
jonas.kvarnstrom@liu.se – 2019

Automated Planning

The Forward State Space

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2State Space (1)
 The state space: An ”obvious” search space

 Structure:

▪ Nodes represent states

▪ Edges represent actions

 …But we still need:

 Initial node

 Branching rule

 Solution criterion

 Plan extraction

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3State Space (2)

2) Initial search node:

Corresponds directly to the initial stateInitial search node 𝑛0 = 𝑠0

Child node

𝛾(𝑠0, 𝑎1)
Child node

𝛾(𝑠0, 𝑎2)

4) Solution criterion: The state of the node

satisfies the goal formula

3) Branching rule:

For every action 𝑎 applicable in a state 𝑠,
generate the state 𝛾(𝑠, 𝑎)

Given a node n:

– I know how to reach the state of n

– If I can find a path from n to a goal state,

I will be done

The state space for forward planning, forward-chaining, progression

5) Plan extraction: Generate the sequence

of all actions on the path to the solution node

”Forward”, ”Progression”:

Applying actions in their natural direction

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5State Space: Not Always Symmetric
 Example: Unable to return

crack(egg5)

Can never return to the leftmost part of the state space

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6State Space: Not Always Connected
 Example: Disconnected parts of the state space

No action for buying a helicopter, no action for losing it

Will stay in the partition where you started!

I don't have a helicopter I do have a helicopter

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8About Examples
 Exploring the state space… of what?

 As usual: toy examples in very simple domains

▪ To learn fundamental principles

▪ To focus on algorithms and concepts, not domain details

▪ To create readable, comprehensible examples

 Always remember:

▪ Real-world problems are larger, more complex

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9ToH 1: Intuitions
 Our intuitions often identify states that we think are:

 ”Normal”

 ”Expected”

 ”Physically possible”

 Usually:

 The initial state is one of those states

 Mainly need to care about all states reachable from there

(using the defined actions) – discussed later

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10ToH 2: What we expect
 In ToH (3 pegs, 3 disks), we might expect the following 27 states

 If it is completely expanded…

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11ToH 3: Against our Intuitions
 But given our definitions, every combination of facts is a state

 Depending on the formulation, some ”forbidden” states typically exist

▪ Towers of Hanoi:

 The Blocks World can have ”counter-intuitive” states where:

▪ and are true at the same time

These ground atoms

are like ”variables” that can

independently be true or

false!

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12ToH 4: Modeling
 ”Depending on the formulation” We need a ToH formulation

 Let’s begin with a modeling trick:

Disks and pegs are "equivalent"

Pegs are the largest disks,

so they cannot be moved

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13ToH 5: Modeling (2)
 One version of Towers of Hanoi (PDDL):

clear: "nothing on top of x"

on: "x on top of y"

smaller: "y is smaller than x"

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14ToH 6: Number of States
 How many states exist for this problem formulation?

Answer:

Every assignment of values

to the ground atoms

is one state

6 objects

26 combinations of "clear"

26∗6 combinations of "on"

26∗6 combinations of "smaller"

𝟐𝟕𝟖 combinations in total:

302231′454903′657293′676544

The state is just a data structure

Every value combination is a state

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15ToH 7: Alternatives
 Space size for our first formulation:

 Suppose we don’t include

irrelevant combinations of

known, fixed predicates ("smaller")?

 Suppose we get rid of ”clear”

(redundant!)

▪ Use more expressive planner

▪

 Suppose we remodel ”on”:

▪ ∈

▪ ∈

▪ ∈

26 combinations of "clear"

26∗6 combinations of "on"

𝟐𝟒𝟐 combinations in total:

4′398046′511104

26∗6 combinations of "on"

𝟐𝟑𝟔 combinations in total:

68719′476736

𝟓𝟑 combinations in total:

125

𝟐𝟕𝟖 combinations in total:

302231′454903′657293′676544

Why the extreme dependence

on the formulation?

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Model Dependence 1
 In all suggested formulations, this is one possible state

 Planners should not generate such states,

but they still exist

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Model Dependence 2
 In some formulations, states such as this exist

 In the last formulation example:

 (But we can still have circularities)

∈
∈
∈

Some formulations allow more ”unintended states” than others!

Does the size of the state space matter?

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Reachability
 Forward state space search:

 Will incrementally generate (only) reachable states

 Many unreachable states?

▪ More state variables somewhat more expensive to generate / store a state

 Uninformed strategies (depth first, Dijkstra, …):

▪ No difference in what is explored

 Informed forward state space search (A*, hill climbing, …):

▪ Heuristics might work better with less redundant formulations – or worse…

 Other search spaces (backward, POCL, temporal, …):

 Depends!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Reachability (2): From Initial State
 How many states are reachable from the given initial state,

using the given actions?

 27 out of 302231′454903′657293′676544
(or out of 4′398046′511104, or 125…)

The other states

still exist in 𝑆!

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Reachability (3): From Somewhere!

States are not inherently "reachable" or "unreachable"

They can be reachable from a specific starting point!

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Reachability (4): From ’forbidden’ states
 Suppose this was your initial state

 Unreachable from "all disks in the right order"!

 Then other states would be reachable from this state

 If the preconditions hold, then move can be applied according to definitions

Start in physically realizable state remain there (assuming correct operators)

Start somewhere else ???

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Reachability (5): Larger
Towers of Hanoi

Most reachable

state spaces

are far less regular,

can have dead ends, …

A larger (but still tiny)

example…

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26BW 1: Blocks World
 Domain 2: The Blocks World

Your greatest desireInitial StateYou

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27BW 2: Model
 We will generate classical sequential plans

 One object type: Blocks

 A common blocks world version, with operators

▪ – takes ?x from the table

▪ – puts ?x on the table

▪ – takes ?x from on top of ?y

▪ – puts ?x on top of ?y

 Predicates used:

▪ – block ?x is on block ?y

▪ – ?x is on the table

▪ – we can place a block on top of ?x

▪ – the robot is holding block ?x

▪ – the robot is not holding any block

With 𝑛 blocks: 2𝑛
2+3𝑛+1 states

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28BW 3: Operator Reference

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29BW 4: Reachable State Space, 1 block

handempty

ontable(A)

clear(A)

holding(A)

We assume we know the initial state

Let’s see which states are reachable from there!

Here: Start with s0 = all blocks on the table

s2
holding(A)

handempty

ontable(A)

clear(A)

Many other states "exist",

but are not reachable

from the current starting state

s3
handempty

clear(A)

ontable(A)

on(A,A)

pickup(A)

s4
holding(A)

clear(A)

ontable(A)

unstack(A,A)

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30BW 5: Reachable State Space, 2 blocks

A on Table

B on Table

A on Table

Holding B

B on A on Table

Holding A

B on Table

A on B on Table

2048 states in total

Reachable from "all on table":

5 states, 8 transitions

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31BW 6: Reachable State Space, 3 blocks
524'288 states in total

Reachable from "all on table":

22 states, 42 transitions
A on Table

B on Table

C on table

Looking nice and symmetric…

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32BW 7: Reachable State Space, 4 blocks
536'870'912 states in total

Reachable from "all on table":

125 states, 272 transitions

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33BW 8: Reachable State Space, 5 blocks
2'199'023'255'552 states in total

Reachable from "all on table":

866 states, 2090 transitions

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Size 1: Blocks World, PDDL
 Standard PDDL predicates:

 Number of ground atoms, for 𝑛 blocks:

 𝑛2 + 3𝑛 + 1

 Number of states:

 2𝑛
2+3𝑛+1

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Size 2: Reachable State Space, sizes 0–10

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Size 3: : Formulations (1)
 Example: Blocks world with 5 blocks

Omit

In physically achievable states, can be deduced
from

2𝑛
2+𝑛+1

states

(reachable and unreachable)

reachable

PDDL, modified

2𝑛
2+3𝑛+1

states

(reachable and unreachable)

reachable

Standard PDDL

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38BW: Formulations (2)
 Example: Blocks world with 5 blocks

 or states

in the standard predicate representation

 But in all states reachable from "all-on-table" (all "normal" states):

▪ Any state satisfies exactly one of the following – a clique:

▪ – Held in the gripper

▪ – At the top of a tower

▪ – Below B

▪ – Below C

▪ – Below D

▪ – Below E

▪ Remove those facts, introduce state variables (same for other blocks):

▪ ∈

▪ Result: (𝑛 + 1)𝑛⋅ 2𝑛+1 = states, 866 reachable

Provides more structure:

Obvious that A can't be under

B and under C

Useful in some situations,

such as PDB heuristics

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Dock Worker Robots: Example 1
 Example 1: 1 location, 2 piles, 1 robot, 1 crane, 2 containers

 235 states

 Given a particular initial state:

▪ 16 states reachable

▪ 32 edges reachable

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Dock Worker Robots: Example 2
 Example 2: 2 locations, 4 piles, 1 robot, 2 cranes, 2 containers

 265 states

 Given a particular initial state:

▪ 100 states reachable

▪ 332 edges reachable

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Dock Worker Robots: Example 3
 Example 3: 2 locations, 4 piles, 1 robot, 2 cranes, 3 containers

 283 states

 Given a particular initial state:

▪ 756 states reachable

▪ 2916 edges reachable

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Dock Worker Robots: Example 4
 Example 4: 2 locations, 4 piles, 1 robot, 2 cranes, 4 containers

 2103 states

 Given a particular initial state:

▪ 6192 states reachable

▪ 25968 edges reachable

 6 containers (no image):

 2149 states

 Given a particular initial state:

▪ 542880 states reachable

▪ 2486880 edges reachable

 Also 3 locations, 6 piles, 3 cranes:

 2207 states,

1313280 reachable, 6373440 edges

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Forward State Space Search

Initial (current) state

Goal states

Find a path in the forward state space

from the initial state (node) to any goal state

 Many names:

 Forward search

 Forward-chaining search

 Forward state space search

 Progression

 …

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46FSSS 2: Don’t Precompute
 The planner is not given a complete precomputed search graph!

Usually too large!

 Generate as we go,

hope we don’t actually need the entire graph

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47FSSS 3: Initial state
 The user (robot?) observes the current state of the world

 The initial state

 Must describe this using the specified formal state syntax…

 𝑠0

 …and give it to the planner, which creates one search node

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48FSSS 4: Successors
 Given any open search node (to be selected by a strategy)…

 …we can find successors – by applying applicable actions!

▪ ∧ ∧
¬ ∧ ¬ ∧ ¬ ∧

 This generates new reachable states…
…which can also

be illustrated

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49FSSS 5: Step by step
 A search strategy will choose which node to expand…

 Solution criterion: State satisfies goal formula

 Plan extraction: Extract actions from the path between init and goal state

This is illustrated –

the planner works

with sets of facts

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Repetition: Planning as Search

≠ ∅

∈

E
x
p
an

d

n
o
d
e

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51FSSS 6: Instantiated Algorithm

 𝑠0, 𝜖

≠ ∅
𝑠, 𝜋

𝑠
𝜋

𝑎 ∈ 𝐴 𝛾 𝑠, 𝑎 ≠ ∅
𝑠′ 𝛾(𝑠, 𝑎)
𝜋′
 𝜋 𝑎
𝑠′, 𝜋′

Forward search:

Reach in one step =

reach by one action application

To simplify extracting a plan, nodes above

include the plan to reach a state!

Technically, this searches the space of

<state,path> pairs

Still generally called state space search…
Is always sound

Completeness depends on the strategy

E
x
p
an

d

n
o
d
e

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52FSSS 7: Pruning

Reach a more expensive node

with the same state

 can prune

(discard the node without expanding)

If preconditions and goals are positive:

Reach a node with a subset of the facts

 can prune

Allow negative preconds such as (not (ontable B))

action may be applicable in subtree under [12] but not under [11]

must investigate this subtree as well!

