
jonas.kvarnstrom@liu.se – 2018

Automated Planning
Planning under Uncertainty

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Restricted State Transition System
 Recall the classical state transition system

 Finite set of world states

 Finite set of actions

 × State transition function, where 𝛾 𝑠, 𝑎 ≤ 1

▪ If (𝑠, 𝑎) = {𝑠′}

then whenever you are in state s,

you can execute action a
and you end up in state

▪ If (𝑠, 𝑎) = ∅ (the empty set),

then a cannot be executed in s

 ∅
Often we also add a cost function:

c: ℝ

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Classical Planning Problem
 Recall the classical planning problem

 Let be a state transition system

satisfying the assumptions to

(called a restricted state transition system in the book)

 Let ∈ be the initial state

 Let ⊆ be the set of goal states

 Then, find a sequence of transitions
labeled with actions

that can be applied starting at

resulting in a sequence of states

such that ∈
start

goal

goal

goal

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Planning with Complete Information
 This assumes we know in advance:

 The state of the world when plan execution starts

 The outcome of any action, given the state where it is executed

▪ State + action unique resulting state

 Solution exists Unconditional solution exists

Start

here…

Model says: we end up

in this specific state!

Planning Execution

No new information can be relevant

(at least in theory!)

Just follow the unconditional plan…

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Multiple Outcomes
 In reality, actions may have multiple outcomes

 Some outcomes can indicate faulty / imperfect execution

▪

Intended outcome: is true

Unintended outcome: is false

▪

Intended outcome:

Unintended outcome:

▪

Intended outcome: is true

Unintended outcome: is false

 Some outcomes are more random,

but clearly desirable / undesirable

▪ Pick a present at random – do I get the one I longed for?

▪ Toss a coin – do I win?

 Sometimes we have no clear idea what is desirable

▪ Outcome will affect how we can continue,

but in less predictable ways

To a planner,

there is generally

no difference

between these

cases!

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Nondeterministic Planning
 Nondeterministic planning:

 Finite set of world states

 Finite set of actions

 : 𝑆 × 𝐴 → 2𝑆: State transition function, where |(𝑠, 𝑎)| is finite

Start

here…

Model says: we end up

in one of these states

Planning Execution

Will we find out more

when we execute?

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8FOND Planning
 FOND: Fully Observable Non-Deterministic

 After executing an action, sensors determine exactly which state we are in

Start

here…

Model says: we end up

in one of these states

Planning Execution

Start

here…

Sensors say: we are

in this state!

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9FOND Planning: Plan Structure (1)
 Example state transition system:

 Intuitive strategy:

 while (not in s2) {

move-to(pos2);

if (fallen) stand-up;

}

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)

Multiple outcomes: May or may not fall

FOND The action to execute

should depend on the current state,

which depends on previous outcomes

There may be no upper bound on how

many actions we may have to execute!

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10FOND Planning: Plan Structure (2)
 Examples of formal plan structures:

 Conditional plans (with if/then/else statements)

 Policies 𝜋 ∶ 𝑆 → 𝐴

▪ Defining, for each state, which action to execute whenever we end up there

▪ 𝜋(𝑠0) =

▪ 𝜋(𝑠1) =

▪ 𝜋(𝑠2) =

▪ 𝜋(𝑠3) =

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)

Or at least, for every state

that is reachable from the possible initial states

(A policy can be a partial function)

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Solution Types 1
 Assume our objective is still to reach a state in 𝑆𝑔
 And then remain there (executing "wait" actions forever)

▪ A policy never terminates…

 A weak solution:

For some outcomes, the goal is reached in a finite number of steps

▪ 𝜋(𝑠0) =

▪ 𝜋(𝑠1) =

▪ 𝜋(𝑠2) =

▪ 𝜋(𝑠3) =

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

No stand-up

action available!

stand-up

move-to(pos2)

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Solution Types 2
 Assume our objective is still to reach a state in 𝑆𝑔

 A strong solution:

For every outcome, the goal is reached in a finite number of steps

▪ Not possible for this example problem

▪ Could fall every time

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Solution Types 3
 Assume our objective is still to reach a state in 𝑆𝑔

 A strong cyclic solution will reach a goal state in a finite number of steps

given a fairness assumption:

Informally, ”if we can exit a loop, we eventually will”

▪ 𝜋(𝑠0) =

▪ 𝜋(𝑠1) =

▪ 𝜋(𝑠2) =

▪ 𝜋(𝑠3) =

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Solutions and Costs
 The cost of a FOND policy is undefined

 We don't know in advance which actions we must execute

 And we have no estimate of how likely different outcomes are

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15NOND Planning
 NOND: Non-Observable Non-Deterministic

 Also called conformant non-deterministic

 Only predictions can guide us – no sensors to use during execution

 May still give sufficient information for solving a problem

Start

here…

Model says: we end up

in one of these states

Planning Execution

Start

here…

We still only know that

we're in one of these states

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16POND Planning
 POND: Partially Observable Non-Deterministic

Start

here…

Model says: we end up

in one of these states

Planning Execution

Start

here…

We know we ended up

in one of these states

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Overview
Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information

gained after action

Deterministic:

Exact outcome

known in

advance

Classical planning (possibly with extensions)

Information dimension is meaningless!

Non-

deterministic:

Multiple

outcomes, no

probabilities

NOND:

Conformant Planning

FOND:

Conditional

(Contingent) Planning

POND:

Partially Observable,

Non-Deterministic

We will not discuss non-deterministic planning algorithms!

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Stochastic Systems
 Probabilistic planning uses a stochastic system

 Finite set of world states

 Finite set of actions

 Given that we are in s and execute a,

the probability of ending up in s’

 For every state 𝑠 and action 𝑎, we have 𝑠′ 𝑆 𝑃(𝑠, 𝑎, 𝑠’) = 1:

The world gives us 100% probability of ending up in some state

Start

here… 0.1
0.2

.07

0.1

.03

Model says: we end up

in one of these states

Planning

…with this probability

Replaces

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Stochastic Systems (2)

At location 5

At location 6

Intermediate

location

Action: drive-uphill

Model says: 2% risk

of slipping, ending up

somewhere else

Arc indicates

outcomes of a

single action

Example with "desirable outcome"

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Stochastic Systems (3)
 May have very unlikely outcomes…

At location 5

At location 6

Intermediate

location

Broken

Very unlikely, but may

still be important to

consider, if it has great

impact on goal

achievement!

Probability sum =

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Stochastic Systems (4)
 And very many outcomes…

At location 5
Fuel level

At location 6
Fuel level

Intermediate

location

Broken

At location 6
Fuel level

Uncertain how much

fuel will be consumed

As always, one state

for every combination

of properties

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Stochastic Systems (5)
 Like before, often many executable actions in every state

Probability sum = 1

(certain outcome)

Probability sum = 1

(three possible

outcomes of A2)

Probability sum = 1

(three possible

outcomes of A3)

We choose

the action…

Nature chooses

the outcome, so we

must be prepared for

all of them!

Searching

the state space

yields

an AND/OR tree

3 possible actions

(red, blue, green)

Arcs connect

edges

belonging to

the same

action

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Stochastic System Example
 Example: A single robot

 Moving between locations

 For simplicity,

states correspond

directly to

locations

▪

▪

▪

▪

▪

 Some transitions are deterministic, some are stochastic

▪ Trying to move from to : You may end up at instead (% risk)

▪ Trying to move from to : You may stay where you are instead (% risk)

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Overview
Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information

gained after action

Deterministic:

Exact outcome

known in advance

Classical planning (possibly with extensions)

Information dimension is meaningless!

Non-deterministic:

Multiple outcomes,

no probabilities

NOND:

Conformant Planning

FOND:

Conditional

(Contingent) Planning

POND:

Partially Observable,

Non-Deterministic

Probabilistic:

Multiple outcomes

with probabilities

Probabilistic

Conformant Planning

(Non-observable MDPs:

Special case of POMDPs)

Probabilistic

Conditional Planning

Stochastic Shortest Path

Problems

Markov Decision

Processes (MDPs)

Partially Observable MDPs

(POMDPs)

To be discussed now!

Important concepts,

before we define the planning problem itself!

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Policy Example 1
 Example

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Reaches or , waits there infinitely many times

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Policy Example 2
 Example

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Always reaches state , waits there infinitely many times

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Policy Example 3
 Example

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Reaches state with % probability ”in the limit”

(it could happen that you never reach s4, but the probability is 0)

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Policies and Histories
 The outcome of sequentially executing a policy:
 A state sequence, called a history

 Infinite, since policies do not terminate

 For classical planning:
 A plan yields a single history (last state repeated infinitely), known in advance

 For probabilistic planning:
 We may not know the initial state with certainty

▪ For every state s, there will be a probability 𝑃(𝑠) that we begin in the state s

 Actions can have multiple outcomes

 A policy can yield many different histories

▪ Which one? Gradually discovered at execution time!

(index zero): Variable used in histories, etc

: concrete state name used in diagrams

We may have =

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31History Example 1
 Example 1

 Even if we only consider starting in : Two possible histories

 – Reached , waits indefinitely

 – Reached , waits indefinitely

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

How probable are these histories?

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Probabilities: Initial States, Transitions
 Each policy has a probability distribution over histories/outcomes

 With unknown initial state:

▪ 𝑷(〈𝒔𝟎, 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, … | 𝝅) =

𝑷 𝒔𝟎 ⋅ෑ

𝒊≥𝟎

𝑷(𝒔𝒊, 𝝅 𝒔𝒊 , 𝒔𝒊+𝟏)

 The book:

▪ Assumes you start
in a known state

▪ So all histories start
with the same state

▪ 𝑠0
 𝑠0

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Probability

of starting in

this specific 𝑠0

Probabilities

for each

required

state transition

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33History Example 1
 Example

 Two possible histories, if 𝑃 𝑠1 = 1:

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34History Example 2
 Example

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35History Example 3
 Example

 ∞

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Cost of an Action
 Part of the specification: A cost function c 𝑠, 𝑎
 Representing the known cost of executing 𝑎 in state 𝑠

 𝑐(𝑠, 𝑎) = 1

 𝑐(𝑠, 𝑎) = 100

 𝑐(𝑠, 𝑤𝑎𝑖𝑡) = 1

c=1

c=1

c=1

c=1

s2 s3

s4s1

s5
c=1

c=1

c=1

c=1

c=100c=
10

0

c=
10

0 c=100

c=100

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Cost of a History
 Assume as given:

 A policy 𝜋

 An outcome, an infinite history ℎ = s0, s1, … resulting from executing 𝜋

 We can then calculate the cost of execution

for the given history / outcome:

C ℎ 𝜋 =

𝑖≥0

𝑐 𝑠𝑖 , 𝜋 𝑠𝑖

Given what happened,

this is how much it cost us!

”Cost of history given policy”:

Using the same actions in different states different cost!

Using other actions to reach the same states different cost!

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Expected Cost of a Policy
 We want to choose a good = ”cheap” policy

 Actual cost depends on outcome, which we can’t choose

 For each possible history (outcome), we can calculate:

▪ The probability that the history will occur

▪ The resulting cost

 So: calculate the statistically expected cost (∼"average" cost)

for the entire policy:

𝐸𝐶 𝜋 =

ℎ∈{all possible histories for 𝜋}

𝑃 ℎ 𝜋 𝐶(ℎ|𝜋)

 Later, we will calculate costs

without the need to explicitly find all histories – examples then!

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Stochastic Shortest Path Problem
 Closest to classical planning: Stochastic Shortest Path Problem

 Let = (𝑆, 𝐴, 𝑃) be a stochastic system

 Let 𝑐: 𝑆, 𝐴 → 𝑅 be a cost function

 Let 𝑠0 ∈ 𝑆 be an initial state

 Let 𝑆𝑔 ⊆ 𝑆 be a set of goal states

 Then, find a policy of minimal expected cost
that can be applied starting at

and that reaches a state in with probability 1

Stochastic outcomes

only expected costs can be calculated

Probability 𝟏: "Infinitely unlikely"

that we don't reach a goal state

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42SSPP: Termination?
 But policies never terminate!

 Even in a goal state, 𝜋(𝑠) specifies an action to execute

 Histories are infinitely long

 Cost calculations include infinitely many actions!

 Why define policies this way, when we do want to stop at the goal?

 We are using more general "machinery"

that is also used for non-terminating execution!

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43SSPP: Absorbing Goal State
 How to solve the problem?

 Make every goal state 𝑔 absorbing – state s4 below

▪ For every action 𝑎,

𝑃(𝑔, 𝑎, 𝑔) = 1 returns to the same goal state (we'll stop anyway)

𝑐(𝑔, 𝑎) = 0 no more cost accumulates

 Solve the problem using general methods,

generate a policy

 How to execute?

 Follow the policy

 When you reach a

goal state, stop!

c=1

c=1

c=1

c=0

s2 s3

s4s1

s5

c=1

c=1

c=1

c=100c=
10

0 c=100

c=100

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44Utility Functions and SSPP
 The SSPP:

 Strictly positive action cost (>0) except in goal states (=0)

 If infinite history h visits a goal state, it consists of:

▪ Finitely many actions of finite positive cost

▪ Followed by infinitely many actions of cost 0

▪ Finite total cost

 If infinite history h does not visit a goal state:

▪ Infinitely many actions of strictly positive cost

▪ Infinite total cost

 If any history that does not visit a goal state has non-zero probability:

𝐸𝐶 𝜋 =

ℎ∈{all possible histories for 𝜋}

𝑃 ℎ 𝜋 𝐶(ℎ|𝜋) = ∞

Policy 𝜋
has finite expected cost

𝜋 visits a goal state

with probability 1

𝜋 solves the SSPP

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Action Representations and PPDDL
 Action representations:

 The book only deals with the underlying semantics:

“Unstructured” probability distribution 𝑃(𝑠, 𝑎, 𝑠′)

 Several “convenient” representations possible,

such as Bayes networks, probabilistic operators

 Probabilistic PDDL: new constructs for effects, initial state

▪ Effect takes place with probability , etc.

▪ Sum of probabilities = 𝑠 ≤ 1 (𝑠 < 1 with probability 1 − 𝑠, nothing happens)

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Tire World
 Tire may go flat – good idea to load a spare from the start…

You can bring one

spare tire, but what if

you need more?

Some locations

provide spare tires –

affects where you

should go in the road

network

Can manage without a spare,

but then you must call the AAA

(tow truck) which is expensive

Spares have a cost, but you may still want to

load one to handle potential flat tires

Variation of SSPP:

Achieve a goal, be at

X, at minimum

expected cost

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48SSPP variations
 A variation of the Stochastic Shortest Path Problem:

 Let = (𝑆, 𝐴, 𝑃) be a stochastic system

 Let 𝑠0 ∈ 𝑆 be an initial state

 Let 𝑆𝑔 ⊆ 𝑆 be a set of goal states

 (Ignore the cost function)

 Then, find a policy (not “of minimal expected cost”)
that can be applied starting at

and that reaches a state in with maximum probability

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49Representation Example: PPDDL
 Bomb-and-toilet problem

5% chance of toilet-clogged,

95% chance of no effect

First, a "standard" effect

Probabilistic initial state

Goal – no plan guarantees

satisfaction

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Ladder

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Exploding Blocks World
 When putting a block on the table:

 30% risk that it explodes

 Destroys what you placed the block on

▪

 Solutions use additional blocks as potential “sacrifices”

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Generalizating from the SSPP
 We have defined the Stochastic Shortest Path Problem

 Similar to the classical planning problem,

but adapted to probabilistic outcomes

 But policies allow indefinite execution

 No predetermined termination criterion – go on "forever"

 Can we exploit this fact to generalize from SSPPs?

Yes – remove the goal states, assume no termination

But without goal states, what is the objective?

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54Goals Rewards
 How to determine what's a good policy?

 Introduce rewards that can be accumulated during execution!

 Reward function 𝑅 𝑠, 𝑎, 𝑠′

▪ Reward gained for being in 𝑠, executing action 𝑎 and ending up in 𝑠′

▪ Can be negative!

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55Rewards: Robot Navigation
 Example:

 The robot does not "want to reach s4"

 It wants to execute actions to gain rewards

 Every time step it is in s5:

▪ Negative reward – maybe the robot is in our way

 Every time step it is in s4:

▪ Positive reward –

maybe it helps us

and "gets a salary" c=1

c=1

c=0

c=0

s2 s3

s4s1

s5

c=1

c=1

c=1

c=1

c=100c=
10

0

c=
10

0

c=100

c=100

r=0

r=0

r=0

r= –100

r=+100

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Rewards: Grid World
 Example: Grid World

 Actions: North, South, West, East, NorthWest, …

▪ Associated with a cost

▪ 90% probability of doing what you want

▪ 10% probability of moving to another cell

 Rewards in some cells

▪ 𝑅 𝑠, 𝑎, 𝑠′ = +100
for transitions where you

end up in the top right cell

 Danger in some cells

▪ 𝑅 𝑠, 𝑎, 𝑠′ = −200
for transitions where you

end up in the neighbor cell

 The same action may give +100,

may give −200!

-100 -200 +100

-80

+50

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57States, not Locations
 Important: States != locations

Reward given:

A person who wants to move

is allowed to board

Can't stay in the same state

and "accumulate rewards":

Must execute an action,

which always leads to a new state

Can't "cycle" to receive

the same award again:

No path leads back to this

state

58

jo
nk

v@
id

a
jo

nk
v@

id
a

58Simplification
 To simplify formulas, include the cost in the reward!

 Decrease each 𝑅(𝑠𝑖, 𝜋(𝑠𝑖), 𝑠𝑖+1) by 𝐶(𝑠𝑖, 𝜋(𝑠𝑖))

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1

60

jo
nk

v@
id

a
jo

nk
v@

id
a

60Utility Functions
 Costreward, cost function utility function

 Suppose a policy has one particular outcome

 results in one particular history (state sequence)

 How ”useful / valuable" is this outcome to us? What is our reward?

 First: Un-discounted utility

 h = s0, s1, … 𝑉 ℎ 𝜋 = σ𝑖≥0𝑅(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

The reward

for step 𝑖

Un-discounted utility

of history h

given policy π

61

jo
nk

v@
id

a
jo

nk
v@

id
a

61Utility in a Context

Considers all possible infinite histories

(as defined earlier)

Policy = solution for infinite horizon

Execute until we achieve a goal state

Solution guarantees:

History has finitely many actions of cost>0

"Goal-based" execution (SSPP)

No predefined stop criterion

We will stop at some point

(the universe will end),

but we can't predict when

A history can have infinitely many actions

of reward > 0,

and there is no clear cut-off point!

Now: Indefinite execution

Never ends – unrealistic;

we don't have to care about this!

(Infinite execution)

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62Infinite Undiscounted Utility
 Leads to problems:

 𝜋1 could result in

 Using undiscounted utility:

 Stays at forever, executing “wait”

 infinite amount of rewards!

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

63

jo
nk

v@
id

a
jo

nk
v@

id
a

63Infinite Undiscounted Utility (2)
 What’s the problem, given that we "like" being in state ?

 We can’t distinguish between different ways of getting there!

▪

▪

▪ Both appear equally good…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64Discounted Utility
 Solution: Use a discount factor, , with 0 ≤ ≤ 1
 To avoid infinite utilities 𝑉(…)

 To model "impatience":

rewards and costs far in the future are less important to us

 Discounted utility of a history:

 𝑉 ℎ 𝜋 = σ𝑖≥0 𝛾
𝑖 𝑅(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

 Distant rewards/costs

have less influence

 Convergence (finite results)
is guaranteed if 0 ≤ 𝛾 < 1

Examples will use 𝛾 = 0.9

Only to simplify formulas!

Should choose carefully…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65Example

Given that we start in s1,
can lead to only two histories:

80% chance of history h1,

20% chance of history h2

We expect a reward of 256.3 on average

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100

r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66Example

Given that we start in s1,

also two different histories…

80% chance of history h1,

20% chance of history h2

Expected reward 531,7 (π1 gave 256.3)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100

r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

68

jo
nk

v@
id

a
jo

nk
v@

id
a

68Overview
 Markov Decision Processes

 Underlying world model: Stochastic system

 Plan representation: Policy – which action to perform in any state

 Goal representation: Utility function defining “solution quality”

 Planning problem: Optimization: Maximize expected utility

Why "Markov"?

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69

Nothing else matters!

Markov Property (1)
 If a stochastic process has the Markov Property:

 It is memoryless

 The future of the process

can be predicted equally well

if we use only its current state

or if we use its entire history

 This is part of the definition!

 𝑃(𝑠, 𝑎, 𝑠′) is the probability

of ending up in s’

when we are in s and execute a

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70

a

Markov Property (2)

At location 5

At location 6

Intermediate

location

Broken

At location 3

At location 4

…

…

Only the

current state

We don’t need to

know the states we

visited before…

…To find out where

we may end up, with

which prob.

and the

action…

71

jo
nk

v@
id

a
jo

nk
v@

id
a

71Remembering the Past
 Essential distinction:

 Example:

 If you have visited the lectures, you are more likely to pass the exam

▪ Add a visitedLectures predicate / variable,

representing in this state what you did in the past

 This information is encoded and stored in the current state

▪ State space doubles in size

(and here we often treat every state separately!)

▪ We only have a finite number of states

 can't encode an unbounded history

Cannot affect the transition function

Previous states in the history sequence:

Can partly be encoded into the current state

Can affect the transition function

What happened at earlier timepoints:

73

jo
nk

v@
id

a
jo

nk
v@

id
a

73Expected Utility
 Expected utility – similar to expected cost:

 We know the utility of each history, of each outcome

▪ But we can only decide a policy

 Each outcome has a probability

▪ So we can calculate an expected ("average") utility for the policy: 𝐸(𝜋)

74

jo
nk

v@
id

a
jo

nk
v@

id
a

74Expected Utility 2
 A policy selects actions; the world chooses the outcome

Action blue

world

selects

outcome

If the policy chooses

the green action,

the world selects one

of these outcomes

Action red

one

possible

outcome

75

jo
nk

v@
id

a
jo

nk
v@

id
a

75Expected Utility 3
 We must consider all possible outcomes / histories

but not all possible choices

Suppose the policy

chooses green action

Irrelevant to us
These outcomes

must be handled!

76

jo
nk

v@
id

a
jo

nk
v@

id
a

76Expected Utility 4
 In the next step the policy again makes a choice

 Use 𝜋(𝑠21), 𝜋 𝑠22 or 𝜋(𝑠23) depending on where you are

s1

s2
3

s2
2

s2
1

77

jo
nk

v@
id

a
jo

nk
v@

id
a

77Expected Utility 4
 Calculating expected utility 𝐸(𝜋), method 1: "History-based"

 Find all possible infinite histories

 Calculate probabilities, rewards

over each entire history

 Multiply and sum

A

D

C

B

KJIGFE

H

E(π) = h P(h | π) V(h | π)

where V(h | π) = i ≥ 0
i R(si, π(si), si+1)

<A,B,E,…>

<A,B,F,…>

<A,B,G,…>

<A,C,H,…>

…

Simple conceptually

Less useful for calculations

78

jo
nk

v@
id

a
jo

nk
v@

id
a

78Expected Utility 5
 Calculating expected rewards, method 2: Recursive

 What's the probability

of the outcomes B, C, or D?

 What's the reward for

each transition?

 What's the reward of

continuing from

there?

A

D

C

B

KJIGFE

H

E(π) = E(π,s0)

E(π,s) = s’ S P(s, π(s), s') *

(R(s, π(s), s') + E(π,s'))

E(π) = expected reward "from the start"

E(π,s) = "continuing after having reached s"

79

jo
nk

v@
id

a
jo

nk
v@

id
a

79Expected Utility 6: "Step-Based"
 If π is a policy, then

 E(π,s) = s’ S P(s, π(s), s') * (R(s, π(s), s') + E(π,s'))

 The expected utility of continuing to execute π after having reached s

 Is the sum, for all possible states 𝑠’ ∈ 𝑆 that you might end up in,

▪

of the probability 𝑃(𝑠, 𝜋(𝑠), 𝑠′) of actually ending up in that state

given the action 𝜋(𝑠) chosen by the policy, times

▪ the reward you get for this transition

▪ plus the discount factor

times the expected utility 𝐸(𝜋, 𝑠′) of continuing π from the new state s’

80

jo
nk

v@
id

a
jo

nk
v@

id
a

80Example 1
 𝐸(𝜋2, 𝑠1) = The expected reward of executing starting in :

 Ending up in s2: 100% probability times

▪ Reward −100

▪ Discount factor times 𝐸(𝜋2, 𝑠2)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

81

jo
nk

v@
id

a
jo

nk
v@

id
a

81Example 2
 = the expected utility of executing starting in :

 Ending up in 𝑠3: 80% probability times

▪ Reward −1

▪ Discount factor times 𝐸(𝜋2, 𝑠3)

 Ending up in 𝑠5: 20% probability times

▪ Reward −1

▪ Discount factor times 𝐸(𝜋2, 𝑠5)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

82

jo
nk

v@
id

a
jo

nk
v@

id
a

82Recursive?
 Seems like we could easily calculate this recursively!

▪ defined in terms of)

▪ defined in terms of) and)

 …

 Just continue until you reach the end!

 Why doesn't this work?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

83

jo
nk

v@
id

a
jo

nk
v@

id
a

83Not Recursive!
 There isn’t always an ”end”!

 Modified example below is a valid policy π (different action in s5)

▪ defined in terms of)

▪) defined in terms of) and)

▪) defined in terms of)

▪) defined in terms of)…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

84

jo
nk

v@
id

a
jo

nk
v@

id
a

84Equation System
 If π is a policy, then

 E(π,s) = s’ S P(s, π(s), s') * (R(s, π(s), s') + E(π,s'))

 The expected utility of continuing to execute π after having reached s

 Is the sum, for all possible states s’ S that you might end up in,

▪

of the probability P(s, π(s), s') of actually ending up in that state

given the action π(s) chosen by the policy, times

▪ the reward you get for this transition

▪ plus the discount factor

times the expected utility E(π,s') of continuing π from the new state s’

This is an equation system: |S| equations, |S| variables!

Requires different solution methods…

87

jo
nk

v@
id

a
jo

nk
v@

id
a

87Repetition: Utility
 Let us first revisit the definition of utility

 We can define the actual utility given an outcome, a history

▪ Given any history 𝑠0, 𝑠1, … :

𝑉 𝑠0, 𝑠1, … 𝜋 =

𝑖≥0

𝛾𝑖 𝑅 𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1

 We can define the expected utility using the given probability distribution:

▪ Given that we start in state s:

𝐸(𝜋, 𝑠) =

𝑠0,𝑠1,…

𝑃 𝑠0, 𝑠1, … 𝑠0 = 𝑠)

𝑖≥0

𝛾𝑖 𝑅 𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1

▪ As we saw, we can also rewrite this recursively!

Given that we start in state s:

𝐸 𝜋, 𝑠 =

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝐸 𝜋, 𝑠′

P(that entire history,

when starting in s)

Discounted reward

for that entire history

Value of a history Discounted rewards claimed

All possible histories

All possible next states 𝑠′
P(first step

leads to 𝑠′)
Immediate reward + discounted

reward of continuing from 𝑠′

88

jo
nk

v@
id

a
jo

nk
v@

id
a

88Maximizing Expected Utility
 Suppose that:

 We know the initial state 𝑠0
 We want a policy 𝜋∗ that maximizes expected utility: 𝐸(𝜋∗, 𝑠0)

 How do we find one?

 Bellman’s Principle of Optimality:

 An optimal policy has the property that

whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision!

 Richard Ernest Bellman, 1920-1984

89

jo
nk

v@
id

a
jo

nk
v@

id
a

89Principle of Optimality: Example
 Suppose we start in 𝑠1

 Suppose 𝜋∗ is optimal starting in 𝒔𝟏

▪ It maximizes 𝐸 𝜋∗, 𝑠1 : Expected utility starting in 𝑠1

 Suppose that 𝜋∗ 𝑠1 = , so that the next state must be 𝑠2

 Then 𝜋∗ must also be optimal starting in 𝒔𝟐!

▪ Must maximize 𝐸 𝜋∗, 𝑠2 : Expected utility starting in 𝑠2

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

90

jo
nk

v@
id

a
jo

nk
v@

id
a

90Principle of Optimality (2)
 Sounds obvious? Depends on the Markov Property!

 Suppose rewards depended on which states you had visited before

 To go

▪ Use and

▪ Reward –200 + –400 = –600

 To go without having visited

▪ Use

▪ Reward for this step: 99, not –400

 Optimal action would

have to take history

into account

 This can’t happen

in an MDP: Markovian!

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r=99 usually
r= - 400 if we visited s5

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

91

jo
nk

v@
id

a
jo

nk
v@

id
a

91Consequences (1)
 To find an optimal policy 𝜋∗:
 No need to know the initial state 𝑠0 in advance:

We can find a policy that is optimal for all initial states

 Definition:

An optimal policy 𝜋∗ maximizes expected utility for all states:

For all states s and alternative policies 𝜋,

𝐸 𝜋∗, 𝑠 ≥ 𝐸(𝜋, 𝑠)

 Definition:

A solution to an MDP is an optimal policy!

92

jo
nk

v@
id

a
jo

nk
v@

id
a

92Consequences (2)
 Suppose I have a non-optimal policy 𝜋
 I select an arbitrary state s

 I make a local improvement:

Change 𝜋 𝑠 , selecting another action that [increases, decreases] E 𝜋, 𝑠

 This cannot make anything worse:

Cannot [decrease, increase] E 𝜋, 𝑠′ for any 𝑠′!

 Also:

 Every global improvement can be reached through such local improvements

(no need to first make the policy worse, then better)

 We can find optimal solutions through local improvements

 No need to “think globally”

94

jo
nk

v@
id

a
jo

nk
v@

id
a

94Simplification
 We defined the expected utility given that we start in state 𝑠:

𝐸 𝜋, 𝑠 =

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝐸 𝜋, 𝑠′

 In our current example,

rewards do not depend on the outcome s' !

𝐸 𝜋, 𝑠 = 𝑅 𝑠, 𝜋 𝑠 +

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

95

jo
nk

v@
id

a
jo

nk
v@

id
a

95Policy Iteration
 First algorithm: Policy iteration

 General idea:

▪ Start out with an initial policy, maybe randomly chosen

▪ Calculate the expected utility of executing that policy

from each state

▪ Update the policy by making a local decision for each state :

”Which action should my improved policy choose in this state,

given the expected utility of the current policy?”

▪ Iterate until convergence (until the policy no longer changes)

96

jo
nk

v@
id

a
jo

nk
v@

id
a

96Preliminaries 1: Single-step policy changes
 Preliminaries:

 Suppose I have a policy 𝜋, with an expected utility:

𝐸 𝜋, 𝑠 = 𝑅 𝑠, 𝜋 𝑠 +

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

 Suppose I change the decision in the first step,

and keep the policy for everything else!

 New expected utility:

𝑄 𝜋, 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 +

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

▪ 𝑄(𝜋, 𝑠, 𝑎) is the expected utility of 𝜋 in a state s

if we start by executing the given action 𝑎,

but we use the policy 𝜋 from then onward

Why?

This tells us if we have a

potential improvement,

without solving a full equation

system!

97

jo
nk

v@
id

a
jo

nk
v@

id
a

97Preliminaries 2: Example
 Example: 𝐸(𝜋, 𝑠1)

▪ The expected utility of following the current policy

▪ Starting in , beginning with

 𝑄(𝜋, 𝑠1,move(𝑙1, 𝑙4))

▪ The expected utility of first trying to move from to ,

then following the current policy

 Does not correspond to

any possible policy!

▪ If returns

you to state , then the

next action is
!

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

98

jo
nk

v@
id

a
jo

nk
v@

id
a

98Preliminaries 3
 Suppose you have an optimal policy π*

 Then, because of the principle of optimality:

▪ In every state, the local choice made by the policy is locally optimal

▪ For all states s,

𝐸(𝜋∗, 𝑠) = max
𝑎∈𝐴

𝑄(𝜋∗, 𝑠, 𝑎)

 This yields the modification step of policy iteration!

 We have a possibly non-optimal policy 𝜋,

want to create an improved policy 𝜋’

 For every state s, set

𝜋’(𝑠) = arg max
𝑎∈𝐴

𝑄(𝜋, 𝑠, 𝑎)

But what if there was an even better choice,

which we don’t see now because of our single step lookahead (Q)?

That’s OK: We still have an improvement,

which cannot prevent future improvements

99

jo
nk

v@
id

a
jo

nk
v@

id
a

99Preliminaries 4
 Example: 𝐸(𝜋, 𝑠1)

▪ The expected utility of following the current policy

▪ Starting in , beginning with)

 𝑄(𝜋, 𝑠1,𝑚𝑜𝑣𝑒(𝑙1, 𝑙4))

▪ The expected utility of first trying to move from to ,

then following the current policy

If doing) first

has a greater expected utility,

we should modify

the current policy:

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

101

jo
nk

v@
id

a
jo

nk
v@

id
a

101Policy Iteration 1: Initial Policy 𝜋1
 Policy iteration requires an initial policy

 Let’s start by choosing “wait” in every state

 Let’s set a discount factor: 𝛾 = 0.9

▪ Easy to use in calculations on these slides,

but in reality we might use a larger factor

(we’re not that short-sighted!)

 Need to know expected utilities!

▪ Because we will make changes

according to 𝑄(𝜋1, 𝑠, 𝑎),
which depends on

s' S P(s, a, s’) E(π1,s')

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

102

jo
nk

v@
id

a
jo

nk
v@

id
a

102Policy Iteration 2: Expected Utility for 𝜋1
 Calculate expected utilities for the current policy 𝜋1
 Simple: Chosen transitions are deterministic and return to the same state!

▪ π, π,

▪

▪

▪

▪

▪

 Simple equations to solve:

▪

▪

▪

▪

▪

Given this policy π1:

High rewards if we start in s4,

high costs if we start in s5

103

jo
nk

v@
id

a
jo

nk
v@

id
a

103

Best improvement

Policy Iteration 3: Update 1a

 For every state s:

 Let

 That is, find the action a that maximizes

▪

 These are not the true expected utilities for starting in state 𝑠1!

▪ They are only correct if we locally change the first action to execute

and then go on to use the previous policy (in this case, always waiting)!

▪ But they can be proven to yield good guidance,

as long as you apply the improvements repeatedly (as policy iteration does)

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

What is the best

local modification

according to the

expected utilities

of the current policy?

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1

104

jo
nk

v@
id

a
jo

nk
v@

id
a

104Policy Iteration 4: Update 1b

 For every state s:

 Let

 That is, find the action a that maximizes R(s, a) + s' S P(s, a, s’) E(π1,s')

▪ – – –

– – –

– – – –

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1

105

jo
nk

v@
id

a
jo

nk
v@

id
a

105Policy Iteration 5: Update 1c

 For every state s:

 Let

 That is, find the action a that maximizes R(s, a) + s' S P(s, a, s’) E(π1,s')

▪ – – –

– – –

–

▪

–

▪ – – –

– – –

–

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1

107

jo
nk

v@
id

a
jo

nk
v@

id
a

107Policy Iteration 6: Second Policy
 This results in a new policy

Now we have made use of

earlier indications that

s4 seems to be a good state

Try to go there

from s1 / s3 / s5!

No change in s2 yet…

>= +444,5
>= –10
>= +800
>= +1000
>= +700

E(π1,s1) =–10
E(π1,s2) = –10
E(π1,s3) = –10
E(π1,s4) =+1000
E(π1,s5) = –1000

Utilities based

on one modified

action, then
following

(can’t decrease!)

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r=
–200

r= –1

108

jo
nk

v@
id

a
jo

nk
v@

id
a

108Policy Iteration 7: Expected Utilities for 𝜋2
 Calculate true expected utilities for the new policy π2

▪ –

▪ –

▪ –

▪

▪ –

 Equations to solve:

▪ – –

▪

▪ – –

▪ – –

▪ –

–

–

109

jo
nk

v@
id

a
jo

nk
v@

id
a

109Policy Iteration 8: Second Policy
 Now we have the true expected utilities of the second policy…

E(π2,s1) = +816,36
E(π2,s2) = – 10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

S5 wasn’t so bad after all,

since you can reach s4

in a single step!

S1 / s3 are even better.

S2 seems much worse

in comparison,

since the benefits of s4

haven’t ”propagated” that far.

>= +444,5
>= –10
>= +800
>= +1000
>= +700

E(π1,s1) =–10
E(π1,s2) = –10
E(π1,s3) = –10
E(π1,s4) =+1000
E(π1,s5) = –1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r=
–200

r= –1

110

jo
nk

v@
id

a
jo

nk
v@

id
a

110

Seems best – chosen!

Policy Iteration 9: Update 2a

 For every state s:

 Let

 That is, find the action a that maximizes R(s, a) + s' S P(s, a, s’) E(π ,s')

▪ –

– – –

–

▪ – – –

–

–

E(π2,s1) = +816,36
E(π2,s2) = –10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

What is the best

local modification

according to the

expected utilities

of the current policy?

Now we will change the action taken at s2,

since we have the expected utilities for reachable states s1, s3, s5… have increased

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1

111

jo
nk

v@
id

a
jo

nk
v@

id
a

111Policy Iteration 10: Update 2b

 For every state s:

 Let

 That is, find the action a that maximizes R(s, a) + s' S P(s, a, s’) E(π ,s')

▪ –

– – –

–

▪

▪ –

– – –

– –1

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π2,s1) = +816,36
E(π2,s2) = –10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1

112

jo
nk

v@
id

a
jo

nk
v@

id
a

112Policy Iteration 11: Third Policy
 This results in a new policy π3

 True expected utilities are updated

by solving an equation system

 The algorithm will iterate once more

 No changes will be made to the policy

 Termination with optimal policy!

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r=
–200

r= –1

114

jo
nk

v@
id

a
jo

nk
v@

id
a

114Policy Iteration 12: Algorithm
 Policy iteration is a way to find an optimal policy π*

 Start with an arbitrary initial policy π1. Then, for i = 1, 2, …

▪ Compute expected utilities E(πi ,s) for every s by solving a system of equations

▪ System: For all s,

▪ Result: The expected utilities of the “current” policy in every state s

▪ Not a simple recursive calculation – the state graph is generally cyclic!

▪ Compute an improved policy πi+1 “locally” for every s

▪

▪ Best action in any given state s given expected utilities of old policy

▪ If then exit

▪ No local improvement possible,

so the solution is optimal

▪ Otherwise

▪ This is a new policy – with new expected utilities!

▪ Iterate, calculate those utilities, …

Find utilities

according to

current policy

Find best

local

improvements

115

jo
nk

v@
id

a
jo

nk
v@

id
a

115Convergence
 Converges in a finite number of iterations!

 We change which action to execute

if this improves expected (pseudo-)utility for this state

▪ This can sometimes increase,

and never decrease, the utility of the policy in other states!

▪ So utilities are monotonically improving

and we only have to consider a finite number of policies

 In general:

 May take many iterations

 Each iteration involved can be slow

 Mainly because of the need to solve a large equation system!

117

jo
nk

v@
id

a
jo

nk
v@

id
a

117Avoiding Equation Systems
 Plain policy iteration:

 In every iteration 𝑖 we have a policy 𝜋𝑖 , want its expected utilities 𝐸(𝜋𝑖 , 𝑠)

 Can use an equation system or iterate until convergence:

▪ 𝐸𝑖, 0 𝜋𝑖 , 𝑠 = 0 for all s

▪ Then iterate for 𝑗=0, 1, 2, … and for all states s:

𝐸𝑖, 𝑗+1 𝜋𝑖 , 𝑠 = 𝑅 𝑠, 𝜋𝑖 𝑠 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝜋𝑖 𝑠 , 𝑠′ 𝐸𝑖,𝑗 𝜋𝑖 , 𝑠
′

 Will converge in the limit (𝑗 → ∞)

▪ 𝛾 < 1 steps sufficiently far into the future are almost irrelevant

▪ Stop when 𝐸𝑖,𝑗+1 is very close to 𝐸𝑖,𝑗 – then we’re close to 𝐸(𝜋𝑖 , 𝑠)

Finite horizon:

Exact expected utility for 0 steps

Exact exp. utility

for 1 step,

2 steps,

3 steps, …
Reward from

prev. iteration

Prob. of

outcome

Definite

reward

118

jo
nk

v@
id

a
jo

nk
v@

id
a

118Avoiding Equation Systems (2)
 Finally, the approximated utility function 𝐸𝑖,𝑛

determines the best actions to use

 Previously:

𝜋𝑖+1 𝑠 = argmax
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝐸(𝜋𝑖 , 𝑠)

 Approximated:

𝜋𝑖+1 𝑠 = argmax
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝐸𝑖,𝑛(𝜋𝑖 , 𝑠)

True expected cost

Approximate

expected cost

120

jo
nk

v@
id

a
jo

nk
v@

id
a

120Value Iteration (1)
 Another algorithm: Value iteration – no policy used!

 What's the max expected utility of executing 0 steps starting in any state?

▪ No rewards, no costs

▪ For all states 𝑠 ∈ 𝑆, set 𝑉0(𝑠) = 0

 What's the max expected utility of executing 1 step starting in any state?

▪ Choose one action; max utility of executing 0 actions in resulting state is known

𝑉1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉0 𝑠

 What's the max expected utility of executing 𝒋 + 𝟏 steps?

▪ Choose one action; max utility of executing 𝑗 actions in resulting state is known

𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑗 𝑠

Maximizes finite-horizon utility

121

jo
nk

v@
id

a
jo

nk
v@

id
a

121Value Iteration (2)
 Notice: In essence, we find actions in inverse order

 Best utility in zero steps?

 One step?

 Two steps?

𝑉0 = 0

𝑉0 = 0𝑉1

𝑉0 = 0𝑉1𝑉2

Maximize 𝑉1: Choose an action

based on the next utility being 𝑉0

122

jo
nk

v@
id

a
jo

nk
v@

id
a

122Value Iteration (3)
 Notice: 𝑉𝑗(𝑠) is not the expected value of a policy

 For a given state 𝑠, a policy 𝜋 always uses the same action 𝜋(𝑠)

 Value iteration chooses an action separately for every step

▪ Based on different information each time:

𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑗 𝑠

 Iterations 𝑗 and 𝑘 could use different actions for state 𝑠

 Is this a problem?

123

jo
nk

v@
id

a
jo

nk
v@

id
a

123Value Iteration (4)
 Finite-horizon utility:

 𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑗 𝑠

 Will eventually converge towards an optimal value function

▪ Will converge faster if is close to the true value function

▪ Will actually converge regardless of the initial value of ,

despite not corresponding to a policy

 Intuition: As 𝑗 → ∞, the discount factor ensures…

▪ Unconsidered actions in the distant future become irrelevant

▪ As the value function converges, the implicit action choices will converge

 Call the final approximation 𝑉𝑚𝑎𝑥, then:

𝜋 𝑠 = arg max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑚𝑎𝑥 𝑠

124

jo
nk

v@
id

a
jo

nk
v@

id
a

124Value Iteration (5)
 Main difference:

 With policy iteration

▪ Find a policy

▪ Find exact expected utilities for infinite steps using this policy

(expensive, but gives the best possible basis for improvement)

▪ Use these to generate a new policy

▪ Throw away the old utilities,

find exact expected utilities for infinite steps using the new policy

▪ Use these to generate a new policy

▪ …

 With value iteration

▪ Find best utilities considering 0 steps; implicitly defines a policy

▪ Find best utilities considering 1 step; implicitly defines a policy

▪ Find best utilities considering 2 steps; implicitly defines a policy

▪ …

126

jo
nk

v@
id

a
jo

nk
v@

id
a

126VI Example 1: Initial Guess V0

 Value iteration requires an initial approximation

 Let’s start with V for each s

 Does not correspond to any actual policy,

but to the expected utility of executing zero steps…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

127

jo
nk

v@
id

a
jo

nk
v@

id
a

127VI Example 2: Update 1a

 For every state s:

 PI: find the action a that maximizes R(s, a) + s' S P(s, a, s’) E(π1,s')

 VI: find the action a that maximizes R(s, a) + s' S P(s, a, s’) V0(s')

▪

▪

What is the best

local modification

according to the

current

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1

128

jo
nk

v@
id

a
jo

nk
v@

id
a

128VI Example 3: Update 1b

 For every state s:

 VI: find the action a that maximizes R(s, a) + s' S P(s, a, s’) V0(s')

▪

▪

▪

What is the best

local modification

according to the

current

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1

129

jo
nk

v@
id

a
jo

nk
v@

id
a

129VI Example 4: 𝑽𝟏
 This results in a new approximation of the greatest expected utility

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

V1(s1) =– 1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

130

jo
nk

v@
id

a
jo

nk
v@

id
a

130VI Example 5: Policy
 If we stopped value iteration here, we would get policy 𝜋1

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

𝑉1 corresponds to one step of

many polices, including 𝜋1

We don’t actually calculate 𝜋1:

It is implicit in

𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

ቀ𝑅 𝑠, 𝑎 +

V1(s1) =– 1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

131

jo
nk

v@
id

a
jo

nk
v@

id
a

131VI Example 6: Update 2a

 For every state s:

 PI: find the action a that maximizes

 VI: find the action a that maximizes

▪ – – –

– – –

– –

▪ – – –

– – –

– – – –

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

What is the best

local modification

according to the

current

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1

132

jo
nk

v@
id

a
jo

nk
v@

id
a

132VI Example 7: Update 2b

 For every state s:

 VI: find the action a that maximizes R(s, a) + s' S P(s, a, s’) Vk–1(s')

▪ – – –

– – –

– –

▪

–

▪ – – –

– – –

– –

What is the best

local modification

according to the

current

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

133

jo
nk

v@
id

a
jo

nk
v@

id
a

133VI Example 8: 𝑽𝟐
 This results in another new approximation

V2(s1) = +43.55
V2(s2) = –1.9
V2(s3) = –1.9
V2(s4) = +190
V2(s5) = –100.9

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

134

jo
nk

v@
id

a
jo

nk
v@

id
a

134VI Example 9: Policy
 Now we have two implicit policies

Again, 𝑉2 doesn’t represent the
true expected utility of

Nor is it the true exp. utility of
executing two steps of

It is the true expected utility of
one step of , then one of

(But it will converge towards

true utility…)

V2(s1) = +43.55
V2(s2) = –1.9
V2(s3) = –1.9
V2(s4) = +190
V2(s5) = –100.9

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1

136

jo
nk

v@
id

a
jo

nk
v@

id
a

136Differences
 Significant differences from policy iteration

 Less accurate basis for action selection

▪ Based on approximate utility, not true expected utility

 Policy does not necessarily change in each iteration

▪ May first have to iterate n times, incrementally improving approximations

▪ Then another action suddenly seems better in some state

 Requires a larger number of iterations

▪ But each iteration is cheaper

 Can’t terminate just because the policy does not change

▪ Need another termination condition…

137

jo
nk

v@
id

a
jo

nk
v@

id
a

137Illustration
 Illustration below

 Notice that we already calculated rows 1 and 2

▪ – – –

– – –

– –

138

jo
nk

v@
id

a
jo

nk
v@

id
a

138Illustration
 Remember, these are “pseudo-rewards”!

324.109 = reward of waiting once in s5,

then continuing according to the previous 14 policies for 14 steps,

then doing nothing (which is impossible according to the model)

139

jo
nk

v@
id

a
jo

nk
v@

id
a

139Illustration
 The policy implicit in the value function changes incrementally…

140

jo
nk

v@
id

a
jo

nk
v@

id
a

140Illustration
 At some point we reach the final recommendation/policy:

Max value for

action move-s4

Will never

change

Max value for

action move-s3

Will never

change

Max value for

action move-s4

Will never

change

Max value for

action move-s4

Will never

change

Only

wait

Optimal policy found in iteration 4

Can’t know this:

These are not true rewards; maybe one action will soon “overtake” another!

141

jo
nk

v@
id

a
jo

nk
v@

id
a

141Different Discount Factors
 Suppose discount

factor is 0.99 instead

 Illustration, only showing

best pseudo-utility at each step

 Much slower convergence

▪

▪

 Care more about the future

 need to consider

many more steps!

142

jo
nk

v@
id

a
jo

nk
v@

id
a

142How Many Iterations?
 We can find bounds!

 Let ε be the greatest change in pseudo-utility between two iterations:

𝜖 = max
𝑠∈𝑆

𝑉𝑛𝑒𝑤 𝑠 − 𝑉𝑜𝑙𝑑(𝑠)

 Then if we create a policy 𝜋 according to 𝑉𝑛𝑒𝑤, we have a bound:

max
𝑠∈𝑆

𝐸(𝜋, 𝑠) − 𝐸(𝜋∗, 𝑠) < 2𝜖𝛾/(1 − 𝛾)

▪ For every state, the reward of 𝜋
is at most 2𝜖𝛾/(1 − 𝛾) from the reward of an optimal policy

0,5 0,9 0,95 0,99 0,999
0,001 0,002 0,018 0,038 0,198 1,998

0,01 0,02 0,18 0,38 1,98 19,98
0,1 0,2 1,8 3,8 19,8 199,8

1 2 18 38 198 1998
5 10 90 190 990 9990

10 20 180 380 1980 19980
100 200 1800 3800 19800 199800

Discount factor 𝛾

Maximum absolute

difference 𝜖 between

two iterations

143

jo
nk

v@
id

a
jo

nk
v@

id
a

143How Many Iterations? Discount 0.90

Quit after 10

iterations we

knowV10(s1)=467.

Guarantee: New

corresponding

policy gives

>= 467 – 697 if

we start in s1.

Quit after 50

iterations we

knowV50(s1)=811.

New guarantee:

The same policy

actually gives

>= 811 – 10 if we

start in s1.

Bounds are

incrementally

tightened!

Quit after 2 iterations V2(s1)=43.

Guarantee: Corresponding policy gives >= 43 - 1620.

144

jo
nk

v@
id

a
jo

nk
v@

id
a

144How Many Iterations? Discount 0.99

Quit after 250

iterations

we know

V250(s1)=8989.

Guarantee:

Corresponding

policy gives

>= 8989 - 1621.

Quit after 600

iterations

we know

V600(s1)=9775.

Guarantee:

>= 9775 - 48.

Bounds are

incrementally

tightened!

Policy Iteration Value Iteration given 𝜖 > 0

Start: ∀𝑠. 𝜋1 𝑠 = some arbitrary action Start: ∀𝑠. 𝑉0 𝑠 = some arbitrary reward

Loop: For steps 𝑖 = 1, 2, 3, … Loop: For steps 𝑖 = 1, 2, 3, …

Compute true expected utilities 𝐸𝑖(𝜋𝑖 , 𝑠):

Step 1:

// Solve an equation system

solve_eq(∀𝑠. 𝐸𝑖 𝜋𝑖, 𝑠 = 𝑄 𝑠, 𝜋𝑖 𝑠)

// Represents true expected costs

// for infinite execution of 𝜋𝑖

Notation: Define

𝑄 𝑠, 𝑎 =

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑬𝒊(𝝅𝒊, 𝒔
′)

Compute pseudo-utilities 𝑉𝑖 𝑠 :

Step 1:

// Use the old 𝑖 − 1 step rewards

for all states 𝑠 ∈ 𝑆:

𝑉𝑖 𝑠 = 𝑄(𝑠, 𝜋𝑖 𝑠)
// Rewards for i steps

Notation: Define

𝑄 𝑠, 𝑎 =

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑽𝒊−𝟏(𝒔
′)

Step 2:

// Compute 𝜋𝑖+1
for all states 𝑠 ∈ 𝑆:

𝜋𝑖+1 𝑠 = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎)

// Optimal yet?

If 𝜋𝑖+1 = 𝜋𝑖 then stop

// Good enough yet?

If max
𝑠∈𝑆

𝑉𝑖 𝑠 − 𝑉𝑖−1 𝑠 < 𝜖 then stop

Better guesses faster convergence Better guesses faster convergence

𝑉0(𝑠) = 0 true finite horizon reward, 0 steps

Circular

definition,

harder

No

circularity!

𝝅𝒊+𝟏 based on exact

rewards for 𝝅𝒊

Finishing:

// Compute 𝜋
for all states 𝑠 ∈ 𝑆:

𝜋 𝑠 = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎) // for latest 𝑉𝑖

𝝅𝒊 based on finite

horizon rewards

𝑽𝒊 based on finite

horizon rewards

from 𝑽𝒊−𝟏

New def.

of 𝑸()

146

jo
nk

v@
id

a
jo

nk
v@

id
a

146Value Iteration
 Convergence?

 On an acyclic graph, the values converge in finitely many iterations

 On a cyclic graph, value convergence can take infinitely many iterations

 That’s why > 0 is needed

147

jo
nk

v@
id

a
jo

nk
v@

id
a

147Discussion
 Both algorithms terminate in a polynomial number of iterations

 (Assuming 𝜖 > 0 for VI)

 But the variable in the polynomial is the number of states

 Need to examine the entire state space in each iteration

 Requires significant time and space

 Probabilistic set-theoretic planning is EXPTIME-complete

 Methods exist for reducing the search space,

and for approximating optimal solutions

Value Iteration given 𝜖 > 0

Start: ∀𝑠. 𝑉0 𝑠 = some arbitrary reward

Loop: For steps 𝑖 = 1, 2, 3, …

Compute pseudo-utilities 𝑉𝑖 𝑠 :

Step 1:

// Use the old 𝑖 − 1 step rewards

for all states 𝑠 ∈ 𝑆:

𝑉𝑖 𝑠 = 𝑄(𝑠, 𝜋𝑖 𝑠)
// Rewards for i steps

Notation: Define

𝑄 𝑠, 𝑎 =

𝑅 𝑠, 𝑎 + 𝛾

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑽𝒊−𝟏(𝒔
′)

// Good enough yet?

If max
𝑠∈𝑆

𝑉𝑖 𝑠 − 𝑉𝑖−1 𝑠 < 𝜖 then stop

Better guesses faster convergence

𝑉0(𝑠) = 0 true finite horizon reward, 0 steps

No

circularity!

Finishing:

// Compute 𝜋
for all states 𝑠 ∈ 𝑆:

𝜋 𝑠 = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎) // for latest 𝑉𝑖

𝝅𝒊 based on finite

horizon rewards

𝑽𝒊 based on finite

horizon rewards

from 𝑽𝒊−𝟏

New def.

of 𝑸()

Can prioritize some states,

visit them more often!

For example, states ”close to”

significant changes in V…

150

jo
nk

v@
id

a
jo

nk
v@

id
a

150Overview
Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information

gained after action

Deterministic:

Exact outcome

known in advance

Classical planning (possibly with extensions)

Information dimension is meaningless!

Non-deterministic:

Multiple outcomes,

no probabilities

NOND:

Conformant Planning

FOND:

Conditional

(Contingent) Planning

POND:

Partially Observable,

Non-Deterministic

Probabilistic:

Multiple outcomes

with probabilities

Probabilistic

Conformant Planning

(Non-observable MDPs:

Special case of POMDPs)

Probabilistic

Conditional Planning

Stochastic Shortest Path

Problems

Markov Decision

Processes (MDPs)

Partially Observable MDPs

(POMDPs)

 In general:

 Full information is the easiest

 Partial information is the hardest!

