‘4% Linkdping University !
(&%s wﬁ“‘@

Automated Planning

Classical Planning Problems:
Representation Languages

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

Classical Representation

History: 1959

\jgz:)
jonkv@ida

The language of Artificial Intelligence was/is logic

First-order, second-order, modal, ...

1959: General Problem Solver (Newell, Shaw, Simon)

SUMMARY

This paper reports on a computer program, called GPS-I
for General Problem Solving Program I. Construction and
investigation of this program is part of a research effort
by the authors to understand the information processes that
underlie human intellectual, adaptive, and creative abilities.
The approach is synthetic — to construct computer programs
that can solve problems requiring intelligence and adaptation,
and to discover which varieties of these programs can be
matched to data on human problem solving.

GPS-I grew out of an earlier program, the Loglc Theorist,
which discovers proofs to theorems in the sentential calculus.

- . _

History: 1969

1969: Planner explicitly built on Theorem Proving (Green)
*
APPLICATION OF THEOREM PROVING TO PROBLEM SOLVING |

o
=
®

=
-
=

o
o —

Cordell Green
Stanford Research Institute
Menlo Park, California

Abstract

This paper shows how an extension of the
resolution proof procedure can be used to con-
struct problem solutions. The extended proof
procedure can solve problems involving state
transformations. The paper explores several
alternate problem representations and provides
a discussion of soluftions to sample problems
including the "Monkey and Bananas' puzzle and
the "'Tower of Hanoi'' puzzle. The paper exhibits
solutions to these problems obtained by QA3, a
computer program based on these theorem—-proving
methods. In addition, the paper shows how QA3
can write simple computer programs and can solve
practical problems for a simple robot.

Basis in Logic

jonkv@ida

Full theorem proving generally proved impractical for planning

Different techniques were found

Foundations in logical languages remained!
= Languages use predicates, atoms, literals, formulas
= We define states, actions, ... relative to these

= =» Allows us to specify an STS at a higher level!

Formal representation using a first-order language:
"Classical Representation” (from the book)

"The simplest representation that is (more or less) reasonable to use for modeling"

jonkv@ida

Running Example

Running example (from the book): Dock Worker Robots

Containers shipped Cranes move containers
in and out of a harbor between ”’piles’ and robotic trucks

Objects and Object Types

jonkv@ida

Objects 1: Intro

We are interested in objects in the world

Buildings, cards, aircraft, people, trucks, pieces of sheet metal, ...
Classical =» must be a finite set!

Modeling:Which objects exist and are relevant for the problem and objective!’

Objects 2: Dock Worker Robots

Dock Worker Robots A crane moves containers

9
jonkv@ida

between piles and robots

/

|) A robot is an automated
A container can be | T truck moving containers
stacked, picked up, between locations
loaded onto robots -
™~ / loc2

p2
f pl locl
/ S We can skip:
A pile is a stack of containers — A location is an area that can Hooks
at the bottom, there is a pallet be reached by a single crane. Wheels
Can contain several piles, Rotation angles
at most one robot. Drivers

— not relevant for
this problem!

Objects 3: Classical Representation

3
jonkv@ida

Classical representation:

We are constructing a first-order language L (as in logic)

Every object is modeled as a constant

Add a constant symbol ("object name") for each object:
L contains { c1,c2,c3, p1,p2, locl,loc2, r1,... }

locZ

Information about the World:

Predicates, Atoms, States

9
jonkv@ida

Internal Structure ?

An STS only assumes there are states
What is a state? The STS doesn’t care!

Its definitions don’t depend on what s “represents” or “means”

= Can execute a insif y(s,a) = {s'}

We (and planners) need more structure!

"state ;3862497124985 P
"the state where all disks are on peg 1,

in ascending order"

Predicates

a
jonkv@ida

First-order language: Start with a set of predicates

Properties of the world
= raining — it is raining [not part of the DWR domain!]

Properties of single objects
= occupied(robot) — the robot has a container

Relations between objects

= attached(pile, location) — the pile is in the given location

Relations between >2 objects

= can-move(robot, loc, loc) — the robot can move between two locations

Non-boolean properties are "relations between constants”

= has-color(robot, color) — the robot has the given color

Modeling:
Color values must be constants (red, green, blue)

-- so that they can be handled the same way as real objects

Essential: Determine what is relevant for the problem and objective!

Predicates for DWR

\9

jonkv@ida

Reference: All predicates for DWR, and their intended meaning:

"Fixed/Rigid" adjacent (loc1, loc2) ; can move from loc1 directly to loc2
(can't attached (p, loc) ; pile p attached to loc
change) belong (k, loc) ; crane k belongs to loc
at (r, loc) : robot r is at loc
occupied (loc) ; there is a robot at loc
loaded (r, ¢ : robot r is loaded with container ¢
"Dynamic” unloaded (r) ; robot r is empty
(modified by
actions) holding (k, ¢ ; crane k is holding container ¢
empty (k) ; crane k is not holding anything
in (c, p) ; container ¢ is somewhere in pile p
top (c, p) ; container ¢ is on top of pile p

on (c1, c2) : container c1 is on container ¢2

Predicates, Terms, Atoms, Ground Atoms

a
jonkv@ida

Terminology:

Term: Constant symbol or variable
= loc2 -- constant
= location -- variable

Atom: Predicate symbol applied to the intended number of terms
= raining

= occupied(location)

= at(rl, locl)

Ground atom: Atom without variables (only constants) — a fact

= occupied(loc2)

Plain first-order logic has no distinct types for objects!

=>» Some “strange” atoms are perfectly valid:
= at(locl,loc2)
= holding(locl, c1)

@
jonkv@ida

States 1: Internally Structured

A state (of the world) should specify exactly Ground =
which facts (ground atoms) are true/false in the world without

: : ’ variables
at a given time

J

We can calculate all ground atoms

We know all predicates that exist: adjacent(loc1,locl)
adjacent(location, location), ... adjacent(lo c1,1 oc?)
attached(pilel,locl)

We know which objects exist These are the facts to keep track of!

| \

We can find all possible states!

Every assignment of true/false to the ground atoms is a distinct state

Number of states: 2number ofatoms _ anormous, but finite (for classical planning!)

States 2: Structure, Differences

jonk\;@ida

Then we can compute differences between states

WN

take(1,B)

top(1) is true
top(2) is false
top(3) is false
on(1,1) is false
on(1,2) is true
on(1,3) is false
on(2,1) is false

" put(1,B)

put(1,C) | S2

S1

top(1) is false
top(2) is true
top(3) is false
on(1,1) is false
on(1,2) is false
on(1,3) is false
on(2,1) is false

“take(1,0)

Structure is essential!

We will see later how
planners make use of
structured states...

States 3: First-order Representation

Efficient specification / storage of a single state:

Specify which facts are true

= All other facts have to be false — what else would they be?

=> A classical state is a set of all ground atoms that are true
= s, =1{o0n(1,2), on(2,3),in(1,B), in(2,B), in(3,B), top(1), bot(3) }

3

jonkv@ida

put(1,C) | S2

50 take(l,B)\ 51
] >
2 <
: put(1,B)
s, top(1) in(1,B) s; hold(1)
on(1,2) in(2,B) top(2) in(2,B)
on(2,3) in(3,B) on(2,3) in(3,B)
bot(3) bot(3)

top(1) € s, = top(1) is true in s,

top(2) & s, = top(2) is false in s,

“take(1,0)

s, top(1)
top(2)
on(2,3)
bot(3)
bot(1)

in(1,C)
in(2,B)
in(3,B)

Why not store all ground atoms

that are false instead?

States 4: Initial State

=)

jonkv@ida

Initial states in classical STRIPS planning:

We assume complete information about the

. el . Complete relative to the model:
initial state s, (before any action)

We must know everything

about those predicates and objects
we have specified...

State = set of true facts...
so = {attached(p1,locl), in(c1,p1), on(cl,pallet), on(c3,c1), ...}

’ ' o2

States 5: Goal States, Positive Goals

NY
9
jonkv@ida

One way of efficiently defining a set of goal states:

A goal g is a set of ground atoms
= Example: g={in(c1,p2), in(c3,p2)}

= In the final state, containers | and 3 should be in pile 2,
and we don't care about any other facts

Then S, ={s€S|gCEs}

] S = {
9
{in(c1,p2), in(c3,p2)}, -- one acceptable final state
{in(c1,p2), in(c3,p2), on(cl,c3)}, --another acceptable final state
}
|)
|
locZ
p? 4

9
jonkv@ida

States 6: Goal States, Literal Goals

To increase expressivity:

A goal g is a set of ground literals

= A literal is an atom or a negated atom: in(c1,p2), —in(c2,p3)
= in(c1,p2) => Container | should be in pile 2

= —in(c2,p3) =» Container 2 should not be in pile 3

Then S, = {s € S| s satisfies g}

= Positive atoms in g are also in s

= Negated atoms in g are not in s

More expressive than positive goals

Still not as expressive as the STS:
“arbitrary set of states”

o W o

Many classical planners use one
of these two alternatives (atoms/lits);]
some are more expressive ol locl

Abstraction

We have abstracted the real world!

Motion is really continuous in 3D space

= Uncountably infinite number of positions for a crane

But for the purpose of planning:

= We model a finite number of interesting positions

On a specific robot Real World

In a specific pile .
Held by a specific crane ' AbStr?Ctlo.n
: Approximation

Simplification

ormal Mode

Gives sufficient information
for us to solve
interesting problems

jonkv@ida

Operators and Actions

Actions with Structure

NY
S
jonkv@ida

If states have internal structure:
Makes sense for actions to have internal structure
= "¥(S291823, A120938) = @ >

“action move(diskA, pegl, peg3) requires a state where on(diskA,pegl)”

"y (S975712397, A120038) = {S12578942}" P
“action move(diskA, pegl, peg3) makes on(diskA,peg3) true,and ...”

NY
3
jonkv@ida

Operators

In the classical representation: Don't define actions directly
Define a set O of operators

Each operator is parameterized, defines many actions

= ;; crane k at location [takes container ¢ off container d in pile p

take(k, , ¢, d, p)

Has a precondition

= precond(o): set of literals that must hold before execution
= precond(take) = { belong(k,l), empty(k), attached(p,]), top(c,p), on(c,d) }

Has effects
= effects(o): set of literals that will be made to hold after execution
= effects(take) = { holding(k,c), -empty(k), -in(c,p), ~top(c,p), -~on(c,d), top(d,p) }

|)
'

’ 'y locZ

Actions

jonkv@ida

In the classical representation:

Every ground instantiation of an operator is an action

= a4 = take(cranel, loc2, c3, c1, p1)

Also has (instantiated) precondition, effects

= precond(a4) = { belong(cranel,loc?), empty(cranel), attached(pl,loc2),
top(c3,pl), on(c3,cl) }
= effects(ay) = { holding(cranel,c3), -empty(cranel), -in(c3,pl),

-top(c3,pl), -on(c3,cl), top(cl,pl)}

’ ' locZ

ol -~ locl

of an operator in O
using constants in L

a 1S an instantiation
A =1a

[27 JE

Untyped Actions and Applicability

If every ground instantiation of an operator is an action...

..then so is this:

= take(c3, cranel, rl, crane2, r2)
;; Container ¢3 at location cranel takes robotl off crane2 in pile robot2

But when will this action be applicable!

» take(k, [¢, d, p): ;; crane k at location [takes container ¢ off container d in pile p
precond: belong(k,]), empty(k), attached(p,l), top(c,p), on(c,d)

= take(c3, cranel, rl, crane?2, r2):
precond: belong(c3,cranel), empty(c3), attached(r2,cranel),
top(rl,r2), on(rl,crane?)

For these preconditions to be true,

something must already have gone wrong!

NJ
\;)
jonkv@ida

Untyped Actions and Applicability (2)

More common solution: Separate type predicates

Ordinary predicates that happen to represent types:

= crane(x), location(x), container(x), pile(x)

Used as part of preconditions:

= take(k, | ¢, d, p): ;; crane k at location [takes container ¢ off container d in pile p
precond: crane(k), location(l), container(c), container(d), pile(p),
belong(k,l), empty(k), attached(p,l), top(c,p), on(c,d)

DWR example was "optimized" somewhat

= belong(k,l) is only true for crane+location, replaces two type predicates

So:
= take(c3, cranel, rl, crane2, r2) is an action
= Its preconditions can never be satisfied in reachable states!

= Type predicates are fixed, rigid, never modified
=> such actions can be filtered out before planning even starts

Useful Properties

NY
9
jonkv@ida

Some useful properties:

If a is an operator or action...

= | precond+(a) = { atoms that appear positively in a’s preconditions }
= precond-(a) = { atoms that appear negated in a’s preconditions }

= effects+(a) = { atoms that appear positively in a’s effects }

= effects—(a) = { atoms that appear negated in a’s effects }
Example:

= take(k, L ¢, d, p):
;; crane k at location [takes container ¢ off container d in pile p

precond:| belong(k,l), empty(k), attached(p,l), top(c,p), on(c,d)
effects: |holding(k,c), —empty(k), —in(c,p), -top(c,p), -onfc,d), top(d,p)

= effects+(take(k,l,c,d,p)) = { holding(k,c), top(d,p) } Negation
- effeCtS_(take(k:]-)C’d’p)) T { emPtY(k), in(C,p), top(c,p), On(C,d) } d|saPPearS!

=

jonkv@ida

Applicable (Executable) Actions

Action =» ground

=» preconds are
... if precond+(a) € s and precond—(a) Ns = ground atoms

Example:

An action a is applicable in a state s...

Simple representation (sets)
take(cranel, locl, ¢3, c1, p1): =>» simple definitions!

;; cranel at locl takes ¢3 off c1 in pile p1

precond: { belong(cranel,locl), empty(cranel),
attached(pl,locl), top(c3,pl), lon(e3,cl)

effects: { holding(cranel,c3), -empty(cranel),
-in(c3,p1), -top(c3,p1), -on(c3,cl1), top(cl,pl)}

sl ={
attached(pl,locl), in(c1,pl), on(cl,pallet), ipldﬁﬂ—ﬂn%top(c?),pl),

|
attached(p2,locl), in(c2,p2), on(c2,pallet), top(c2,p2

belong(cranel,locl), empty(cranel),

at(rl,loc2), unloaded(r1), occupied(loc2),
adjacent(loc1,loc2), adjacent(loc2,locl)

locZ

9
jonkv@ida

Result of Performing an Action

Applying will add positive effects, delete negative effects

If a is applicable in s, then
the new state is (s —effects—(a)) U effects+(a)

take(cranel, locl, c3, c1, pl):
;; cranel at loc1 takes ¢3 off c1 in pile p1
precond: belong(cranel,locl), empty(cranel),
attached(pl,locl), top(c3,pl), on(c3,cl)
effects: holding(cranel,c3), top(cl,pl),
-empty(cranel), -in(c3,pl), ~top(c3,pl), -on(c3,cl)

locZ

3
NY
jonkv@ida

Defining y

From actions to y:

Positive Negated
preconditions preconditions
missing from state present in state
y(s,a) =
1) if precond ™ (a) & s or precond”(a) N's # @
{s — effects™ (a) U effects"'(a)} otherwise

From the classical representation language,

we know how to define £ = (S, 4,y)
and a problem (%, SO,Sg)

Modeling: What Is a Precondition ?

3
w
jonkv@ida

Usual assumption in domain-independent planning:

Preconditions should have to do with executability, not suitability

= Weakest constraints under which the action can be executed

take(cranel, locl, c3, c1, pl):
precond: { belong(cranel,locl), empty(cranel), ‘ .
attached(pl,locl), top(c3,pl), on(c3,cl) requn'ements. for taking a
effects: { holding(cranel,c3), top(cl,pl), container!

-empty(cranel), -in(c3,pl), -top(c3,pl), -on(c3,c1) }

These are physical

The planner chooses which actions are suitable, using heuristics (etc.)

Add explicit “suitability preconditions” =» domain-configurable planning
= ”Only pick up a container if there is a truck on which the crane can put it”

= ”Only pick up a container if it needs to be moved according to the goal”

Domains and Problem Instances

Domain-Independent Planning

High Level Problem Descr.

Objects, Predicates

w
a
jonkv@ida

Operators

Initial state, Goal

Domain-independent Classical Planner

Written for generic planning problems

Difficult to create (but done once)

Improvements =» all domains benefit

Solution (Plan)

w
9
jonkv@ida

Domain vs Instance

Makes sense to split the information

Domain Description: Instance Description:
““The world in general” Our current problem
. Objects
Predicates ..
Initial state
Operators

Goal

Domain-independent Planner

Domain-Independent Planning

jonkv@ida

To solve problems in other domains:

Keep the planning algorithm

Write a new high-level description of the problem domain

Mars Rover Satellite
W W
Mars .))
Domain- Satellite Domain-
Rover) Plan)) : Plan
Domain indep. Domain indep.

Planner Planner

Terminology

Terminology

jonkv@ida

Get the terminology right, or your exam answers will be nonsense!

“Every letter must begin with a capital’?

= No, every sentence must begin with a capital.

”A multiplication consists of one or more digits”?

= No, a number consists of one or more digits.

”A precondition tells you which states must be true”?

= No,a state (of the world) can’t be "true”; this is meaningless!
Preconditions refer to atoms (atomic facts).

The words are vaguely associated with each other,
but that isn’t enough...

PDDL:

Planning Domain Definition Language

Now: Extensible
representation language

Classical Representation is simple,
but not easily extended with
complex preconditions, effects,
timing, action costs, concurrency, ...

Formal
representation language

Closer to how we think

Provides more structural information,
very useful for planning algorithms

Underlying formal model

Concepts as simple as possible:
States, actions, transition function

Good for analysis, correctness proofs,
understanding what planning is

Misc.

Misc.
Preconditions
Effects
Extensions

Objects
Fact atoms

State

Operators
Preconditions
Effects

States
Actions

Transition
function

Goals

Separation: Domain / instance
PDDL object types

Formulas: Disjunctions, ...
Conditional effects, ...
Timing, action costs, ...

{ carl, car2, car3, locl, loc2 }
{ at(carl,locl),at(carl,loc2),... }
Set of true atoms

drive(locl, loc2) — with params
{ at(carl,locl), -broken(carl) }
{ mat(carl,locl), at(carl,loc?) }
This indirectly defines y(s,a)!

sl ...s1000000000000,
al...al0000 - no structure!

defining the result of an action,
v(currentstate, action)=newstate

{s1,s3,s282} — set of end states

=
)
o
s
)
<
)
=
v
)
-
>
]
O

jonkv@ida

PDDL: Planning Domain Definition Language
Origins: First International Planning Competition, 1998

Most used language today

General; many expressivity levels

Lowest level of expressivity: Called STRIPS

After the planner used by Shakey,
STRIPS: Stanford Research Institute Problem Solver

One specific predicate-based ("logic-based")
syntax/semantics for classical planning domains/instances

o
)
E)

—
e

o
o —

(define (domain dock-worker-robots) (define (problem dwr-problem-1)
(:domain dock-worker-robots)
) | Associated with

) a domain

Colon before many keywords,

to avoid collisions
when new keywords are added

S
S
jonkv@ida

PDDL: Domain and Problem Definition

Domains declare their expressivity requirements

= (define (domain dock-worker-robots)
(:xrequirements

:strips ;; Standard level of expressivity We will see some
n) other levels as well...

;; Remaining domain information goes here!

Warning:

Many planners’ parsers ignore expressivity specifications

Objects and Object Types

PDDL Objects 1: Types

In PDDL and most planners:

\-;)
an
jonkv@ida

Constants have types, defined in the domain

= (define (domain dock-worker-robots)
(:xrequirements

M Tell the planner
43Ut 98 \which features you need...

(‘types
location ; there are several connected locations in the harbor
pile ; attached to a location, holds a pallet + a stack of containers
robot ;holds at most 1 container, only 1 robot per location
crane ; belongs to a location to pickup containers
container)
) | %

’ ' o2

PDDL Objects 2: Type Hierarchies

3
~
jonkv@ida

Many planners support type hierarchies

Convenient, but often not used in domain examples
= (:types

; containers and robots are movable objects
container robot — movable

)

Predefined "topmost supertype”: object

| loc?
p? 4

PDDL Objects 3: Object Definitions

Instance-specific constants are called objects

(define (problem dwr-problem-1)
(:domain dock-worker-robot)

(:objects
rl — robot
locl loc2 — location
k1 — crane
pl p2 — pile

c1 c2 c3 pallet - container)

jonkv@ida

locZ

PDDL Objects 4: PDDL Constants

Some constants should exist in all instances

jonkv@ida

(define (domain woodworking) (:requirements :typing)
(:types
acolour awood woodobj machine surface treatmentstatus aboardsize apartsize — object
highspeed-saw glazer grinder immersion-varnisher planer saw spray-varnisher — machine
board part - woodobj)
(:constants

~

pefine once —

verysmooth smooth rough — surface
varnished glazed untreated colourfragments - treatmentstatus
problem
natural — acolour .
: . Instances
small medium large - apartsize)

(:action do-immersion-varnish
:;parameters (?x - part ?m - immersion-varnisher ?newcolour - acolour ?surface - surface)
:;precondition (and

@

=» Can use in th
(treatment ?x untreated)) .
.effect (and

(not (treatment ?x untreated)) (treatment ?x varnished)

(not (colour ?x natural)) (colour ?x ?newcolour))) ...)

definition

as well!

Properties of the World

Predicates in PDDL

In PDDL: Lisp-like syntax for predicates, atoms, ...

= (define (domain dock-worker-robots)
(:xrequirements ...)
(:predicates

[51 JF

Variables are

prefixed with “?”

(adjacent ?11 ?12 -location) ; can move from ?11 directly to ?12
(attached ?p - pile ?1 - location) ; pile ?p attached to location ?1
(belong 7k - crane ?1 - location) ; crane ?k belongs to location ?1

(at ?r - robot ?l - location) : robot ?r is at location ?1

(occupied ?1-location) : there is a robot at location ?1
(loaded ?r-robot ?c - container) : robot ?r is loaded with container ?c
(unloaded ?r - robot) ; robot ?r is empty

(holding ?k - crane ?c - container) ; crane ?k is holding container ?c
(empty ?k- crane) ; crane 7k is not holding anything
(in ?c - container ?p - pile) ; container ?c is somewhere in pile ?p
(top ?c - container ?p - pile) ; container ?c is on top of pile ?p
(on ?k1 ?k2 - container) : container ?k1 is on container ?k2

3
NY
jonkv@ida

Modeling: Different predicates per type?

Modeling Issues: Single or multiple predicates!?

= (define (domain dock-worker-robots)
(:xrequirements ...)
(:predicates

3 predicates (attached ?p - pile ?1 - location) ; pile ?p attached to location ?1
Widaatniikle (belong 7k - crane ?1 - location) ; crane ?k belongs to location ?1
(at ?r - robot ?1 - location) : robot ?r is at location ?1

Could use type hierarchies instead — in most planners

= (define (domain dock-worker-robots)
(:xrequirements ...)
(:types robot crane container pile — thing
location
(:predicates
(at ?t — thing ?1 - location) ; thing ?t is at location ?1
)
)

Modeling: Duplicate information

9
w
jonkv@ida

Models often provide duplicate information

A location is occupied < there is some robot at the location

= (define (domain dock-worker-robots)
(:xrequirements ...)
(:predicates
(at ?r - robot ?l - location) : robot ?r is at location ?1
(occupied ?1-location) : there is a robot at location ?1

Strictly speaking, occupied is redundant

= Still necessary in many planners

= No support for quantification: (exists r (at !r ?l))
= Have to write (occupied ?l) instead

= Have to provide this information + update it in actions!

States in PDDL

States I: Initial State in PDDL

Initial states in PDDL:

Set (list) of true atoms

(& n
D
jonkv@ida

= (define (problem dwr-problem-1)
(:domain dock-worker-robot)
(:objects ...)
(:init
(attached p1locl) (in c1 p1) (on c1 pallet) (in c¢3 p1) (on c3 c1) (top c3 pl)
(attached p2 locl) (in c2 p2) (on c2 pallet) (top c2 p2)
(belong cranel locl) (empty cranel)
(at r1 loc2) (unloaded r1) (occupied loc2)
(adjacent loc1 loc2) (adjacent loc2 locl)

Lisp-like notation again:

(attached p1 loc), not
attached(p1l,loc)

locZ

a
a
jonkv@ida

States 2: Goal States

The :strips level supports positive conjunctive goals

Example: Containers | and 3 should be in pile 2

= We don't care about their order, or any other fact

= (define (problem dwr-problem-1)
(:domain dock-worker-robot)

(:objects ...)
(:goal (and (in c1 p2) (in c3 p2))))

Write as a formula (and ...), not a set:

Other levels support "or", "forall”, "exists", ...

’ ' o2

States 3: Goal States

Some planners: Conjunctions of positive / negative literals

D
~
jonkv@ida

Example:
= Containers | and 3 should be in pile 2

= Container 2 should not be in pile 4

= (:xrequirements :negative-preconditions ...)

= (define (problem dwr-problem-2)
(:domain dock-worker-robot)

(:objects ...)
(:goal (and (in c1 p2) (in c3 p2) (not (in c2 p4)))

Buggy support in some planners

| f
= Can be worked around ' |
= Define outside predicate = inverse of in pum— |
: . loc?
= Make sure actions update this
= (:goal (and (in c1 p2) (in c3 p2) pL <

(outside c2 p4)) p] loc]

Operators and Actions

(&
\;D
jonkv@ida

Operators in PDDL

PDDL.: Operators are called actions, for some reason...

= (define (domain dock-worker-robots) ...
(:action move
:;parameters (?r — robot
?from ?to - location)

Typed params

=> can only instantiate
with the intended objects

-precondition (and (adjacent ?from ?to)
(at ?r ?from)
(not (occupied ?to)))

.effect (and (at ?r ?to) (not (occupied ?from))
(occupied ?to) (not (at ?r ?from))

Again, written as logical conjunctions,

instead of sets!

’ ' loc2

Transformation: PDDL/strips =» STS

formal
model

(STS)

Input 1: Planning domain

Object Types: There are UAVs, boxes ...

Predicates: Every UAV has a maxSpeed, ...

Operators: Definition of fly, pickup, ...

Input 2: Problem instance

Obijects: Current UAVs are {UAV1,UAV?2}
Initial State: Box locations, ...
Goal: Box b1 at location 11, ...

jonkv@ida

Defines
transitions
' between
in the
formal
model

(STS)

Defines
initial and
goal
states

Useful techniques:

Finding the value of a property

jonkv@ida

Properties of Objects |

Modeling properties in a first-order predicate representation:

colorof(chair, silver)

colorof(chair, red)
colorof(chair, green)

colorof(chair, blue)

colorof(chair, yellow)

Any problems?

jonkv@ida

Properties of Objects 2

Let's model a "drive" operator for a truck

"Natural” parameters: The truck and the destination
= (caction drive :parameters (?t — truck ?dest — location)

:precondition ... e
.effect ... Il T
-~
) ~~~~~~~~
~~~~~~
§~~
~
”Natural” precondition: 8
/

= There must exist a path between the current location and the destination -’
-
= Assume we have a predicate (path-between ?from ?to - location) ===~

How do we continue?
= (:precondition (path-between ...something... ?dest)) ???

= Can’t talk about the location of the truck — could have 0 or many locations

= Can only test whether a truck is at some specific location:
(at ?t ?location)




Properties of Objects 3

General technique: Iterate-and-test
(:precondition
(forall (?from — location)
(implies
(at ?t ?from)
(path-between ?from ?dest))))

But many planners don’t support forall, implies...




Properties of Objects 4

an
9
jonkv@ida

Trick:

Add a parameter to the operator

= (caction drive :parameters (?t — truck ?from - location ?dest — [ocation)
:precondition ...
.effect ...

Constrain that variable in the precondition

= :precondition (and (at ?t ?from) (path-between ?from ?dest))

= Can only apply those instances of the operator
where ?from is the current location of the truck



an
a
jonkv@ida

Properties of Objects 5

Example: These parameters are "extraneous"
Initially: in the sense that they do not add choice:

We can choose truck and dest (given some constraints);
from is uniquely determined by state + other params!

= (at truck5 home)

Action:

= (caction drive :parameters (?t — truck ?from — location ?dest — location)
:precondition (and (at ?t ?from) (path-between ?from ?dest))
.effect ...

Which actions are executable!?

= (drive truck5 work home) — no, precond false: not (at truck5 work)
= (drive truck5 work work) — no, precond false

= (drive truck5 work store) — no, precond false

= (drive truck5 home store) — precond true, can be applied!

With quantification, we could have changed the precondition:

(exists (?from - location) (and (at ?t ?from) (path-between ?from ?dest))
No need for a new parameter — in this case...




3
~
jonkv@ida

Properties of Objects b

What about effects?

Same "natural” parameters: The truck and the destination

= (caction drive :parameters (?t — truck ?dest — location)
:precondition ...
.effect ...

"Natural” effects:
= The truck ends up at the destination: (at ?t ?dest)

= The truck is no longer where it started: (not (at ?t|...???...))

How do you find out where the truck was before the action?

= Using an additional parameter still works:
(not (at ?t ?from))

= The value of from is constrained in the precondition — before

= The value is used in the effect state



Alternative representations:

State variables (SAS+)




Alternative Representations

an
)

jonkv@ida

Three wide classes of logic-based representations
(general classes, containing many languages!)

Propositional First-order
(boolean propositions) (boolean predicates)
atHome, atWork at(truck, location)

Language: PDDL :strips Language: PDDL :strips,
(if you avoid objects), ADL, ...

State-variable-based
(non-boolean functions)

loc(truck) = location

Read chapter 2 of the book for another
perspective on representations...



jonkv@ida

Classical planning with classical representation

A state defines the values of logical atoms (boolean)

= adjacent(location, location) — can you go directly from one loc to another?

= loaded(robot, container) — is the robot loaded with the given container?

Flexible
(earlier color example)

A container can never be
on many robots, which
never happens

Seems more powerful,
| but is equivalent!

[

Can be convenient,
space-efficient
=» often used internally! |

Alternative: Classical with state-variable representation

A state defines the values of arbitrary state variables

= boolean adjacent(location, location) ;; still boolean!

= container carriedby(robot) :; which container is on the robot?



\;)
jonk\;@ida

Classical and State-Var Representation

Alternative: Classical with state-variable representation

A state defines the values of arbitrary state variables

= boolean adjacent(location, location) ;; still boolean!

= container carriedby(robot) :; which container is on the robot?

No... What if a robot is

not carrying a container?

Must define a new type: container-or-none
= Containing a new value 'none’

= container-or-none carriedby(robot)



jonkv@ida

Properties of Objects, Revisited

Back to the "drive" operator...

"Natural” parameters: The truck and the destination
= (caction drive :parameters (?t — truck ?dest — location)

:precondition ... <__
-~
.effect ... "‘*~-__
~~~
) ~~~~~~~
~~~
~~~
Ss
. . \
”Natural” precondition: \,
s

= There must exist a path between the current location and the destination ~_ _~
-
= Should use the predicate (path-between ?locl ?loc2 - location) ==""

= State variable representation =» can express the location of the truck:
(:precondition (path-between (location-of ?t) ?dest))

= No STS changes are required!

State Variable Input?

3
w
jonkv@ida

Most planners don’t support state variable input
Partly due to PDDL influence

State Variables Internally

jonkv@ida

Many convert to state variables internally

Basic idea:

= Make a graph where each ground atom is a node

at(robl, a)

at(rob2, a)

at(robl, b) I at(rob2, b)
at(robl, c) I at(rob2, ¢)
flying(rob1) 3 variables, 23 values =

| variable, 3 values

= Find out (somehow!) that certain pairs of ground atoms
cannot occur in the same state (mutually exclusive) — add edges

= Each clique (all nodes connected in pairs) can become a new state variable

?
s at, ath, atc, flying}
BEEEUTURNN (oth atB acC)

State variables and

Domain Transition Graphs

~
a
jonk\;@ida

Extended Example

Let’s extend the previous robot example...

BT (e, 565, 560)

Assume there are only roads between some locations:
move(robl, a, b) and move(robl, b, a)
move(robl, b, ¢) - but not move(robl, ¢, b); too steep in that direction
move(robl, ¢, d) and move(robl, d, ¢)

move(robl, d, a) and move(robl, a, d)

And you can take off anywhere, but only land at A
takeoff(robl, a), ..., takeoff(robl, d)
land(robl, a)

Domain Transition Graphs

jonkv@ida

With state variables: domain transition graphs

For each state variable:
= Add a node for each value

= Add an edge for each action changing the value

atA

move(robl,A,B) ~move(robl,B,A)

aib

bove(robl,B,C)

[akeoff(robl,A) atc

akeoff(rob1,B) f\move(robl,C,D)\move(rob1,D,C)

takeoff(rob1,C) atD

ove(rob1,A,D) /move(robl,D,A)

and(robl1,A)

akeoff(robl,D)

flying

Useful form of domain analysis (as we will see later)

