
jonas.kvarnstrom@liu.se – 2019

Automated Planning

The Backward Goal Space

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Intro
 Classical Planning: Find a path in a finite graph

 We searched forwards

 Can we search backwards? How?

initial

goal
goal

goal

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3

All-on-table

Contrast: Forward Search
 Blocks World, 3 blocks – searching forward

A B C

Initial state
If we are here:

What can we do,

where do we end up?

A B

C

Single goal, 𝑠𝑔

A

B

C

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4

All-on-table

Contrast: Forward Search (2)
 Blocks World, 3 blocks – searching forward

A B C

Initial state

A B

C

Single goal, 𝑠𝑔

A

B

C

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5

Goal

Backward Search
 Must traverse

edges backwards!

1. Execution should pass s10…

2. Execute pickup(C)…

3. Pass s14…

4. Execute stack(C,B)…

5. …and end up in s15

5. Pass s10…

4. Previous action could be pickup(C)

3. Pass s14…

2. Can reach s15 using stack(C,B)

Must traverse the edge backwards!

1. Planning must start in s15…

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6

All-on-table

Backward Search
 Searching backward

A B C

Initial state

A B

C

Single goal, 𝑠𝑔

A

B

C

Seems simple,

but there are complications…

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Backwards Search: Complication 1
 Complication 1:

 The graph isn’t precomputed

▪ Must be expanded dynamically,

starting in the goal

 Would require

an inverse of 𝛾 𝑠, 𝑎 :

𝛾−1(𝑠, 𝑎)

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Backwards Search: Complication 2
 Complication 2:

 Though we have determinism in the forward direction…

 …this isn’t the case in the backward direction!

 Compute 𝛾−1 𝑎𝑡 𝑠ℎ𝑜𝑝 , drive−to−shop :

▪ If we want to end up at(shop),

what set of states could we be in before drive-to-shop?

at(home)

at(work)

at(restaurant)

at(shop)
drive-to-shop

at(home)

One possibility:

at(shop)

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Backwards Search: Complication 3
 Complication 3:

 We generally have multiple goal states – to start searching in…

 Goal:

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Backwards Search: Combinations
 Complications 2+3 combined:

 Want to end up in one of these goal states (”at the shop”)

 Even if we say the last action had to be drive-to-shop,

we could have started in any of these states:

 Given initial state + forward plan [drive-to-shop]:

▪ One possible next state

 Given goal states + backward plan [drive-to-shop]:

▪ Many possible previous states

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Goal States and Goals
 Main challenge: A set of possible ”current” states

 Can’t store and process each state separately

 Classical representation:

 Goal: set of literals that should hold, representing multiple states

▪ ¬

▪ A should be on B, and C should not be on D

▪ We don’t care if blocks are clear / ontable or not:

If we cared, that would have been specified

Perfect starting point!

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Goal Space ≠ State Space
Backward search uses goal space!

Will not construct this graph – use 𝜸−𝟏 𝒈, 𝒂 , not 𝜸−𝟏 𝒔, 𝒂

If you achieve the conditions in 𝜸−𝟏 𝒈, 𝒂 , then executing 𝒂 will achieve 𝒈

Let’s see how we can construct a goal space

beginning with an ”initial goal”!

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Goal Specifications
 Suppose we want exactly this:

 What is the actual goal specification?

 We could specify a complete goal ( unique state)

▪

¬ ¬

 Or we might just specify this:

▪

▪ Specifies all positions;

given a physically achievable initial state, other facts follow implicitly

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Goal Specifications (2)
 Usually we don’t care about all facts (directly or indirectly)!

 Ignore the location of block D



¬

Forward planning: Applicability

Which actions could we execute?

Backward planning: Relevance

Which actions could achieve part of the goal?

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19

¬

Backward Search: Relevance

𝑔:

Suppose

we want

to achieve

this…
(Later:

Where would we

have to start?)

𝑔 specifies some

of the facts we

illustrate below…

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20

¬

Backward Search: Relevance (2)

𝑔:

Suppose

we want

to achieve

this…

𝑔 specifies some

of the facts we

illustrate below…

No!

It achieves

The goal requires ¬

 Destroys part of the goal

is not relevant

(also impossible,

but this is included in relevance)

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21

¬

Backward Search: Relevance (2)

𝑔:

Suppose

we want

to achieve

this…

𝑔 specifies some

of the facts we

illustrate below…

Yes! Effects:
¬
¬

¬

Does not contradict the goal

is not relevant

…but also doesn’t help us

achieve any goal requirements!

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22

¬

Backward Search: Relevance (3)

𝑔:

Suppose

we want

to achieve

this…

𝑔 specifies some

of the facts we

illustrate below…

Yes! Effects:
¬
¬

Does not contradict the goal,
achieves

is relevant

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23

𝑎
precond+ 𝑎 ⊆ 𝑠
𝑠 ∩ precond– 𝑎 = ∅

Backward Search: Summary (so far)

𝑎
∩ 𝑎 ∅
∩ 𝑎 ∅
∩ 𝑎 ∅

Forward search, over states 𝑠 = {𝑎𝑡𝑜𝑚1, … , 𝑎𝑡𝑜𝑚𝑛}:

Backward search, over sets of literals 𝑔 = {𝑙𝑖𝑡1, … , 𝑙𝑖𝑡𝑛}

Contribute to the goal

(add needed positive or negative literal)

Do not destroy any goal literals

Positive conditions are present

Negative conditions are absent

When an action has been selected:

Forward planning: Progression

What will be true after executing a?

Backward planning: Regression

What must be achieved before executing a?

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25

Progression: 𝛾 𝑠, 𝑎 = (𝑠 − effects− 𝑎 ∪ effects+ 𝑎

Progression and Regression

Regression: 𝛾−1 𝑔, 𝑎 = ? ? ?

Forward search, over states 𝑠 = {𝑎𝑡𝑜𝑚1, … , 𝑎𝑡𝑜𝑚𝑛}:

Backward search, over sets of literals 𝑔 = {𝑙𝑖𝑡1, … , 𝑙𝑖𝑡𝑛}

I am in state s
I would end up in

𝛾(𝑠, 𝑎)

Action 𝑎 is applicable

I would require

𝛾−1(𝑔, 𝑎)
I need to achieve

goal 𝑔

Action 𝑎 is relevant for 𝑔

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Backward Search: Regression

𝑔:

We want

to achieve

this…

What facts 𝑔’
would we require

before executing a,

so that for every state 𝑠
satisfying 𝑔′:

1) A is executable in s
2) g ⊆ 𝛾 𝑠, 𝑎 ?

𝑔′ = 𝛾−1(𝑔, stack A,B)

𝑔 specifies some

of the facts we

illustrate below…

Subset: It is OK to achieve more than required!

𝑔 =

𝛾 𝑠, 𝑎 =

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Backward Search: Regression (2)

𝑔:

We want

to achieve

this…

Needed by

stack(A,B)

𝛾−1(𝑔, stack A,B)

𝑔 specifies some

of the facts we

illustrate below…

What the goal

needs, but

stack(A,B) did

not achieve

𝑔 =

𝛾−1(𝑔, stack A,B) =

Corresponds to

many potential states

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Backward Search: Regression (3)
 Formally:

γ ∪

γ

precond(a)

must have been true,

so that a was applicable

All goals except effects(a)

must already have been true

Backward / regression:

Which states could I start from?

Works for:

Classical goals (already sets of ground literals)

Classical effects (conjunction of literals)

Classical preconditions (conjunction of literals)

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Backward Search: Keep Regressing

𝑔:

We want

to achieve

this…

𝑔2 = 𝛾−1(𝑔, stack A,B)

I can reach the goal

from any state

satisfying these 5

literals!

𝑔3

𝑔4

𝑔5

I can reach the goal

from any state

satisfying some 𝑔𝑖!

Solution test:

If the literals are

satisfied in 𝒔𝟎,

I have a solution!

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Backward Search: Example

The goal is

not

already

achieved…

Represents

many

possible

goal states!



Relevant:

Achieves

on(B,C),

deletes no

goal facts

Relevant:

Achieves

on(A,B),

deletes no

goal facts

If this is true, I

know how to

reach the goal

If this is true, I

know how to

reach the goal

When we do select actions:

Forward planning:

Want the resulting state to be closer to the goal

Backward planning:

Want the resulting goal to be closer

to what the initial state can satisfy

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Backward Search: Needs Guidance

𝑔:

We want

to achieve

this…

𝑔2 = 𝛾−1(𝑔, stack A,B)

𝑔3

𝑔4

𝑔5

Which open node

should be selected?

As usual, we need

guidance!

(For example,

heuristic functions)

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Backward Search: New Goal Achievable?

𝑔:

We want to

achieve

this…

on(D, D)

clear(D)

handempty

𝑔2 = 𝛾−1(𝑔, unstack D,D)

I can reach the goal

from any state

satisfying these 6

literals!

Do such states exist?

Depends on the initial

state! Maybe this is

exactly the initial state

we specified…

If not reachable:

Can sometimes be

detected automatically

 pruning

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Goal Space

2) Initial search node:

Corresponds directly to the specified goalInitial search node 𝑛0 = 𝑔

Child node

𝛾−1(𝑛0, 𝑎1)
Child node

𝛾−1(𝑛0, 𝑎2)

4) Solution criterion: The goal of the node

is satisfied in the initial state

3) Branching rule:

For every action 𝑎 relevant to the goal 𝑔 of

a node 𝑛, generate the goal 𝛾−1(𝑔, 𝑎)

The backward goal space for backward planning, regression

5) Plan extraction: Generate the sequence

of all actions on the path to the solution node

Represents the set of all states s

where 𝛾(𝑠, 𝑎) satisfies 𝑔

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Repetition: Planning as Search






≠ ∅


∈

E
x
p
an

d

n
o
d
e

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Instantiated Algorithm


 , 𝜖


≠ ∅
𝑔, 𝜋 

𝑠0
𝜋

𝑎 ∈ 𝐴 elevant to g
𝑔′ 𝛾−1(𝑔, 𝑎)
𝜋′
 𝜋

𝑔′, 𝜋′E
x
p
an

d

n
o
d
e

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Backward and Forward Search: Expressivity
 How about expressivity?

 Suppose we have disjunctive preconditions – simple in forward planning

▪

 How do we apply such actions backwards?

▪ More complicated

disjunctive

goals to achieve?

▪ Additional

branching?

Similarly for existentials (" "): One branch per possible value

Some extensions are less straight-forward in backward search (but possible!)

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Lifted Search 1: Motivation
 Potential problem in any search space: high branching factors

Can we reduce

the number of

alternatives?

Can we actually

benefit from

this?

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Lifted Search 2: Observation

Unstack will work

for any second

parameter:

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Lifted Search 3: General Idea
 General idea in lifted search:

 Instantiate parameters that are ”bound” by the goal (as usual)

▪ For to achieve , we must have

 Keep other parameters uninstantiated

▪ For to achieve , we must have

▪ We don’t care about , so don’t give it a value:

use

 Not ground  "lifted”!

Must extend relevance for

”pattern matching”: Unification

Suppose is true initially,

or made true by action

Goal requires

OK:

Applicable to other types of planning – will return later!

Only two new nodes

to keep track of!

