
jonas.kvarnstrom@liu.se – 2019

Automated Planning

The Partial Order Causal Link
Search Space

Jonas Kvarnström

Department of Computer and Information Science

Linköping University
Partly adapted from slides by Dana Nau

Licence: Creative Commons Attribution-NonCommercial-ShareAlike, http://creativecommons.org/licenses/by-nc-sa/2.0/

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Motivating Problem
 Simple planning problem:

 Two crates

▪ At A

▪ Should be at B

 One robot

▪ Can carry up to two crates

▪ Can move between locations, which requires one unit of fuel

▪ Has only two units of fuel

Let's see what a forward-chaining planner might do (depending on heuristics)…

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Motivating Problem 2: Forward Search

D
e
ad

 e
n
d
,

b
ac

k
tr

ac
k

C
yc

le
, b

ac
k
tr

ac
k

D
e
ad

 e
n
d
, b

ac
k
tr

ac
k Why is this

not a cycle?

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Motivating Problem 3

Keep

backtracking…

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Motivating Problem 4
 Observations:

 Most actions we added before backtracking were useful and necessary!

 At first, we added them in the wrong order

 Forward and backward planning commits immediately to action order

▪ Puts each action in its final place in the plan

 State space heuristics must be smart enough to tell us:

▪ Which actions are useful

▪ When to add them to the plan

What if we could rearrange actions?

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8First Step: Insertion
 Sequences with arbitrary insertion: Useful?

 Add actions in sequence, as in state space planning…

 Realize you need another one…

 Make a space…

 …and place the action there

How to decide where to insert it?

How to check that ”old” preconditions remain satisfied?

How to decide which action to insert, if not at the end

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Second Step: Partial Order
 If we must deal with this complexity:

 We can ”get more for the same price”

 Let’s skip sequences completely – a plan could be partially ordered:

 A set of actions 𝐴 = { 𝑎1, 𝑎2, 𝑎3, … }

 A set of precedence constraints { 𝑎1 < 𝑎2, 𝑎1 < 𝑎3, … }

▪ 𝑎1 must finish before 𝑎2 starts, …

▪ Here: solid arrows

How do we generate these plans?

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10POCL 1: Introduction
 Partial Order Causal Link (POCL) planning

 Use a partial order, as described

▪ Not when executing the plan

▪ Only to delay commitment to ordering

 As in backward search:

▪ Add useful actions to achieve necessary conditions

▪ Keep track of what remains to be achieved

▪ But: Insert actions ”at any point” in a plan

More sophisticated ”bookkeeping” required!

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11POCL 2: Comparison to Backward Search
 Search tree for backward search, earlier:

Goal g =

set of literals

to achieve

Goal
= γ

new set of

literals to

achieve

Goal
= γ

new set of

literals to

achieve

The goal is a set of literals –

simple!

From a search node,

you know how to reach the goal

using a sequence of actions

Every step takes you to

a new set of literals to achieve

A search node can simply be

a goal set

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12POCL 3: Comparison to Backward Search
 In POCL planning:

 There is no sequence – and no clear ”before” relation!

The goal is a set of literals –

simple!

But no set of literals

can describe what must be true
before …

Because we could add a new

action "in parallel"…

…or even between
and the goal!

Has consequences for the POCL plan structure and the node structure…

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13POCL 4: Conditions; Goal Action
 Must keep track of individual propositions to be achieved

 Throughout the plan – not a single state = γ

 May come from preconditions of every action in the plan

 May come from the problem goal as in backward search

▪ Trick: Use a uniform representation

▪ Add a ”fake” goal action to every plan,

with the goals as preconditions!

Notation chosen for this

presentation: Preconditions

on the left/top side

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14POCL 5: Effects; Initial Action
 Must keep track of individual propositions that are achieved

 Throughout the plan – not from a single relevant action

 May come from effects of every action in the plan

 May come from the initial state

▪ Trick: Add a ”fake” initial action

with the initial state as effects!

 Effects are sometimes omitted from

the slides, due to lack of space…

Notation chosen for this

presentation: Effects on the

right/bottom side

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15POCL 6: Precedence Constraints
 Plan structure so far:

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16POCL 7: Causal Links
 Let’s keep track of which action achieves which precondition

 Causal links Causal link (dashed):
must remain true

between the end of put and the beginning of goalaction.

No one must delete it!

Important for threat management (later)

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17POCL 8: Partial-Order Plans
 To summarize, a ground partial-order plan consists of:

 A set of actions

 A set of precedence constraints 𝑎 → 𝑏
▪ Action a must precede b

 A set of causal links 𝑎→
𝑝
𝑏

▪ Action a establishes the precond p needed by b

Causal link (dashed)

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Partial-Order Solutions
 Original motivation: performance

 Therefore, a partial-order plan is a solution

iff all sequential plans satisfying the ordering are solutions

▪ Similarly, executable iff corresponding sequential plans are executable

▪

▪

▪

▪

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Partial Orders and Concurrency
 Can be extended to allow concurrent execution

 Requires a new formal model!

▪ Our state transition model does not define what happens
if and are picked up simultaneously!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21

Backward search: A search node is a "current goal"

Forward search: A search node is a "current state"

Context: Forward, Backward

Node Modification Node Modification Node

NodeModificationModification NodeNode

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22No Current State during Search!
 With partial-order plans: No “current” state or goal!

 What is true after below?

▪ Depends on the order in which other actions are executed

▪ Changes if we insert new actions before !

A search node can’t correspond to a state or goal!

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Search Nodes are Partial Plans
 Each node must contain more information: The entire plan!

 The initial search node contains an initial plan

▪ The special initial and goal actions

▪ A single precedence constraint
So: this is one form of

”plan-space” planning!

Initial node containing initial plan

on(A,B)

on(B,C)

on(C,D)

ontable(D)

handempty

clear(A)clear(A)

ontable(A)

clear(B)

ontable(B)

clear(C)

on(C,D)

ontable(D)

handempty

in
it

a
c
ti

o
n

g
o

a
la

c
ti

o
n

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Branching Rule
 We need a branching rule as well!

 Forward planning: One successor per action applicable in s

 Backward planning: One successor per action relevant to g

 POCL planning: ???

Could allow inserting any actions,

any precedence constraints…

Too much freedom, too many alternatives!

What do we need for completeness?

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Branching Rule
 Branching rule for POCL planning

 Identify specific reasons for modifying the plan, called flaws

(basically todo:s)

▪ 1) Open goal: We haven’t decided how to achieve a precondition – clear(A)

▪ 2) Threat: An action may interfere with another

 One successor for each different way of repairing a flaw

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Search Space
 Gives rise to a search space

 Use search strategies, backtracking, heuristics, ... to search this space!

Solution iff there are no flaws/todos

(can be proven, not shown here)

Plan extraction: Pick any sequential

order consistent with the constraints



<putdown(D), putdown(K)> or

<putdown(K), putdown(D)>

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29

 Flaw, noun:

1. a feature that mars the perfection of something; defect; fault: beauty without

flaw; the flaws in our plan.

2. a defect impairing legal soundness or validity.

3. a crack, break, breach, or rent.

 Flaw, in POCL planning:

 Something we need to take care of to complete the plan

 Technical definition: An open goal or a threat

 Not:

 Something that has ”gone wrong”

 A problem during planning

 A mistake in the final solution

 …

Flaws

Open Goals

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Flaw Type 1: Open Goals
 Open goal:

 An action a has a precondition p with no incoming causal link

We haven't decided how to

achieve any of these six goals

 they are flaws in the plan

clear(A) is already true in , but there is no causal link…

Adding one from means clear(A) must never be deleted!

We need other alternatives too: Delete clear(A), then re-achieve it for goalaction…

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Flaw Type 1: Open Goals
 To resolve an open goal :

 Find an action b that causes p

▪ Can be a new action

▪ Can be an action already in the plan,

if we can make it precede a

 Add a causal link

Partial order! This was not

possible in backward search…

Essential:

Even if there is already an action that causes p,

you can still add a new action that also causes p!

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Resolving Open Goals 1
 Here: Six open goals

 Could choose to find support for clear(A):

▪ From

▪ From a new , , or

▪ From a new , , , or

 Could choose to find support for on(A,B):

▪ Only from a new instance of

 …

8 distinct

successors

successor

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34Resolving Open Goals 2
 Suppose we add stack(A,B) to support (achieve) on(A,B)

 Must add a causal link for on(A,B)

▪ Dashed line

 Must also add precedence constraints

 Looks totally ordered

▪ Because it actually only has one “real” action…

Causal link says:

This instance of stack(A,B)

is responsible for

achieving on(A,B)

for the goalaction

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Resolving Open Goals 3
 Now: open goals (one more!)

 Can choose to find support for

▪ From the initaction

▪ From the instance of that we just added

▪ From a new instance of

▪ From a new instance of

 …

Threats

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Flaw Type 2: Threats
 Second flaw type: A threat against a causal link

▪ should support for – there’s a causal link

▪ deletes , and may occur between initaction and

▪ So we can’t be certain that still holds when starts!

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Flaw Type 2: Threats (2)
 Another way of illustrating a threat, on a “timeline”

time



39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Flaw Type 2: Threats (3)
 Why no threat without causal link?

time



40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Flaw Type 2: Threats (4)
 But when we have a causal link:

time

A causal link for

explicitly says that we must
have throughout

this interval of time



41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Resolving Threats (1)
 Resolution : The action that disturbs the causal link

is placed before the action that supports the precondition

▪ Only possible if the resulting partial order is consistent (acyclic)!

time

A causal link for clear(B)

explicitly says that we must

have clear(B) throughout

this interval of time

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Resolving Threats (2)
 In this case, not consistent

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Resolving Threats (3)
 Resolution 2: The action that disturbs the causal link

is placed after the action that requires the precondition

▪ Only possible if the resulting partial order is consistent (acyclic)!

time

A causal link for

explicitly says that we must
have throughout

this interval of time

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44Resolving Threats (4)
 Works for this example

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Resolving Threats (5)
 Summary:

Assign

f:=true

Need

f==true

Assign

f:=false

Assign

f:=false

Can be

placed here

Can be

placed here

Make

f:=false

Can’t remain unordered – then it

might be executed between

Causal link

f == true

Prec constr

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Repetition: POCL Search Space

Goal nodes:

Any nodes

lacking flaws

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Repetition: Planning as Search








≠ ∅


∈

Successors:

All ways of

resolving

some flaw

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49

 POCL planning – one possible formulation (sound/complete):





≠ ∅
𝜋

 𝜋 ∪ 𝜋
∅
𝜋

φ ∈
 φ 𝜋



 ∪

POCL planning

Can prove: 𝝅 is a solution

iff there are no remaining flaws

Successors:

All ways of

resolving

some flaw

Returns a partially ordered solution plan

Any total ordering of this plan will achieve the goals

One flaw chosen!

But all resolvers must be tested…

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50

1) Every flaw has to be resolved

2) Choosing this flaw later cannot help us resolve it:

All possibilities already exist

3) Choosing this flaw later cannot help us resolve

some other flaw

Understanding Successors in POCL

φ ∈
 φ

 ρ
 ∪

At first we said ’every flaw leads to successors’.

But it is actually sufficient to try one flaw, any flaw, to resolve.

Testing other flaws would be redundant. Why?

1) Choosing one resolver can prevent other problem

resolutions.

2) Open goal: Use action A or B?

3) Threat: Which order to choose?

We must allow search to test different resolvers

for the chosen flaw. Why?

Allows us to use heuristics to select flaws

(as well as prioritizing open nodes)

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Partial Instantiation
 Suppose we want to achieve

 Ground search generates many alternatives

▪ …

▪

 Lifted search generates two partially instantiated alternatives

▪

▪

So far, we see no reason

why we should unstack B

from any specific block!

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Partial-Order Plans
 A lifted partial-order plan consists of:

 A set of possibly unground actions

 A set of precedence constraints: a must precede b

 A set of causal links: action a establishes the precond p needed by b

 A set of binding constraints:

▪ equality constraints 𝑣1 = 𝑣2 or 𝑣 = 𝑐

▪ inequality constraints 𝑣1 ≠ 𝑣2 or 𝑣 ≠ 𝑐

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54Resolving Threats
 Another way of resolving threats for lifted plans:

 For partly uninstantiated actions, we may find potential threats

▪ may threaten the causal link, but only if 𝑥 = 𝑦

▪ Can be resolved by adding a constraint: 𝑥 ≠ 𝑦

stack(B,y)

Precond: …

Effects: clear(y)

putdown(x)

Precond: …

Effects: clear(x)

pickup(x)

Precond: clear(x)

Effects: …

clear(x)

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Example
 Running Example: Similar to an example in AIMA

 Russell and Norvig’s Artificial Intelligence: A Modern Approach (1st ed.)



▪

▪ 



▪

▪



▪



▪

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57Example (continued)
 Initial plan: initaction, goalaction, and a precedence constraint

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

58

jo
nk

v@
id

a
jo

nk
v@

id
a

58Example (continued)
 Four flaws exist: Open goals

 Suppose our heuristics tell us to resolve first

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

Selected…

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59Example (continued)
 ot achieved by any action in the current plan

 achieves

▪ Partially instantiate:
(right now we don’t care where we buy it)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

At() Sells(,)

Have() achieves for goalaction –

keep track of this with a causal link

60

jo
nk

v@
id

a
jo

nk
v@

id
a

60Example (continued)
 Alternative Notation for simplicity

 Variable bindings are implicit in the diagram

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

At() Sells(, Drill)

Have(Drill)
achieves for goalaction –

keep track of this with a causal link

Now we have five open goals:

The preconditions of Buy

must also be achieved!

61

jo
nk

v@
id

a
jo

nk
v@

id
a

61Example (continued)
 The first three refinement steps

 These are the only possible ways to establish the Have preconditions

 We don’t care in which order we buy things!

At(st1) At(st2) At(st3)Sells(st1, Drill) Sells(st2,Milk) Sells(st3,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62Example (continued)
 Three more refinement steps

 No action causes to be true – except the “fake” initial action!

 Use it for support

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

New causal

links and

variable

bindings!

st1 must be
: No action

causes to

be true

63

jo
nk

v@
id

a
jo

nk
v@

id
a

63Example (continued)
 It’s getting messy!

 Let’s omit the precedence constraints that are implicit in causal links…

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

If you do this,

SAY SO

EXPLICITLY!

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64Example (continued)
 To establish : Must go there from somewhere

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(l1)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65Example (continued)
 Does  threaten ?

 No! Only a causal link to can be threatened

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(l1)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66

At(l1)
At(l2)

Example (continued)
 To establish : Must go there from somewhere

 Mutual threats…

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)
At(SM)At(l2)

67

jo
nk

v@
id

a
jo

nk
v@

id
a

67

At(l1)
At(l2)

Example (continued)
 Let’s use the same action for both preconditions…

 More threats – could deal with them now or wait

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)
At(SM)At(l2)

68

jo
nk

v@
id

a
jo

nk
v@

id
a

68Example (continued)
 Nondet. choice: how to resolve the threat to ?

 Our choice: make the “requirer” precede the “threatener”

 Also happens to resolve the other two threats

▪ “Threatener” before “achiever”

At(SM)Sells(SM,Milk) Sells(SM,Bananas)

At(l2)

At(l1)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69Example (continued)
 Nondet. choice: how to establish ?

 We’ll do it from , with

At(Home)

At(SM)Sells(SM,Milk) Sells(SM,Bananas)

At(l2)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70Example (continued)
 Nondeterministic choice: how to establish ?

 We’ll do it from , with

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

71

jo
nk

v@
id

a
jo

nk
v@

id
a

71Example (continued)
 The only possible way to establish for

 This creates several new threats

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas)

At(Home)

At(l3)

72

jo
nk

v@
id

a
jo

nk
v@

id
a

72Example (continued)
 To remove the threats to and :

 Make and precede

 This also removes the other threats

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(l3)

73

jo
nk

v@
id

a
jo

nk
v@

id
a

73Final Plan
 Establish with

Go(SM, Home)

At(Home)

At(SM)

Buy(Drill, s1)

goalaction

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(SM)

Final Plan
Straightened out…

(Note: Still

does not constrain

the order between

buying milk and

bananas)

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS)

At(SM)

Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas)At(Home)

At(SM)

Many precedence constraints

are omitted here…

Final Plan
Straightened out…

(Note that this still

does not constrain

the order between

buying milk and

bananas)

At(Home)

At(SM)

Buy(Drill, s1)

initaction

goalaction

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(HWS)

At(HWS)

At(SM)

Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)

Buy(Drill, HWS)

Have(Drill) Have(Milk) Have(Bananas)At(Home)

At(SM)

Go(SM, Home)

This sequence assumed optimal choices!

Heuristics are required

Still, planners try many other alternatives, dead ends, etc.

Many precedence constraints

are omitted here…

