
jonas.kvarnstrom@liu.se – 2019

Automated Planning

General Search Strategies

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

Assumes you have some previous

experience of search algorithms!

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Optimal Planning
 Optimal plan generation:

 There is a quality measure for plans

▪ (Minimal number of actions)

▪ Minimal sum of action costs

▪ …

 We must find an optimal plan!

▪ Suboptimal plans

(0.5% more expensive):

Guaranteeing optimality is sometimes useful, always expensive

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Satisficing Planning
 Satisficing (satisfy/suffice) in general:

 ”Searching until an acceptability threshold is met”

 Motivation: High-quality non-optimal solutions are also useful

▪ And can often be found in reasonable time

 Satisficing in planning (typically):

 No well-defined threshold: Any form of non-optimal planning

 Try to find strategies and heuristics

that seem reasonably quick

and give reasonable results in our tests

Investigate many different points on the efficiency/quality spectrum!

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Informed / Uninformed Search
 Uninformed search strategies:

 No domain-specific knowledge

 Can only take into account search space structure and cost so far

▪ 𝑔(𝑛) = cost of reaching node 𝑛 from starting point

 Informed search strategies:

 Take additional information into account, such as heuristics

Applicable to all search spaces we have seen

May work better in some of them…

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Dijkstra’s Algorithm
 First search strategy: Dijkstra’s algorithm

 Matches the given forward search ”template”

▪

▪ Selects a node 𝑛 with minimal 𝑔(𝑛):
Cost of reaching 𝑛 from the initial node

 Efficient graph search algorithm: 𝑂(𝐸 + 𝑉 log 𝑉)

▪ |𝐸| = the number of edges (transitions), |𝑉| = the number of nodes (states)

 Optimal: Returns minimum-cost plans

≠ ∅

∈

Typical

implementation:

Priority queue

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9

cost 16 (would not actually be expanded)

Dijkstra’s Algorithm
 Explores nodes in order of cost

cost 14
cost 12
cost 9
cost 7
cost 5
cost 3
cost 1

Goal nodes

(initially

unknown, not

expanded!)

Cost ≠ number of

actions: There are no

plans of cost 2

More goal

nodes, still

unknown, not

expanded

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Dijkstra: ToH
 Running Dijkstra, assuming all ToH actions are equally expensive:

Expands one node at a time,

but we can identify ”levels”

of equal distance

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Dijkstra: Blocks World
 Running Dijkstra, assuming all BW actions are equally expensive:

No problems?

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Dijkstra’s Algorithm: Example

 A small instance:
Goal Optimal solution

bw-tower06-dijkstra: Only 6 blocks, Dijkstra, state space, no heuristic

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16400 blocks
 Blocks world, blocks

 Standard formulation: 2𝑛
2+3𝑛+1 = 2161201 > 1048526 states

 But we don’t have to visit every one… Fewer reachable states!

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17400 blocks
 Blocks world, blocks initially on the table, goal is a -block tower

▪ Given state space search with uniform action costs (same cost for all actions),
Dijkstra will always consider all plans that stack less than blocks!

▪ Stacking block: = plans, …

▪ Stacking blocks: > plans, …
▪

Dijkstra is efficient in terms of the search space size: O(|E| + |V| log |V|)

The search space is exponential in the size of the input description…

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Fast Computers, Many Cores
 But computers are getting very fast!

 Suppose we can check 1020 states per second

▪ > billion states per clock cycle for today’s computers,

each state involving complex operations

 Then it will only take 101735 / 1020 = 101715 seconds…

 But we have multiple cores!

 The universe has at most 1087

particles, including electrons, …

 Let’s suppose every one

is a CPU core

 only 101628 seconds
> 101620 years

 The universe is around 1010

years old

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Impractical Algorithms
 Dijkstra’s algorithm is completely impractical here

 Visits all nodes with

 If we don’t guarantee optimality: Depth first search?

 Could be faster, by pure luck…

but normally finds very inefficient plans

The state space is fine,

but we need some guidance!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Best First Search: A Very General Idea

≠ ∅

∈

Keep track of a set of

open nodes

Use a heuristic function

ℎ 𝑛𝑜𝑑𝑒
to select the open node

that seems ”best”

(As opposed to depth

first, breadth first, …

which only consider

tree structure!)

(As opposed to

Dijkstra’s algorithm etc,

considering cost so far

but having no idea where

to go next)

(As opposed to hill

climbing and others that

”throw away” nodes

instead of keeping all
nodes in)

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Greedy Best First

≠ ∅

∈

Choose an open node

that minimizes ℎ(𝑛)

Ignore the cost of

reaching the node, g(n)

Try to minimize the

(apparent) amount of

search left to do

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25A* (1)
 Optimal Plan Generation: Often uses A*

 A* focuses entirely on optimality

▪ Expand from the initial node, systematically checking possibilities

▪ No point in trying to find a ”reasonable” plan before the optimal one!

 Requires admissible heuristics to guarantee optimality: ∀𝑛. ℎ(𝑛) ≤ ℎ∗(𝑛)

▪ Reason: Heuristic used for pruning (skipping some search nodes + all descendants)

ℎ∗(𝑛) = cost

of optimal

plan from 𝑛

Essential: How does admissibility help?

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27A* (2)
 A* strategy:

 Pick nodes from in order of increasing

𝑓(𝑛) = 𝑔(𝑛) [actual cost] + ℎ(𝑛) [heuristic]

 Works like a priority queue

Pop – not a

solution

Pop – not a

solution

Pop –

solution!

Ignore the rest:

g is known, h is an underestimate,

so solutions found by expanding

these nodes will cost ≥ g+h

(and we have one of cost ≤ g+h)

If a heuristic never underestimates costs:

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29A* (3)
 Dijstra vs. A*: The essential difference

 Example:

▪ Hand-coded heuristic function

▪ Can move diagonally

h(n) = Chebyshev distance

from n to goal =

▪ Related to Manhattan Distance =

Start

Goal

Obstacle

 Selects from open a node n with

minimal g(n)

 Cost of reaching n from initial node

 Selects from open a node n with
minimal g(n) + h(n)

 + underestimated cost
of reaching a goal from n

Dijkstra A*

Uninformed (blind) Informed

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30A* (4)
 A* Search:

Here:

A single

physical obstacle

In general:

Many nodes where

all successors will

increase g+h

(cost + heuristic)

Investigate all nodes

where g+h=15,

then all nodes

where g+h=16, …

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31A* (5)
 Given an admissible heuristic h, A* is optimal in two ways

 Guarantees an optimal plan

 Expands the minimum number of nodes

required to guarantee optimality with the given heuristic

 Still expands many ”unproductive” nodes in the example

 Because the heuristic is not perfectly informative

▪ Even though it is hand-coded

▪ Does not take obstacles into account

 If we knew actual remaining costs h*(n):

▪ Expand optimal path to the goal

Variations of A*

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Weighted A*
 Weighted A*: Use 𝑓(𝑛) = 𝑔 𝑛 + 𝑤 ⋅ ℎ(𝑛)
 Weight 𝑤 > 1 places greater emphasis on

being (believing you are) close to the goal

 Result: At most 𝑤 times more expensive

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34Repeated Weighted A*
 Repeated weighted A* -- example:

 𝑤
𝑤

 Why?

▪ Each pass is much faster than the next

▪ Try to approach optimality,

while still being able to return a plan quickly if necessary

 Why not just specify a single weight?

▪ Can’t predict how much time any given weight will require

More variations will be discussed in the path planning lecture

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Open Lists

≠ ∅

With an OPEN list,

we have no ”current position”

during search

We choose from all open nodes,

not from the nearest one

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Without Open Lists

∈

≠

Depth First Search can use

open lists

or recursive search

We can only look at

the successors of

the current node

No possibility of postponing

a node until later

Introduces backtracking:

Going back from where you are

(no such concept with open lists!)

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Hill Climbing (1)
 How about Steepest Ascent Hill Climbing?

 Greedy local search algorithm

for optimization problems

 (1) Start in some current location

𝑛 = (𝑥, 𝑦) State space example:

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Hill Climbing (2)
 (2) Find the local neighborhood,

with nodes that you can reach

in one “step”

Example: Points (𝑥, 𝑦)
at a distance of 0.1 All successors

of node n

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Hill Climbing (3)
 (3) Try to improve using a locally optimal choice:

Choose the successor/neighbor that is best in this step

(don’t care about the future)

Search nodes have no ”absolute” quality:

They are solutions

or useless non-solutions

But we can estimate quality

using heuristics (leading towards goals)

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Hill Climbing (4)
 Example of hill climbing search:

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Hill Climbing (5)

 ∅

Choose best among children

Be stubborn:

Only consider

children of this node,

don't keep track

of open nodes

to return to

Local Optima and Plateaus

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Local Optima (1)
 (4) When there is nothing strictly better nearby: Stop!

 Standard HC is used for optimization

▪ Any point is a solution, we search for a good one

 Might find a local optimum:

The top of a hill

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Local Optima (2)
 Classical planning absolute goals

 Even if we can't decrease h(n),

we can't simply stop

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Local Optima (3)
 Standard solution to local optima:

 Randomly choose another node

 Continue searching from there

 Hope you find a global optimum

eventually

 In planning:

 Must choose a node

that you have actually created

during expansion…

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Hill Climbing with hadd: Plateaus

Jump to a random node immediately?

No: the heuristic is not so accurate –

maybe some child is closer to the goal

even though h(n) isn’t lower!

 Keep exploring: Allow some

consecutive moves across plateaus

No successor improves the

heuristic value; some are equal!

We have a plateau…

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49Hill Climbing with hadd: Local Optima

3+7: pickup(C)
3+4: pickup(B)
3+8: pickup(D)

If we continue, all successors

have higher heuristic values!

We have a local optimum…

Impasse = optimum or plateau

Some impasses allowed

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Impasses and Restarts
 What if there are many impasses?

 Maybe we are in the wrong part of the search space after all…

 Select another promising expanded node where search continues

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51HSP 1: Heuristic Search Planner
 HSP : heuristic + hill climbing + modifications

 Works approximately like this (some intricacies omitted):

▪

∅

Essentially
hill-climbing, but
not all steps have

to move “up”

Too many
downhill/plateau
moves escape

Dead end
restart

Simple structure,

but highly competitive at its

introduction

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53

Not expanded

Enforced Hill Climbing
 FastForward (FF) uses enforced hill climbing – approximately:

 s init-state

 repeat

expand breadth-first until a better state s' is found

until a goal state is found

Step 1

Step 2

Wait longer to decide which branch to take

Don't restart – keep going

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54

We commit to this part of the plan!

If there is a descendant with lower h(n),

one will be found…

If we commit and then find no solution:

FF restarts completely, using best-first-search

Properties of EHC
 Is Enforced Hill-Climbing complete?

 No!

Never expanded

