
jonas.kvarnstrom@liu.se – 2019

Automated Planning

Planning as Search

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2How to generate a plan?

One way of defining planning:

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

How?

←

Is planning a straight-forward process

of adding actions in the right order?

Usually, conditions are too complex;

better to test alternatives – search

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Planning as Search
 To generate plans using search, we need:

State space search: A node is a state

Partial Order Causal Link:

A node is a complex plan structure

1) A node structure defining what

information is in a node

s={fact1,fact2,fact3,…}

holding(A)

clear(B)

¬holding(A)

clear(A)

ontable(A)

clear(B)

ontable(B)

clear(C)

on(C,D)

ontable(D)

handempty

in
ita

ct
io

n

on(A,B)

on(B,C)

on(C,D)

ontable(D)

handempty

clear(A)

go
al

ac
tio

n

¬clear(B)

on(A,B)

handempty

clear(A)

st
ac

k(
A,

B)

holding(B)

clear(C)

¬holding(B)

¬clear(C)

on(B,C)

handempty

clear(B)

st
ac

k(
B,

C)

handempty

clear(B)

¬handempty

¬clear(B)

¬ontable(B)

holding(B)

pi
ck

up
(B

)

2) A way of creating an initial node

from a problem instance

Search spaces are generally too large

to represent completely

Need to start somewhere and then

expand the space incrementally

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Planning as Search (2)
 General way of formalizing search algorithms:

 There are some ”open” nodes, that we:

▪ Know how to reach

▪ Haven’t explored yet

 Pick / remove one of them

▪ Using some strategy for picking ”good nodes”

 Find neighbor nodes that can be created

in a single step (whatever that step is!)

 Put those back in the set of nodes

▪ New options!

 Repeat until a node corresponds to a solution

At first: The

initial node!

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Planning as Search (3)
Search space

Classical planning: Finite number of search nodes

3) A successor function / branching rule

returning all successors (neighbors)

of any search node

Initial search node
(contains some information,

depending on the search space…)

Child node Child node

Expand a node = generate its successors

Edges could correspond to actions…

or to something completely different

(POCL)!

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Planning as Search (4)
Search space

Classical planning: Finite number of search nodes

To know when we succeeded:

 4) A solution criterion, detecting when

a node corresponds to a solution

 5) A plan extractor, telling us which

plan a solution node corresponds to

Initial search node
(contains some information,

depending on the search space…)

Child node Child node

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Planning as Search (5)
Search space

Classical planning: Finite number of search nodes

Initial search node
(contains some information,

depending on the search space…)

Child node Child node

Finally, we need to decide how to search:

6) A search strategy

chooses which node to expand next

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Planning as Search (6)
 General Search-Based Planning Algorithm:





≠ ∅


∈

E
x
p
an

d

n
o
d
e

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Searching Graphs (1)
Search space

Classical planning: Finite number of search nodes

In a graph, two nodes can share a successor!
Option : Keep track of all visited nodes,

detect when the same successor is generated

again

 Requires a lot of memory

 Only investigate a given node once,

second time: don’t expand it

Initial search node
(contains some information,

depending on the search space…)

Child node

Node

Child node

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Searching Graphs (2)

Search space
Classical planning: Finite number of search nodes

Option :

Don’t keep track of visited nodes

 Saves memory

 Investigate some subtrees multiple times

The search space is traversed as a tree

Initial search node
(contains some information,

depending on the search space…)

Child node Child node

Node
Node

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Searching Graphs (3)

Search space
Classical planning: Finite number of search nodes

An ancestor may also be a successor

 loops in the search graph

Depending on the search strategy,

it may or may not be necessary

to detect and handle this

Initial search node
(contains some information,

depending on the search space…)

Child node Child node

Node Node

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Searching Graphs (4)
 To avoid searching subgraphs twice (shared successors + loops):









≠ ∅


∈

∈

Nodes are removed from open,

but not from added

Defined by the search strategyDefined by the search space

1) Node structure

2) Generating initial

search node

4) Determining if a

node is a solution

5) Extracting a plan

from a node

3) Branching rule,

creating successors

6) Deciding which

node to expand next

Uninformed Informed

• Depth first (DFS)

• Breadth first

• Dijkstra’s algorithm

• Uniform cost

• Depth limited DFS

• Iterative

deepening DFS

• …

• Greedy Best First

• A*

• Weighted A*

• Iterative

deepening A*

• Beam Search

• Hill Climbing

• Enforced Hill

Climbing

• Simul. Annealing

• …

Forward State Space, Backward Goal Space,

Partial Order Causal Link, …, …, …

Independence!

Heuristics!

Search Spaces

Forward state space

Backward goal space

Partial Order Causal Link

HierarchicalTask Networks

Tweaking Search Spaces

Predicates vs state variables

Lifted search spaces

Tweaking Search Strategies

Helpful actions / Preferred operators

Dual Queues, Boosted Dual Queues

Lazy Search

Search Strategies

Hill Climbing

Enforced Hill Climbing

A*

(Repeated) Weighted A*

Heuristics

Goal count

Landmarks

Pattern Databases

Relaxation, Delete Relaxation

Relaxed Planning Graphs

Meta search strategies

Portfolio planning

