é& Linkbping University !
Automated Planning

The Backward Goal Space

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

S
2 JE
R=X

Classical Planning: Find a path in a finite graph

We searched forwards

Can we search backwards? How!?

;1 initial

goal

< = goal

goal

Contrast; Forward Search

Initial state
If we are here:

All-on-table What can we do,

m where do we end UP7

eh

putdown(A) utdown(B) pickup{C) putdown(C)
unstack(AB) stack(B.A} Junstack(B,A) unstack(B,C) unslack(CA) :
putdown(C) putdown(A} » putdown(B) [putdown(A}

nstack(C,B) stack(A,B) Junstack(A,B) @ nstack(B,C) 5 nstack(A,C)

Single goal, s,

Blocks World, 3 blocks — searching forward

instack(C,B)

O

v putdown{B) P putdown(C)

ktack(B,A)unstack(B,A) nstack(C.A)

&/

Y,

jonkv@ida

Contrast; Forward Search (2)

3
jonkv@ida

Blocks World, 3 blocks — searching forward Initial state

All-on-table
putdown(A) putdown(B putdown(C) n
nstack(C,B)
putdown(B) » putdown(A
nstack(B,C) w nstack(A,C)

nstack(A B) @ nstack(B,C)
putdown(B) utdown putdown(C) putdown(A}
nstack(B,A) @ nstack(C.A) nstack(C,B) stack(A,B) Junstack(A,B)

| » I

Single goal, s,

O
Og
204

é
AN

3
3

Backward Search

jonkv@ida

Must traverse putdown(A) putdown
edges backwards! e

T ——

B.A)

|. Execution should pass s10... 5.Pass s10...
2. Execute pickup(C)... ot 4 Previous action could be pickup(C)

3.Passsl4...

nstack(B.A)

3.Pass sl4...

4. Execute stack(C,B)... 2. Can reach s15 using stack(C,B)

Must traverse the edge backwards!

5....andend upinsl5 @ |. Planning must start in sl5...

Backward Search

Searching backward

All-on-table

| A [Bl€]

eh

putdown(A) D putdown(B} pickup{C) putdown(C)

unstack(AB) siack(B.A) Junstack(B,A) unstack(B,C) unsiack(CA :
putdown(C) putdown(A} » putdown(B) D putdown(A}

nstack(C,B) stack(A,B) Junstack(A,B) @ nstack(B,C) 5 nstack(A,C)

Single goal, s,

Initial state

nstack(C,B)

262
(2)

v putdown{B) P putdown(C)

ktack(B,A)unstack(B,A) nstack(C.A)

&

&/

jonkv@ida

Seems simple,
but there are complications...

Backwards Search: Complication |1

jonkv@ida

Complication |I:

) 2
PGP0 L o

The graph isn’t precomputed ‘ 2 o
= Must be expanded dynamically, ,,

. Ao s AR O O o CAAA

starting in the goal ‘ s ?,//

Would require
an inverse of y(s, a):

Yy~ (s,a)

9
jonkv@ida

Backwards Search: Complication 2

Complication 2:

Though we have determinism in the forward direction...

at(home) d"ive.to_s h
op
\ One POSSibilit)’I

at(shop)
...this isn’t the case in the backward direction!
at(home)
at(work) at(shop)
at(restaurant)

Compute ¥y~ ({at(shop)}, drive—to—shop):

= |If we want to end up at(shop),
what set of states could we be in before drive-to-shop!

jonkv@ida

Backwards Search: Complication 3

Complication 3:

We generally have multiple goal states — to start searching in...

Goal: on(A,B)

w putdown(B pickup{C) putdown(C)
unstack(f-\ B) stack(B.A) unstack(B C)

putdown(B) utdown(C) putdown(C) w utdown{A)

tack(B A)unstack(B,A) nstack(C,A) 5 nstack(C,B) nstack(A,B)

unstack(C A) instack(C,B)

putdown(B) » putdown(A
nstack(B,C) w nstack({A,C)

.
W/

%“e

&/

3

Backwards Search: Combinations

jonkv@ida

Complications 2+3 combined:

Want to end up in one of these goal states (’at the shop”)

Even if we say the last action had to be drive-to-shop,
we could have started in any of these states:

NNV NV N\

Given initial state + forward plan [drive-to-shop]:
= One possible next state
Given goal states + backward plan [drive-to-shop]:

= Many possible previous states

Backward Search:

Many complications - same solution

Goal States and Goals

a
jonkv@ida

Main challenge: A set of possible "current” states

Can’t store and process each state separately

NNV NV N

Classical representation:
Goal: set of literals that should hold, representing multiple states
= g={on(A,B), -on(C,D) }
A should be on B, and C should not be on D

We don’t care if blocks are clear / ontable or not:
If we cared, that would have been specified

Perfect starting point!

(oal Space + State Space

o
—
®

—
-

=

o
o —

instack(C,B)

utdown(A}

» nstack{A,C)
-

ny

B,
own(C) Ill p

u
. LII"IS ck(B
o 1€

Will not construct this graph — use y~1(g,a), not y1(s,a)

If you achieve the conditions in v (g, a), then executing a will achieve g

Let’s see how we can construct a goal space
beginning with an “initial goal”!

3
jonkv@ida

oal Specifications

Suppose we want exactly this:
N

N—

What is the actual goal specification!

We could specify a complete goal (= unique state)
= g={clear(A), on(A,B), on(B,C), ontable(C),

clear(D), ontable(D), handempty,

—clear(B), —on(A,A), ... }

Or we might just specify this:
= g={on(A,B), on(B,C), ontable(C), ontable(D) }
= Specifies all positions;
given a physically achievable initial state, other facts follow implicitly

Goal Specifications (2)

=

Usually we don’t care about all facts (directly or indirectly)!

lgnore the location of block D

on(A,B) / *
—clear(B)

on(B,C) ‘

ontable(C) u

N—

)

jonkv@ida

Forward planning: Applicability
Which actions could we execute?

Backward planning: Relevance
Which actions could achieve part of the goal?

Backward Search: Relevance

@
jonkv@ida

g:
Suppose
we want

(Later: be ¢ a to achieve

Where would we ¢ € achiays this...
have to start?)

on(A,B)

—clear(B)
on(B,C)

ontable(C)

g specifies some
of the facts we
illustrate below...

Backward Search: Relevance (2)

NY
9
jonkv@ida

g:
Suppose
we want

e to achieve
No! i aSt acg; this...
an aChjay:

It achieves clear(?top) = clear(B)
The goal requires —clear(B)

on(A,B)
—clear(B)
on(B,0)

=>» Destroys part of the goal ontable(C)

g specifies some

stack(B,C) is not relevant
of the facts we

illustrate below...

(also impossible,
but this is included in relevance)

Backward Search: Relevance (2)

9
jonkv@ida

g:
Suppose
Yes! Effects: C . we want
—ontable(D) to achieve
—clear(D) i an aas'f ' this...
—handempty '

holding(D)

on(A,B)

—clear(B)
on(B,C)

ontable(C)

Does not contradict the goal

...but also doesn’t help us
achieve any goal requirements!

g specifies some
of the facts we
illustrate below...

pickup(D) is not relevant

Backward Search: Relevance (3)

9
NY
jonkv@ida

9g:

Suppose
we want

Yes! Effects: to achieve

—holding(A) chis.
—clear(B)
clear(A)
handempty on(A,B)
on(A,B) —clear(B)
on(B,C)
Does not contradict the goal, ontable(C)

achieves on(A,B)

g specifies some
of the facts we

stack(A,B) is relevant illustrate below. ..

Backward Search: Summary (so far)

NY
9
jonkv@ida

Forward search, over states s = {atomq, ..., atom,, }:

a is applicable to current state s iff
precond*(a) C s and Positive conditions are present

s N precond (a) = @ Negative conditions are absent

Backward search, over sets of literals g = {litq, ..., lit,;}

a is relevant for current goal g iff Contribute to the goal
g N effects(a) = @ and (add needed positive or negative literal)

g+ N effects—(a) = @ and
g- N effects+(a) = @ Do not destroy any goal literals

When an action has been selected:

Forward planning: Progression
What will be true after executing a?

Backward planning: Regression
What must be achieved before executing a?

NY
9
jonkv@ida

Progression and Regression

Forward search, over states s = {atomq, ..., atom,, }:

Progression: y(s,a) = (s — effects™(a) U effects* (a))

. Action a is applicable | would end up in
| am in state s >
y(s,a)

Backward search, over sets of literals g = {lit4, ..., lit,;}

Regression: y 1(g,a) =777

| would require Action a is relevant for g | | need to achieve
-1
vy~ (9,a) goal g

NY
9
jonkv@ida

Backward Search: Regression

g' =y~ '(g,stack(AB))

What facts g’ g-
: We want
would we require)
. to achieve
before executing a,)
this...
so that for every state s
satisfying g':

1) Ais executablein s on(A,B)

2) g y(s,a)? on(B,C)
) g<y(s,a) ontable(C)

ontable(D)

Subset: It is OK to achieve more than required!

g = {on(A,B), on(B,C), ontable(C), ontable(D) } g specifies some

of the facts we

illustrate below...

v(s,a) = { on(A,B), on(B,C), ontable(C), ontable(D),
clear(A), clear(D), handempty }

Backward Search: Regression (2)

¥~ (g, stack(A,B))

9
~
jonkv@ida

Needed by holding(A) I

We want
stack(A,B) clear(B) to achieve

this...

What the goal on(B,C)

needs, but
’ , ontable(C)
stack(A,B) did ontable(D) on(A,B)

not achieve -acti c on(B,0)
ontable(C)
ontable(D)

g = {on(A,B), on(B,0),
ontable(C), ontable(D) }
n ! g specifies some
V_l(g) StaCk(A;B)) = 1 “Deloy, of the facts we
{ holding(A), clear(B), (h "top illustrate below...
on(B,C), ontable(C), ontable(D) }

Corresponds to
many potential states

Backward Search: Regression (3)

Formally:

NY
9
jonkv@ida

All goals except effects(a) precond(a)

must have been true,

must already have been true :
so that a was applicable

yi(g,a) = ((g- effects(a)) U precond(a)),
representing
{ s | ais applicable to s and Y(s,a) satisfies g }

Backward / regression:

Which states could | start from?

Works for:

Classical goals (already sets of ground literals)
Classical effects (conjunction of literals)
Classical preconditions (conjunction of literals)

NY
9
jonkv@ida

Backward Search: Keep Regressing

g2 = v~ '(g,stack(A,B))

holding(A) Wer
clear(B) to achieve
this...
on(B,C)
ontable(C) Stac
ontable(D)) Ong’g
on(B,
ontable(C)
| can reach the goal ontable(D)
| can reach the goal from any state
from any state satisfying these 5
satisfying some g;! literals!

Solution test:
If the literals are

satisfied in s,
| have a solution!

Backward Search: Example

Same or
stronger
than another

goal
>

can prune...

Initial state:

on(B,C)
clear(B)

clear(A)
ontable(A)
handempty

on(B,C)
on (A B)

clear(A)
handempty

on(A,C)

ontable(B)
ontable(C)
ontable(D)

clear(A)
clear(B)
clear(D)
handempty

(g — effects(a))

precond(a)

If this is true, |
know how to
reach the goal

on(B,C)

holding(A)
clear(B)

on(A,B)

holding(B)
clear(C)

If this is true, |
know how to
reach the goal

=

Relevant:
Achieves

on(A,B), not
deletes no already
goal facts achieved...

The goal is

Represents
many
possible
goal states!

Relevant:

Achieves

on(B,C),
deletes no
goal facts

jonkv@ida

When we do select actions:

Forward planning:
Want the resulting state to be closer to the goal

Backward planning:
Want the resulting goal to be closer
to what the initial state can satisfy

Backward Search: Needs Guidance

g2 = v~ (g, stack(A,B))
to achieve

holding(A)
clear(B)
this...
on(B,C)
ontable(C) Stac
ontable(D) (4,B) OD%S,CB?
on(B,

ontable(C)
ontable(D)

9
NY
jonkv@ida

g:
We want

Which open node
should be selected?

As usual, we need
guidance!

(For example,
heuristic functions)

Backward Search: New Goal Achievable?

g> = ¥~ 1(g, unstack(D,D))

D
w
jonkv@ida

on(D, D) g:
Clear(D) We want to
handempty achieve
this...
on(A,B)
on(B,C) o
: ontable(C) on(A,B)
Do such states exist? on(B,C)
. ontable(C)
Depends on the initial | can reach the goal ACtion INstance/ holding(D)

state! Maybe this is from any state

exactly the initial state satisfying these 6
we specified... literals!

If not reachable:
Can sometimes be
detected automatically
=>» pruning

Backward Goal Search Space

Goal Space

The backward goal space for backward planning, regression

w
9
jonkv@ida

2) Initial search node:

Initial search node ny = g Corresponds directly to the specified goal

3) Branching rule:

For every action a relevant to the goal g of

Child node 1 Child node 2 a node n, generate the goal y~'(g, a)

=y 1 (ng, ay) =y~ (ng, ay)

Represents the set of all states s
where y (s, a) satisfies g

4) Solution criterion: The goal of the node

is satisfied in the initial state

5) Plan extraction: Generate the sequence

of all actions on the path to the solution node

Repetition: Planning as Search

w
a
jonkv@ida

search(problem) {
initial-node € make-initial-node(problem) // [2]
open € { initial-node }
while (open + 0) {
node € search-strategy-remove-from(open) // [6]
if is-solution(node) then // [4]
return extract-plan-from(node) // [5]

foreach newnode € successors(node) {// [3]
add newnode to open

// Expanded the entire search space without finding a solution
return failure;

Instantiated Algorithm

\;)
~dJ
jonkv@ida

backward-search(A, s, goal) {
initial-node < (goal, €) // [2]
open € { initial-node }
while (open + 0) {
node=(g,) < search-strategy-remove-from(open) // [6]
if is-solution(node) then // [4] check goal formula in state s,
returnm // [5]

foreach a € Arelevanttog {//[3]
g€y ga
' < append(a,)
add(g’, m") to open

}

}

// Expanded the entire search space without finding a solution
return failure;

}

Expressivity Constraints

Backward and Forward Search: Expressivity

How about expressivity!

Suppose we have disjunctive preconditions — simple in forward planning

= (:action travel
:;parameters (?from ?to — location)
:;precondition (and (at ?from) (ox (have-car) (have-bike)))
.effects (and (at ?to) (not (at ?from))))

How do we apply such actions backwards!?

= More complicated
disjunctive (at posl)

goals to achieve! (or (have-car) (have-bike)) N
= Additional (at posl)
branching!? (have-car)
(at pos1) (at pos2)
(have-bike)

Similarly for existentials ("exists block [on(block,A)]"): One branch per possible value
Some extensions are less straight-forward in backward search (but possible!)

jonkv@ida

Lifted Search:

A general technique

Lifted Search 1: Motivation

Potential problem in any search space: high branching factors

9
jonkv@ida

(clear A) (:action pickup
_ __Ppicky :;parameters (?x)
((hoan n:lae]:r)rlj_:)tA;z) R(A) (holding A) :precondition (and (clear ?x) (on-table ?x)
(handempty))
(clear A) -effect
(on A B) (and (not (on-table ?x))
(handempty) (not (clear ?x))
(not (handempty))
(clear A) (holding ?x)))
(on A C) (:action unstack
(handempty) :;parameters (?top ?below)
(clear A) Can we reduce :precondition (and (on ?top ?below)
’ (clear ?top) (handempty))
(onAD) the numl?er <))f S
(handempty) alternatives! (and (holding ?top)
(clear A) C cuall (clear ?below)
(on A A) an we actually (not (clear ?top))
(handempty) beneﬁt from (not (handempty))
this? (not (on ?top ?below))))

Lifted Search 2: Observation

(clear A)
(on-table A)
(handempty)

(clear A)
(on AB)
(handempty)

(clear A)
(onAC)
(handempty)

(clear A)
(on AD)
(handempty)

(clear A)
(onAA)
(handempty)

(holding A)

Unstack will work
for any second
parameter:

unstack(A, ...)

<

(:action pickup
:parameters (?x)
:precondition (and (clear ?x) (on-table ?x)
(handempty))
:effect
(and (not (on-table ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(:action unstack
:;parameters (?top ?below)
:precondition (and (on ?top ?below)
(clear ?top) (handempty))
:effect
(and (holding ?top)
(clear ?below)
(not (clear ?top))
(not (handempty))
(not (on ?top ?below))))

jonkv@ida

Lifted Search 3: General Idea

General idea in lifted search:

jonkv@ida

Instantiate parameters that are "bound” by the goal (as usual)
= For (pickup ?x) to achieve (holding A), we must have ?x == A

Keep other parameters uninstantiated

= For (unstack ?top ?below) to achieve (holding A), we must have ?top == A

= We don’t care about ?below, so don’t give it a value:
use unstack(A, ?below)

. . (clear A)
Not ground = "lifted”! (on-table A) =~Rickup(A) .
(handempty) (holding A)
Must extend relevance for
”’pattern matching”: Unification (clear A)
?
Suppose (on A B) is true initially, (0}? A d.below) O
or made true by action Al deEnldlany)
Goal requires (on A ?below) Only two new nodes
OK: ?below == to keep track of!

Applicable to other types of planning — will return later!

