

Automated Planning

Course Introduction

Jonas Kvarnström Department of Computer and Information Science Linköping University

jonas.kvarnstrom@liu.se - 2019

About Us...

- Lecturer:
 - Jonas Kvarnström (jonas.kvarnstrom@liu.se)
 - Computer Science (C program) in Linköping 1992–1996
 - PhD in Linköping (automated planning)
 - Now assistant professor (universitetslektor)

- Lab Assistant:
 - Mikael Nilsson (mikael.a.nilsson@liu.se) Ph.D. student in planning

About the Lectures...

Questions and comments are welcome – start a **dialog**!

Today's Lecture

Today's lecture:

- Introduction to the course
 - Contents
 - Examination
 - Timetables

Introduction to the topic

- Distinction: Planning vs. reacting
- Distinction: Domain-specific vs. domain-independent
- Classical planning what is it, and where are the boundaries?

Introduction to the Course

Prerequisites

Prerequisites

Basic knowledge and understanding of <u>data structures and algorithms</u> as well as <u>logic and discrete mathematics</u>.

Knowledge and understanding of basic artificial intelligence techniques and concepts, including search, heuristics and the A* search algorithm.

→ We will *introduce* planning concepts

→ Then we will quickly go <u>much deeper</u>

Course Contents

UTOM

Theory

How to <u>model</u> / <u>specify</u> planning problems, formally and practically? How do <u>planning algorithms</u> work?

Thinking forwards, backwards, in all directions; thinking differently, in unexpected ways

How do they relate to, and benefit from, different plan **<u>structures</u>**?

How can planners benefit from our own deeper **knowledge**? Thinking together...

How can we handle <u>uncertainty</u>? How can we generate <u>paths</u> to follow? Practice

Practical *experience* in **modeling** / **solving** planning problems using well-known planners

> Deeper understanding of <u>abilities</u> and <u>limitations</u>

Written Exam

Demos, hand-ins

Course Book

jonkv@ida

- Main course book
 - Reading instructions are on the web

Lectures vs. Course Book

jonkv@ida

- Lectures vs. Course Book
 - Some overlap, but...

Lectures:

Overviews Intuitions Details suitable for slides

Complementary: Use both! (The exam will...)

Book:

Different overviews, intuitions Additional content and details Larger examples Exercises, questions

Labs

- Most planners are research prototypes
 - Labs based on state of the art systems
 - Dozens of planners are available
 - Some "recommended", others available as a bonus

Sequential satisficing	lamar	madagascar	merge-and-shrink
acoplan	lprpgp	madagascar-p	selmax
acoplan2	madagascar	phsff	Temporal satisficing
arvand	madagascar-p	roamer-p	cpt4
brt	popf2	yahsp2-mt	dae_yahsp
cbp	probe	<u>Seq. optimizing</u>	lmtd
cbp2	randward	bjolp	popf2
cpt4	roamer	cpt4	sharaabi
dae_yahsp	satplanlm-c	fd-autotune	tlp-gp
fd-autotune-1	sharaabi	fdss-1	yahsp2
fd-autotune-2	yahsp2	fdss-2	yahsp2-mt
fdss-1	yahsp2-mt	forkinit	Older planners
fdss-2	<u>Seq. sat. multi-core</u>	gamer	IPP
forkuniform	acoplan	iforkinit	FF
lama-2008	arvandherd	lmcut	Specialized planners
lama-2011	ayalsoplan	lmfork	SHOP2

Lab Overview

. <u>Classical planning</u>

- <u>Construct</u> a simple planning domain for emergency service assistance
- Investigate properties of several planners

2. Classical planning

- Extensions learn more about modeling
- Use action <u>costs</u> to model plan <u>quality</u>
- Test optimal planners

3. Planning for multiple agents

- Using sequential planners what happens?
- Using concurrent planners what do you gain? How do you model?

Lab Overview (2)

4. Hierarchical Task Networks

- Defining tasks to perform instead of goals to achieve
- Very different modeling task!

5. Motion Planning with OMPL

 Test a variety of motion planning techniques using the Open Motion Planning Library

Labs

- Work by yourselves or in pairs

 - Register in WebReg (link on the course web page)
- If you have a problem:
 - First <u>try</u> to solve it yourselves
 - Then <u>ask us</u>! Without feedback <u>we can't help you</u>!

Lab assistant available:

- During <u>scheduled lab hours</u>
- By <u>e-mail</u>, during the course (but don't expect immediate replies)

Plenty of work to do on your own – typical schedule:

45 minutes		45 minutes	
Work on your own	Work on your	Work on your own	Work on your
1 hour Lab assistant	own (not scheduled)	1 hour Lab assistant	own (not scheduled)
present		present	

Larger <u>number</u> of labs Fewer days to wait until you can ask for help

Schedule

Recommended timeline:

- I90405 Lab I finished (Classical I)
- I904II Lab 2 finished (Classical 2)
- I90507 Lab 3 finished (Concurrent)
- I90520 Lab 4 finished (HTN)
- I90523 Lab 5 finished (OMPL)
- I90524 Final <u>hand-in / demo</u> session
 - Hand in earlier if you can limited time during the final session

Additional Opportunities

General policy:

You can always take an <u>exam</u> at least three times per year

For this course: 190605, 190822, 1910xx/11xx

General policy: For all IDA courses having computer lab assignments there will be <u>one deadline</u> during or at the end of the course. If you fail to make the deadline, you must <u>retake the possibly new lab course</u> the next time the course is given.

- For this course, three <u>bonus demo sessions</u>:
 - In the June 2019 (re-)exam period (date to be announced)
 - In the August 2019 re-exam period
 - In the October 2019 re-exam period

Strict Deadlines!

Do you need money from CSN?

Finish in time, **study** for the exam!

You can <u>only</u> receive credits on the specified dates

Strict Deadlines! 3

Will you be leaving the country?

Study for the exam!

You can not take an exam without being here

TDDD48 Automated Planning

Questions?