‘4% Linkdping University !
(&%s wﬁ“‘@

Automated Planning

The Forward State Space

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

jonkv@ida

State Space (1)

The state space:An "obvious” search space

[1] Structure:
= Nodes represent states |1

= Edges represent actions

..But we still need: Ll 11l
[2] Initial node

[3] Branching rule | 4 4 L2 | |uove piske
* | | * | | /From Pegl

To Peg3

[5] Plan extraction ALs ——

A | dd| Ll 414

[4] Solution criterion

el 1) L1) 4L] 404 L1 1lL 114

9
jonkv@ida

State Space (2)

The state space for forward planning, forward-chaining, progression

2) Initial search node:
Corresponds directly to the initial state

Initial search node ny = s,

3) Branching rule:
For every action a applicable in a state s,
Child node 1 Child node 2 generate the state y (s, a)
=Y (S0, 1) =Y (S0, az)

”Forward”, ”Progression”:
Applying actions in their natural direction

4) Solution criterion: The state of the node
satisfies the goal formula

Given a node n:

— | know how to reach the state of n

— If | can find a path from n to a goal state,
| will be done

5) Plan extraction: Generate the sequence
of all actions on the path to the solution node

General Properties of the State Space

jonk\;@ida

State Space: Not Always Symmetric

Example: Unable to return

crack(egg)) &
.

ZN ZN

Can never return to the leftmost part of the state space

a
jonkv@ida

State Space: Not Always Connected

Example: Disconnected parts of the state space

~A/

| don't have a helicopter | do have a helicopter

AN 2

No action for buying a helicopter, no action for losing it

=» Will stay in the partition where you started!

Exploring the State Space

jonkv@ida

About Examples

Exploring the state space... of what!

1
As usual: toy examples in very simple domains ~—~

= To learn fundamental principles
= To focus on algorithms and concepts, not domain details
= To create readable, comprehensible examples ;*

Always remember:

= Real-world problems are larger, more complex

ToH T: Intuitions

9
jonkv@ida

Our intuitions often identify states that we think are:

"Normal”
"Expected”
"Physically possible”

Usually:

The initial state is one of those states

Mainly need to care about all states reachable from there
(using the defined actions) — discussed later

3
jonkv@ida

ToH 2: What we expect

In ToH (3 pegs, 3 disks), we might expect the following 27 states

If it is completely expanded...

Q_Lil_l_

i d ek |

J-_u - Ji'— Move DiskC
* | | * | | “////,/ From Pegl

To Peg3

_lglgl-_JéL J_-IQ_J,J|=|=

da| Ld] Lla 414

L&l &) L1l 4L 414 Ll 11d 114

ToH 3: Against our Intuitions

jonkv@ida

But given our definitions, every combination of facts is a state

Depending on the formulation, some “forbidden” states typically exist

= Towers of Hanoi:

The Blocks World can have ’counter-intuitive” states where:
= holding(A) and ontable(A) are true at the same time

These ground atoms
are like ’variables” that can

independently be true or
false!

jonkv@ida

ToH 4: Modeling

"Depending on the formulation” =» We need a ToH formulation

Let’s begin with a modeling trick:

Disks and pegs are "equivalent”
Pegs are the largest disks,
so they cannot be moved

ToH 5: Modeling (2)

One version of Towers of Hanoi (PDDL):
(define (domain hanoi)
(:xrequirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

clear: "nothing on top of x"

on: "x on top of y"
smaller: "y is smaller than x"

(:action move
:;parameters (?disc ?from ?to)

:;precondition (and (smaller ?to ?disc) (on ?disc ?from) (clear ?disc) (clear ?to))
:effect (and (clear ?from) (on ?disc ?to) (not (on ?disc ?from)) (not (clear ?to))))

)

(define (problem hanoi3) (:domain hanoi)
(:objects pegl peg2 peg3 d1 d2 d3)
(:init

(smaller pegl d1) (smaller pegl d2) (smaller pegl d3)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3) d1
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)

(clear peg?) (clear peg3) (clear d1)

(on d3 pegl) (on d2 d3) (on d1 d2)) “

jonkv@ida

(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2)))
)

9

jonkv@ida

ToH 6: Number of States

How many states exist for this problem formulation?
(define (domain hanoi)
(:xrequirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

Answer:

Every assignment of values

(:action move to the ground atoms
:;parameters (?disc ?from ?to) IS one state
:precondition (and (smaller ?to ?disc) (on ?disc
:effect (and (clear ?from) (on ?disc ?to) (not (ot

6 objects

: . . . _ 26 combinations of "clear"
(defl:fle (probllem hzanoﬂ’?g) ((ﬂd:inzn;?:n hanoi) 26%6 combinations of "on"
E:;’niteds PEET PSS PES) 26*6 combinations of "smaller"

(smaller pegl d1) (smaller pegl d2) (smaller pegl

(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 combinations in total:

(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 302231'454903'657293'676544

(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)

(clear peg?) (clear peg3) (clear d1)

(on d3pp§g1) (on dlz) 53) (on d1 d2)) The state is just a data structure
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2)))

)

278

Every value combination is a state

ToH 7: Alternatives

Space size for our first formulation: 278 combinations in total:
302231'454903'657293'676544

a
jonkv@ida

Suppose we don’t include .
>UPP o 2% combinations of "clear"
irrelevant combinations of 2646 combinations of "on"

known, fixed predicates ("smaller")?

242 combinations in total:

4'398046'511104

Suppose we get rid of ’clear”
(redundant!)

= Use more expressive planner

= (clear ?x) =¥ (not (exists ?y) (on ?y ?x))

26*6 combinations of "on"

236 combinations in total:

68719'476736

Suppose we remodel ’on”’:
= below_d1 € {pegl, peg2, peg3, d2, d3} 53 combinations in total:
= below_d2 € {pegl, peg2, peg3, d1, d3} 125

= below_d3 € {pegl, peg2, peg3, d1, d2}

Why the extreme dependence
on the formulation?

\;)
jonk\;@ida

Model Dependence |

In all suggested formulations, this is one possible state

Planners should not generate such states,
but they still exist

2
"

3
jonkv@ida

Model Dependence 2

In some formulations, states such as this exist
(and
(on pegl peg?)
(ondl d2)
(ond2dl)
(on d3 d3)

In the last formulation example:

bel 1d t exist
elow_pegl does not exis below_d1 € {pegl, peg2, peg3, d2, d3}

below_d3 cannot be d3 below_d2 € {pegl, peg2, peg3, d1, d3}
(But we can still have circularities) below_d3 € {pegl, peg2, peg3, d1, d2}

Some formulations allow more ’unintended states’’ than others!

Does the size of the state spbace matter?

Reachability

NY
9
jonkv@ida

Forward state space search:

Will incrementally generate (only) reachable states

Many unreachable states?

= More state variables =» somewhat more expensive to generate / store a state

Uninformed strategies (depth first, Dijkstra, ...):

= No difference in what is explored

Informed forward state space search (A*, hill climbing, ...):

= Heuristics might work better with less redundant formulations — or worse...

Other search spaces (backward, POCL, temporal,...):
Depends!

Reachability (2): From Initial State

How many states are reachable from the given initial state,
using the given actions!?

27 out of 302231'454903'657293'676544 =1 1
(or out of 4'398046'511104, or 125...)

jonkv@ida

=l | cANS
The other states =l bk |
still exist in S'!
I * I J'il— Move DiskC
AlL ALl N\ Eep e
1zl

S, clear(pegl) is true
clear(peg?) is false
dlear(peg3) is false dt| 4d| L4 414
on(d1,pegl) is false
on(d3,peg2?) is true

Te| 1) L1l 4L] 404 LI 1L 114

jonkv@ida

Reachability (3): From Somewhere! ‘

States are not inherently "reachable” or "unreachable”

They can be reachable from a specific starting point!

Reachability (4): From ‘forbidden’ states

Suppose this was your initial state

NY
\:U)
jonkv@ida

Unreachable from "all disks in the right order"!

2
"

Then other states would be reachable from this state

If the preconditions hold, then move can be applied according to definitions

Start in physically realizable state =» remain there (assuming correct operators)
Start somewhere else = ??

epignyjuol

-
E8)
N
—
o

—

Reachability (5)

n
.m m
c £
T o
- 2 9
o .2 <
| Sl
S~ «©
o &
3 5
= -
N
«d
R
aahu fnaAAm
A 1
<d 3 p
{1 3
W1 71
Pn_naahu
A:AA_.
=
= ©
74 s m
it |E
g .
) 0
o0 (o)
< 2>
<

A

A‘&i}A
A
AA:}A

A

4

A7A AN

A
AA A
A
AA
iy

A

.y

“x

£
A AAA
£

A2

A

AKL}A AQMA:}A AK;}MA:‘.}.Q AK;}MQA AA:‘}MQA AA:‘}M{L}A AKZ}M&:}A AK:}M&:‘}A A‘K:}A

state spaces

s
hS
> S
ee
= T
29
9 T
. O
8 3
QO =
L &

I
(O]

State Space: Blocks World

BW 1. Blocks World

Domain 2: The Blocks World

NY
3
jonkv@ida

Initial State Your greatest desire

\[u[

jonkv@ida

BW 2: Model

We will generate classical sequential plans

One object type: Blocks
A common blocks world version, with 4 operators

» (pickup ?x) — takes ?x from the table dnu
= (putdown ?x) — puts x on the table e i et

(unstack ?x ?y) — takes !x from on top of %y

= (stack ?x ?y) — puts x on top of 1y

Predicates used:

= (on ?x ?y) — block ?x is on block ?y

= (ontable ?x) — ! is on the table

= (clear ?x) — we can place a block on top of ?x
* (holding ?x) — the robot is holding block ?x

(handempty) — the robot is not holding any block

: 2
With n blocks: 2™ 31+1 gtates

unstack(A,C) =» putdown(A) =» pickup(B) = stack(B,C)

BW 3: Operator Reference

(:action pickup
:;parameters (?x)

:precondition (and (clear ?x) (on-table ?x)

(handempty))
-effect
(and (not (on-table ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(:action unstack
:;parameters (?top ?below)
:precondition (and (on ?top ?below)
(clear ?top) (handempty))
.effect
(and (holding ?top)
(clear ?below)
(not (clear ?top))
(not (handempty))
(not (on ?top ?below))))

(:action putdown
:;parameters (?x)

:precondition (holding ?x)

-effect
(and (on-table ?x)
(clear ?x)

(handempty)
(not (holding ?x))))

(:action stack
:parameters (?top ?below)
:precondition (and (holding ?top)
(clear ?below))
.effect
(and (not (holding ?top))
(not (clear ?below))
(clear ?top)
(handempty)
(on ?top ?below)))

jonkv@ida

BW 4: Reachable State Space, 1 block

NY
Q
jonkv@ida

| We assume we know the initial state Many other states "exist",
Let’s see which states are reachable from there! but are not reachable
Here: Start with sO = all blocks on the table from the current starting state
holding(A) pickup(A) holding(A)
= e e handempty
ontable(A)
R clear(A)
A4 ~r‘°\
7 &
X .
. el handempty
P utdown (A) nicku P (,A() clear(A)
L ontable(A)
el on(AA)
JPis unstagk(A,A)
Rl
handempty holding(A)
ontable(A) clear(A)
clear(A) ontable(A)

BW 5: Reachable State Space, 2 blocks

3
o
jonkv@ida

2048 states in total
A on Table Reachable from "all on table":
B on Table 5 states, 8 transitions

A onTable Holding A
Holding B B on Table
stack(A,B) Junstack(A,B)
B on A onTable

A on B on Table

jonkv@ida

BW 6: Reachable State Space, 3 blocks

524'288 states in total

A on Table Reachable from "all on table":
B on Table 22 states, 42 transitions
C on table

putdown(B) pickup(C) putdown(C)
unstack(C A) nstack(C,B)
putdown(C) putdown{A) P putdown(B)

nstack{C,B) stack(A,B) Junstack(A,B) 3 nstack(B,C)

1ack(A‘ B) unstack(A B) stack(B A) Junstack(B,A) unstack(B,C)

p putdown(B) P putdown(C)

stack(B,A) Junstack(B,A) @ nstack(C,A)

Y,

O

putdown(A)

W/
\
&/

nstack(A,C)

W/
./
U/

Looking nice and symmetric...

BW 7: Reachable State Space, 4 blocks

536'870'912 states in total

Reachable from "all on table":
| 25 states, 272 transitions

jonkv@ida

jonkv@ida

BW 8: Reachable State Space, 5 blocks

2'199'023'255'552 states in total
Reachable from "all on table":

866 states, 2090 transitions

Blocks World:

Formulations and State Space Sizes

Size 1: Blocks World, PDDL

w
D
jonkv@ida

Standard PDDL predicates:
(on ?x ?y)
(ontable ?x)
(clear ?x)

(holding ?x)
(handempty)

Number of ground atoms, for n blocks:
n‘+3n+1

Number of states:

2n2+3n+1

jonkv@ida

Size 2: Reachable State Space, sizes 0-10

Ground States reachable Transitions
atoms from "all on table" | (edges) in

reachable part
1 2

0 1 0

1 5 32 2 2

2 11 2048 5 8

3 19 524288 22 42

4 29 536870912 125 272

5 41 2199023255552 866 2090

6 55 36028797018963968 7057 18552

7 71 2361183241434822606848 65990 186578

8 89 618970019642690137449562112 695417 2094752

9 109 64903710731685345356631204115 8145730 25951122
2512

10 131 27222589353675077077069968594

54145691648

Size 3:: Formulations (1)

jonkv@ida

Example: Blocks world with 5 blocks

PDDL, modified

Omit (ontable ?x), (clear ?x)

In physically achievable states, can be deduced
from (on ?x ?y), (holding ?x)

Standard PDDL

on®+3n+1 on?+n+1
2'199'023'255'552 states 2'147'483'648 states
(reachable and unreachable) (reachable and unreachable)

866 reachable 866 reachable

jonkv@ida

BW: Formulations (2)

Example: Blocks world with 5 blocks

2'199'023'255'552 or 2'147'483'648 states
in the standard predicate representation

But in all 866 states reachable from "all-on-table" (all "normél‘i,'fsjta“g’eg):
= Any state satisfies exactly one of the following — a clique:
(holding A) — Held in the gripper

Provides more structure:

lear A — At the top of a t
EC e:A)) Bel) BOP o & O Obvious that A can't be under
on — Below
B and under C

(onCA) — Below C

(onDA) — Below D Usef:l in ;g:ehSitu-af?ns’

such as euristics

(onEA) — Below E

= Remove those facts, introduce state variables (same for other blocks):
aboveA € { gripper, nothing, B,C, D, E }
= Result: (n + 1) 2"*1 = 497'664 states, 866 reachable

Dock Worker Robots

Dock Worker Robots: Example 1

Example |: | location, 2 piles, | robot, | crane, 2 containers

jonkv@ida

235 states
Given a particular initial state: ,.oclcl palletp12)
takefktdneil 6 RQEISHPILY) ~ (aKeWI TR 2.1 p12))
= |6 states reachable pumJOfcmhédgﬂf’a%mm § C1,p12)
load(kl,locl,c1,r1)
= 32 edges reachable unload(k1,locl,c1,r1)

unload(kl,locl,c2,r1)/ load(kl,locl,c2,r1)
take(k1,locl,c2 pallet,pll)

put(kl,locl,c2 pallet,pll)

take(kl,locl,cl,pallet,pl?2)

ut(kl,locl,c2,pallet,pt2
put(kl,locl,cl, pallet,pl?2) pu(. PR

take(kl,locl,c2 pallet,pl2)

put(kl,locl,cl,pallet,pll) unload(k1,locl,c1,r1)
load(k1,loc1,c1,r1)

take(kl,locl,c1,pallet,p1l) put(k1 locl,¢ 12) @
@ take¥edAbcl,cl,c2,p12)
load(k1 1 take(kl,locl,cl,pallet,pll)
unloa o N
load(k1.loc1 02) put(kl,locl,cl,pallet,pll)
put(kl locl,c2;pallet,p12)
take(kTfocl,c2 pallet,pl2)

put(kl,locl,c2,cl,p®l)

take(kl,locl,c2,c1,pl1)

jonkv@ida

Dock Worker Robots; Example 2

Example 2: 2 locations, 4 piles, | robot, 2 cranes, 2 containers

26> states
Given a particular initial state: / @
= |00 states reachable ;“‘
= 332 edges reachable @ ‘
Gl @ %))
o308s 2%
=
@ o SI00
<) __
:)

D D@®
00870
D6
®

! - by
@\ q N >,

e
@

(®
®
()
()
©
SI00
o
@a
®
® o

oS
®

®

e.

jonkv@ida

Dock Worker Robots: Example 3

Example 3: 2 locations, 4 piles, | robot, 2 cranes, 3 containers
283

states

Given a particular initial state
= 756 states reachable
= 2916 edges reachable

jonkv@ida

Dock Worker Robots: Example 4

Example 4: 2 locations, 4 piles, | robot, 2 cranes, 4 containers

2103 states

Given a particular initial state:
= 6192 states reachable
= 25968 edges reachable

6 containers (no image):

2149 states

Given a particular initial sta ot
= 542880 states reachable ;
= 2486880 edges reachable

Also 3 locations, 6 piles, 3 cranes:

2207 states,

1313280 reachable, 6373440 edges

Forward State Space Search

Forward State Space Search

o
=
®

—
-

=

o
o —

Find a path in the forward state space
from the initial state (node) to any goal state

Initial (current) state

@
unstack(AB tack(B A)

putdown({B) utdown putdown @
’ack A))unstack(B.A) @ nstack(C A) @ nstack(C.B) .tackAB = Forward search
e Forward-chaining search
\ L/ Forward state space search
Progression

Goal states

pickup(C)

putdown(C)

nstack(C,B)

utdown(A)
Many names:

9

FSSS 2: Don't Precompute

The planner is not given a complete precomputed search graph!

o

PO e

e
7

Sfccor:

Usually too large!

= Generate as we go,
hope we don’t actually need the entire graph

FSSS 3: Initial state

The user (robot?) observes the current state of the world

3
~
jonkv@ida

The initial state

A
c[s|D

Must describe this using the specified formal state syntax...

So = { clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }

...and give it to the planner, which [2] creates one search node

{ clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }

FSSS 4: Successors

Given any open search node (to be selected by a strategy)...

{ clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }

...we can [3] find successors — by applying applicable actions!
action pickup(D)

= Precondition: ontable(D) A clear(D) A handempty // precond satisfied!
Effects: —ontable(D) A —clear(D) A —handempty A holding(D)

. ...which can also
This generates new reachable states...

be illustrated

{ clear(A), on(A,C), ontable(C),

clear(B), ontable(B), clear(D), ontable(D), handempty} = unu
{ clear(A), on(A,C), ontable(C), u u

clear(B), Ontable(B), holding(D) B s ssasssunssssunssssnaisny uﬂ

jonkv@ida

FSSS 5: Step by step

A search strategy will [6] choose which node to expand...

[4] Solution criterion: State satisfies goal formula

[5] Plan extraction: Extract actions from the path between init and goal state

This is illustrated —
the planner works
with sets of facts

LE
©
o

jonkv@ida

Repetition: Planning as Search

D
o
jonkv@ida

search(problem) {
initial-node € make-initial-node(problem) // [2]
open € { initial-node }
while (open + 0) {
node € search-strategy-remove-from(open) // [6]
if is-solution(node) then // [4]
return extract-plan-from(node) // [5]

foreach newnode € successors(node) {// [3]
add newnode to open

// Expanded the entire search space without finding a solution
return failure;

FSSS 6: Instantiated Algorithm

forward-search(4, s, g) {
initial-node €< (g, €) // [2]
open € { initial-node }
while (open + 0) {
node=(s, w) < search-strategy-remove-from (open) // [6]
if is-solution(node) then // [4] check goal formula in state s
returnmw // [5]

foreach a € A such thaty(s,a) # @ { // 3]

{s1€v(sa) Forward search:
n' < append(m, a) Reach in one step =
add (s’, ') to open reach by one action application

}

} To simplify extracting a plan, nodes above

include the plan to reach a state!

// Expanded the entire search s
return failure; Technically, this searches the space of

<state,path> pairs
Is always sound _
Completeness depends on the strategy Still generally called state space search...

FSSS 7: Pruning

jonk\;@ida

[10] cost 27:

clear(A)
on(A,B) [11] cost 33:
ontable(B) clear(A)
handempty on(A,B)
ontable(B)
handempty

Reach a more expensive node
with the same state
=» can prune
(discard the node without expanding)

L)
o
L)
A
4 R
'S,
)
A*°

[12] cost 35:
clear(A)
on(A,B)

handempty

If preconditions and goals are positive:

Reach a node with a subset of the facts
=>» can prune

Allow negative preconds such as (not (ontable B)) =»
action may be applicable in subtree under [12] but not under [I 1] =
must investigate this subtree as well!

