at
the successors of

foreach newnode € successors(node) { // [3]
the current node

solution € depth-first-search(newnode)
if solution # null {

return solution No possibility of postponing
} a node until later

}

return null Introduces backtracking:

J Going back from where you are
(no such concept with open lists!)

Hill Climbing
iIn HSP, Heuristic Search Planner

(Non-Optimal, Informed)

o
=
®

—
-

=

o
o —

Hill Climbing (1)

How about Steepest Ascent Hill Climbing!?

Greed).{ I(?cal .sear'ch algorithm Steepest Ascent Hill-climbing
for optimization problems 1 & initial node

(1) Start in some current location

State space example; n={on(A,C),...}

Objective Functian

Elev ation

Y-Coordinate

#-Coordinate

o
=
®

—
e

=

(=]
o —

Hill Climbing (2)

(2) Find the local neighborhood, Steepest Ascent Hill-climbing

with nodes that you can reach n € initial node
in one “Step” while True:

if n is a solution then return n

expand children of n

Example: Points (x, y)

at a distance of 0.1 All successors
Objective Functian Of node n

Elev ation

i Wy
i ““‘?\‘"’ At

—_

i ‘““l X
WAt

[y

@ D

Y-Coordinate v o ¥-Coordinate

Hill Climbing (3)

(3) Try to improve using a locally optimal choice:
Choose the successor/neighbor that is best in this step
(don’t care about the future)

9
jonkv@ida

Steepest Ascent Hill-climbing

n € initial node

while True:
if n is a solution then return n
expand children of n

calculate h for children
if (some child decreases h(n)):
n € a child minimizing h(n)
else...?
end loop

Search nodes have no "absolute” quality:
They are solutions
or useless non-solutions

But we can estimate quality
using heuristics (leading towards goals)

Hill Climbing (4)

Example of hill climbing search:

3
NY
jonkv@ida

A(n)=50]

g

h(n)=40] h(n)=72] h(n)=44]

T~

h(n)= 42] h(n)=55] h(n)=39]

— T~

n(n)=30] h(n)=33] n(n)=37]

T~

h(n)=25] h(n)=26] n(n) =22 J

Hill Climbing (5)

Greedy Best First search:

n €< initial node

open € @

loop
if n is a solution then return n
expand children of n
calculate h for children

add children to open
n € anode in open
minimizing h(n)

end loop

Be stubborn:

Steepest Ascent Only consider

Hill-climbing
n €< initial node

don't keep track
of open nodes

lOOp to return to

if n is a solution then return n
expand children of n
calculate h for children

if (some child decreases h(n)):
n € a child minimizing h(n)
else stop // logal optimum
end loop

Choose best among children

children of this node,

jonkv@ida

Local Optima and Plateaus

jonkv@ida

Local Optima (1)

(4) When there is nothing strictly better nearby: Stop!

Standard HC is used for optimization

= Any point is a solution, we search for a good one

Might find a local optimum:
The top of a hill

P /ﬂ '/ / '
AR AR -,.-,;’f"*

<5 /’ 2

Y-Coordinate ¥-Coordinate

Local Optima (2)

Classical planning =» absolute goals

3
an
jonkv@ida

Even if we can't decrease h(n),
we can't simply stop

h(n)=50]

T~

h(n)=62] h(n)=72] h(n)=55]

Local Optima (3)

Standard solution to local optima: Steepest Ascent

Randomly choose another node Hill-climbing with Restarts
Continue searching from there ;1 < initial node
. : oop
Hope you find a global optimum if n is a solution then return n
eventually expand children of n
calculate h for children
In plannlng: if (some child decreases h(n)):
Must choose a node n € a child minimizing h(n)
» else n ¢ some rnd. state

that you have actually created

during expansion... end loop

Elewation

Y-Coordinate

#-Coordinate

o
)
E)

—
e

o
o —

jonkv@ida

Hill Climbing with h,,: Plateaus

No successor improves the
heuristic value; some are equal!

We have a plateau...

h=5 7 Jump to a random node immediately?

uﬂu u No: the heuristic is not so accurate —
\ / maybe some child is closer to the goal
y g

even though h(n) isn’t lower!

. D :
U L—J =>» Keep exploring: Allow some
HE consecutive moves across plateaus

3
(W)
jonkv@ida

Hill Climbing with h,,: Local Optima

If we continue, all successors
have higher heuristic values!

We have a local optimum...
Impasse = optimum or plateau
Some impasses allowed

9 H .
5 - o)
b Hu
h=5 u / H y
C|B[D
3+7:pickup(C) p
g 3+4: pickup(B)
3+ 8: pickup(D) u

Impasses and Restarts

D
o
jonkv@ida

What if there are many impasses?

Maybe we are in the wrong part of the search space after all...

=>» Select another promising expanded node where search continues

HSP 1: Heuristic Search Planner

9
jonkv@ida

HSP 1.x: h_ 4, heuristic + hill climbing + modifications
Works approximately like this (some intricacies omitted):
= impasses = 0;
unexpanded = { };
current = initialNode;
while (not yet reached the goal) {

children = expand(current); // Apply all applicable actions
if (children == 0) {

Deadend > current = pop(unexpanded);
restart } else {
bestChild = best(children); // Child with the lowest heuristic value
Essentially add other children to unexpanded in order of h(n); // Keep for restarts!
hill-climbing, but if (h(bestChild) > h(current)) {
notall StEDS have impasses++;
to move “up* if (impasses == threshold) {
current = pop(unexpanded); // Restart from another node
Too many

impasses = 0;

downhill/plateau 7.
TS } else current = bes.tChlld, Simpl e structure,
} else current = bestChild; X ..)
L but highly competitive at its

introduction

Enforced Hill-Climbing

(Non-Optimal, Informed)

Enforced Hill Climbing

jonkv@ida

s €< init-state h(n)=50 J

repeat
expand breadth-first until a better state s' is found
until a goal state is found

v
\
v
\
x
N

A Not expanded

n(n)= 44] h(n)=55] (n)= 41]

S

n(n)= 44 J h(n)= 42] n(n)=371]

Wait longer to decide which branch to take

Don't restart — keep going

Properties of EHC

Is Enforced Hill-Climbing complete!
No!

n(n)= 401]]]
‘/I\ Never expanded

h(n)= 44] 1(n)=55] (n)= 41]

/\. We commiit to this part of the plan!

n(n)= 44] n(n)= 42] h(n)=37!]

If there is a descendant with lower h(n),
one will be found...

If we commit and then find no solution:
FF restarts completely, using best-first-search

jonkv@ida

