Automated Planning

The Forward State Space

Jonas Kvarnström
Department of Computer and Information Science Linköping University

State Space (1)

- The state space:An "obvious" search space
- [1] Structure:
- Nodes represent states
- Edges represent actions
- ...But we still need:
- [2] Initial node
- [3] Branching rule
- [4] Solution criterion
- [5] Plan extraction

State Space (2)

The state space for forward planning, forward-chaining, progression

Initial search node $n_{0}=s_{0}$

Child node 1
$=\gamma\left(s_{0}, a_{1}\right)$

2) Initial search node:

Corresponds directly to the initial state

3) Branching rule:

For every action a applicable in a state s, generate the state $\gamma(s, a)$

```
"'Forward","Progression":
Applying actions in their natural direction
```

4) Solution criterion: The state of the node satisfies the goal formula
5) Plan extraction: Generate the sequence of all actions on the path to the solution node

General Properties of the State Space

State Space: Not Always Symmetric

- Example: Unable to return

crack(egg5)

Can never return to the leftmost part of the state space

State Space: Not Always Connected

- Example: Disconnected parts of the state space

I do have a helicopter

No action for buying a helicopter, no action for losing it \rightarrow Will stay in the partition where you started!

Exploring the State Space

About Examples

- Exploring the state space... of what?
- As usual:toy examples in very simple domains
- To learn fundamental principles
- To focus on algorithms and concepts, not domain details
- To create readable, comprehensible examples

- Always remember:
- Real-world problems are larger, more complex
- Our intuitions often identify states that we think are:
- "Normal"
- "Expected"
- "Physically possible"

- Usually:
- The initial state is one of those states
- Mainly need to care about all states reachable from there (using the defined actions) - discussed later

ToH 2: What we expect

- In ToH (3 pegs, 3 disks), we might expect the following 27 states
- If it is completely expanded...

ToH 3: Against our Intuitions

- But given our definitions, every combination of facts is a state
- Depending on the formulation, some "forbidden" states typically exist
- Towers of Hanoi:

- The Blocks World can have "counter-intuitive" states where:
- holding(A) and ontable(A) are true at the same time
These ground atoms
are like "variables" that can
independently be true or
false!

ToH 4: Modeling

- "Depending on the formulation" \rightarrow We need a ToH formulation
- Let's begin with a modeling trick:

Disks and pegs are "equivalent" Pegs are the largest disks, so they cannot be moved

ToH 5: Modeling (2)

- One version of Towers of Hanoi (PDDL):
- (define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

clear:	"nothing on top of $x "$
on:	" x on top of $y "$
smaller:	y is smaller than $x "$

(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc ?from) (clear ?disc) (clear ?to))
:effect (and (clear ?from) (on ?disc ?to) (not (on ?disc ?from)) (not (clear ?to))))
)

- (define (problem hanoi3) (:domain hanoi)
(:objects peg1 peg2 peg3 d1 d2 d3)
(:init
(smaller peg1 d1) (smaller peg1 d2) (smaller peg1 d3)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3)
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg2) (clear peg3) (clear d1)
(on d3 peg1) (on d2 d3) (on d1 d2))
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))))

ToH 6: Number of States

- How many states exist for this problem formulation?

- (define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))
(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc :effect (and (clear ?from) (on ?disc ?to) (not (or)
- (define (problem hanoi3) (:domain hanoi) (:objects peg1 peg2 peg3 d1 d2 d3) (:init
(smaller peg1 d1) (smaller peg1 d2) (smaller peg1
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 (smaller d2 d1) (smaller d3 d1) (smaller d3 d2) (clear peg2) (clear peg3) (clear d1) (on d3 peg1) (on d2 d3) (on d1 d2)) (:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))))

Answer:

Every assignment of values to the ground atoms is one state

6 objects
2^{6} combinations of "clear"
$2^{6 * 6}$ combinations of "on"
$2^{6 * 6}$ combinations of "smaller"
2^{78} combinations in total:
302231'454903'657293'676544

The state is just a data structure
Every value combination is a state

ToH 7:Alternatives

- Space size for our first formulation:
- Suppose we don't include irrelevant combinations of known, fixed predicates ("smaller")?
- Suppose we get rid of "clear" (redundant!)
- Use more expressive planner
- (clear ?x) \rightarrow (not (exists ?y) (on ?y ?x))
- Suppose we remodel "on":
- below_d1 $\in\{$ peg1, peg2, peg3, d2, d3\}
- below_d2 $\in\{$ peg1, peg2, peg3, d1, d3\}
- below_d3 $\in\{$ peg1, peg2, peg3, d1, d2\}
2^{78} combinations in total: 302231'454903'657293'676544
2^{6} combinations of "clear"
$2^{6 * 6}$ combinations of "on"
2^{42} combinations in total: 4'398046'511104
$2^{6 * 6}$ combinations of "on"
2^{36} combinations in total:
68719'476736
5^{3} combinations in total:
125

Why the extreme dependence on the formulation?

Model Dependence 1

- In all suggested formulations, this is one possible state
- Planners should not generate such states, but they still exist

Model Dependence 2

- In some formulations, states such as this exist
- (and

> (on peg1 peg2)
(on d1 d2)
(on d2 d1)
(on d3 d3)
)

- In the last formulation example:
- below_peg1 does not exist
- below_d3 cannot be d3
- (But we can still have circularities)

Does the size of the state space matter?

Reachability

- Forward state space search:
- Will incrementally generate (only) reachable states
- Many unreachable states?
- More state variables \rightarrow somewhat more expensive to generate / store a state
- Uninformed strategies (depth first, Dijkstra, ...):
- No difference in what is explored
- Informed forward state space search (A*, hill climbing, ...):
- Heuristics might work better with less redundant formulations - or worse...
- Other search spaces (backward, POCL, temporal, ...):
- Depends!

Reachability (2): From Initial State

- How many states are reachable from the given initial state, using the given actions?
- 27 out of $302231^{\prime} 454903^{\prime} 657293^{\prime} 676544$ 青 لـ (or out of $4^{\prime} 398046^{\prime} 511104$, or $125 \ldots$...)

The other states still exist in S !
s_{17} clear(peg1) is true clear(peg2) is false clear(peg3) is false on(d1,peg1) is false on(d3,peg22) is true

Reachability (3): From Somewhere!

States are not inherently "reachable" or "unreachable"

They can be reachable from a specific starting point!

Reachability (4): From 'forbidden' states

- Suppose this was your initial state
- Unreachable from "all disks in the right order"!

- Then other states would be reachable from this state
- If the preconditions hold, then move can be applied according to definitions

d2	d3	
peg1	d1	
	peg2	peg3

Start in physically realizable state \neg remain there (assuming correct operators) Start somewhere else $\stackrel{>}{>}$??

Reachability (5): Larger

A larger (but still tiny) example...

Most reachable state spaces are far less regular, can have dead ends, ...

State Space: Blocks World

BW 1: Blocks World

- Domain 2:The Blocks World

BW 2:Model

- We will generate classical sequential plans
- One object type: Blocks
- A common blocks world version, with 4 operators
- (pickup ?x) - takes ?x from the table
- (putdown ?x) - puts ?x on the table
- (unstack ?x ?y) - takes ?x from on top of ?y
- (stack ?x ?y) - puts ?x on top of ?y
- Predicates used:
- (on ?x ? y) - block ? x is on block ? y
- (ontable ?x) - ?x is on the table
- (clear ?x) - we can place a block on top of ?x
- (holding ?x) - the robot is holding block ?x
- (handempty) - the robot is not holding any block With n blocks: $2^{n^{2}+3 n+1}$ states
$\operatorname{unstack}(A, C) \rightarrow \operatorname{putdown}(A) \rightarrow \operatorname{pickup}(B) \rightarrow \operatorname{stack}(B, C)$

BW 3: Operator Reference

(:action pickup :parameters (?x) :precondition (and (clear ?x) (on-table ?x) (handempty))
:effect
(and (not (on-table ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))
(:action unstack
:parameters (?top ?below)
:precondition (and (on ?top ?below)
(clear ?top) (handempty))
:effect
(and (holding ?top)
(clear ?below)
(not (clear ?top))
(not (handempty)) (not (on ?top ?below))))
(:action putdown
:parameters (?x)
:precondition (holding ?x)
:effect
(and (on-table ?x)
(clear ?x)
(handempty)
(not (holding ?x))))

(:action stack

:parameters (?top ?below)
:precondition (and (holding ?top)
(clear ?below))
:effect
(and (not (holding ?top))
(not (clear ?below))
(clear ?top)
(handempty)
(on ?top ?below)))

BW 4: Reachable State Space, 1block

We assume we know the initial state Let's see which states are reachable from there! Here: Start with $\mathrm{s} 0=$ all blocks on the table

Many other states "exist", but are not reachable from the current starting state

BW 5: Reachable State Space, 2 blocks

2048 states in total
Reachable from "all on table":
5 states, 8 transitions

BW 6: Reachable State Space, 3 blocks

524'288 states in total
 Reachable from "all on table":
 22 states, 42 transitions

A on Table B on Table
C on table

Looking nice and symmetric...

BW 7: Reachable State Space, 4 blocks

536'870'912 states in total Reachable from "all on table":

125 states, 272 transitions

BW 8: Reachable State Space, 5 blocks

2' 199 '023'255'552 states in total Reachable from "all on table": 866 states, 2090 transitions

Blocks World:

Formulations and State Space Sizes

Size 1: Blocks World, PDDL

- Standard PDDL predicates:
- (on ?x ? y)
- (ontable? x)
- (clear ?x)
- (holding ?x)
- (handempty)
- Number of ground atoms, for n blocks:
- $n^{2}+3 n+1$
- Number of states:
- $2^{n^{2}+3 n+1}$

Size 2: Reachable State Space, sizes 0-10

Block s	Ground atoms	States	States reachable from "all on table"	Transitions (edges) in reachable part
0	1	2	1	0
1	5	32	2	2
2	11	2048	5	8
3	19	524288	22	42
4	29	536870912	125	272
5	41	2199023255552	866	2090
6	55	36028797018963968	7057	18552
7	71	2361183241434822606848	65990	186578
8	89	618970019642690137449562112	695417	2094752
9	109	$\begin{aligned} & 64903710731685345356631204115 \\ & 2512 \end{aligned}$	8145730	25951122
10	131	$\begin{aligned} & 27222589353675077077069968594 \\ & 54145691648 \end{aligned}$

Size 3:: Formulations (1)

- Example: Blocks world with 5 blocks

Standard PDDL

$$
2^{n^{2}+3 n+1}
$$

2'199'023'255'552 states (reachable and unreachable)

866 reachable

PDDL, modified

Omit (ontable ?x), (clear ?x) In physically achievable states, can be deduced
from (on ?x ?y), (holding ?x)

$$
2^{n^{2}+n+1}
$$

2'147'483'648 states (reachable and unreachable)

866 reachable

BW: Formulations (2)

- Example: Blocks world with 5 blocks
- 2'199'023'255'552 or 2'147'483'648 states in the standard predicate representation
- But in all 866 states reachable from "all-on-table" (all "normal" states):
- Any state satisfies exactly one of the following - a clique:

" (holding A)	- Held in the gripper
" (clear A)	- At the top of a tower
"(on B A)	- Below B
"(on C A)	- Below C
" (on D A)	- Below D
"(on E A)	- Below E

Provides more structure:
Obvious that A can't be under
B and under C
Useful in some situations, such as PDB heuristics

- Remove those facts, introduce state variables (same for other blocks):
- aboveA $\in\{$ gripper, nothing, B, C, D, E \}
- Result: $(n+1)^{n} \cdot 2^{n+1}=\underline{497}$ '664 states, 866 reachable

Dock Worker Robots

Dock Worker Robots: Example 1

- Example I: I location, 2 piles, I robot, I crane, 2 containers
- 2^{35} states
- Given a particular initial state:
- 16 states reachable
- 32 edges reachable

Dock Worker Robots: Example 2

41

- Example 2: $\mathbf{2}$ locations, 4 piles, 1 robot, 2 cranes, 2 containers
- 2^{65} states
- Given a particular initial state:
- 100 states reachable
- 332 edges reachable

Dock Worker Robots: Example3

42

- Example 3: 2 locations, 4 piles, I robot, 2 cranes, 3 containers
- 2^{83} states
- Given a particular initial state
- 756 states reachable
- 2916 edges reachable

Dock Worker Robots: Example 4

- 2^{103} states
- Given a particular initial state:
- 6192 states reachable
- 25968 edges reachable
- 6 containers (no image):
- 2^{149} states
- Given a particular initial state:
- 542880 states reachable
- 2486880 edges reachable
- Also 3 locations, 6 piles, 3 cranes:
- 2^{207} states, 1313280 reachable, 6373440 edges

Forward State Space Search

Forward State Space Search

Find a path in the forward state space from the initial state (node) to any goal state

FSSS 2: Don't Precompute

- The planner is not given a complete precomputed search graph!

Usually too large!
\Rightarrow Generate as we go,
hope we don't actually need the entire graph

- The user (robot?) observes the current state of the world
- The initial state

- Must describe this using the specified formal state syntax...
- $s_{0}=\{\operatorname{clear}(\mathrm{A})$, on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty \}
- ...and give it to the planner, which [2] creates one search node

> \{ clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty \}

FSSS 4: Successors

- Given any open search node (to be selected by a strategy)... \{ clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty \}
- ...we can [3] find successors - by applying applicable actions!
- action pickup(D)
" Precondition: ontable(D) \wedge clear $(D) \wedge$ handempty // precond satisfied! Effects: $\quad \neg$ ontable $(D) \wedge \neg$ clear $(D) \wedge \neg$ handempty \wedge holding (D)
- This generates new reachable states...
...which can also be illustrated

FSSS 5: Step by step

- A search strategy will [6] choose which node to expand...
- [4] Solution criterion: State satisfies goal formula
- [5] Plan extraction: Extract actions from the path between init and goal state

This is illustrated the planner works with sets of facts

Repetition: Planning as Search

search (problem) \{
initial-node \leftarrow make-initial-node(problem) // [2]
open \leftarrow \{ initial-node $\}$
while (open $\neq \varnothing$) \{
node \leftarrow search-strategy-remove-from(open) // [6]
if is-solution(node) then // [4] return extract-plan-from(node) // [5]
foreach newnode \in successors(node) \{ // [3]
Expand
node add newnode to open

// Expanded the entire search space without finding a solution return failure;

FSSS 6: Instantiated Algorithm

- forward-search $\left(A, s_{0}, g\right)\{$

```
initial-node <\langle{s0,\epsilon\rangle // [2]
open }\leftarrow{\mathrm{ initial-node}
while (open }=\varnothing\mathrm{ ) {
```



```
    if is-solution(node) then // [4] check goal formula in state }
                return \pi // [5]
```


// Expanded the entire search s return failure;
\}
Is always sound
Completeness depends on the strategy
Forward search:
Reach in one step =
reach by one action application
To simplify extracting a plan, nodes above include the plan to reach a state!

Technically, this searches the space of
<state,path> pairs
Still generally called state space search...

FSSS 7: Pruning

[10] cost 27: clear(A) on(A,B) ontable(B) handempty

[11] cost 33:

clear(A) on(A,B) ontable(B) handempty

[12] cost 35:

 clear(A) on(A,B)handempty

Reach a more expensive node with the same state
\Rightarrow can prune
(discard the node without expanding)

If preconditions and goals are positive:
Reach a node with a subset of the facts
\rightarrow can prune

Allow negative preconds such as (not (ontable B)) $\stackrel{>}{ }$ action may be applicable in subtree under [I2] but not under [II] \Rightarrow must investigate this subtree as well!

