Path/Motion Planning: Anoveview

Jonas Kvarnström
Automated Planning and Diagnosis Group
Department of Computer and Information Science
Linköping University

Path/Motion Planning (1)

- Perhaps the easiest form of path planning / motion planning:
- (I) A robot should move in two dimensions between start and goal
- Avoiding known obstacles - or it would be too easy...

Path/Motion Planning (2)

- Perhaps the easiest form of path planning / motion planning:
- (2) The robot is holonomic
- Informally: Can move in any direction (possibly by first rotating, then moving)

Path/Motion Planning (3)

- Problem: Generating an optimal continuous path is hard!
- Common solution: Divide and conquer
- Discretize: Choose a finite number of potential waypoints in the map
- Assume there exists a robot-specific local planner
to determine whether one can move between two such waypoints (and how)
- Use search algorithms to decide which waypoints to use

Remaining task: choosing potential waypoints + finding a path using them

Choosing Potential Waypoints: Grid-Based Methods

Regular 2D Grid

- The simplest type of discretization:A regular grid
- A robot moves only north, east, south or west
- Details are left to the local planner

Regular 2D Grid: Real Obstacles

Partially covered - can't be used

Obstacle

- Real obstacles do not correspond to square / rectangular cells...
- But we can cover them with cells

Regular 2D Grid: Discrete Graph

- View the grid implicitly as a discrete graph
- Assume the local path planner can take us between any neighboring cells
- Between blue nodes
- No obstacles in the way

Simple (trivial?) local planner
Discrete search handles the rest

- Sufficient free space to deal with non-holonomic constraints

Regular 2D Grid: Discrete Graph (2)

- Connect start/goal configurations to the nodes in their cells
- Within a cell \rightarrow no obstacles \rightarrow can plan a path using local planner
- Here, the goal is unreachable...

Regular 2D Grid: Grid Density

- Grid density matters!
- Here: 4 times as many grid cells
- Better approximation of the true obstacles, but many more nodes to search

\square											
			\square								
										-	
\square											

Non-Regular Grids

- Alternative: Use non-regular grids
- For example, denser around obstacles
- (Or even non-rectangular cells)

\square					
	\|				\checkmark
			\square		

Grid Representations

- Space-efficient data structure: quadtree
- Each node keeps track of:
- Whether it is completely covered, partially covered or non-covered
- Each non-leaf node has exactly four children

Grid Representations

- Can be generalized to 3D (octree), ...

Choosing Potential Waypoints: Geometry-Based Methods

Regular 2D Grid: Grid Density

- Grid-based methods can result in many nodes
- Even with efficient representation, searching the graph takes time
- Alternative idea: Place nodes depending on obstacles
- Simple case: Known road map
- Model all non-road areas as obstacles, then add a dense grid?

- Or place a node in each intersection?

Visibility Graphs

Visibility graphs

- Applicable to simple polygons - straight sides without intersections
- Nodes at all polygon corners
- Edges wherever a pair of nodes can be connected using the local planner
- Mainly interesting in 2D
- Optimal in 2D, not in 3D

Voronoi Diagrams

- Voronoi diagrams
- Find all points that have the same distance to two or more obstacles
- Maximizes clearance (free distance to the nearest obstacle)
- Creates unnecessary detours
- Mainly interesting in 2D does not scale well

Complex Motion Planning Problems

Introduction

- So far, we implicitly assumed:
- If we can draw a line between two waypoints, the robot can move between the waypoints

We need to introduce some new concepts...

- But: How does an airplane fly this path?

Workspace (1)

The workspace is (I) the physical space in which we work...

- 3 physical dimensions, 3-dimensional coordinates, 3-dimensional obstacles
- Need full 3D geometry to determine how the helicopter can move

Workpace (2)

... or (2) a 2D projection, in case this is sufficient

- For a car:
- Can describe position, rotation in 2D
- Can describe obstacles in 2D
- \rightarrow Workspace can be 2D
- Still represents physical locations

Configuration Space

- Even a car has 3 physical degrees of freedom (DOF)!
- The configuration space of the car
- Location in the plane (x / y),
- Angle (θ)
- Each DOF is essential!
- As part of the goal - park at the correct angle
- As part of the solution - must turn the car to get through narrow passages

Motion planning takes place in configuration space: How do I get from $\left(200,200,12^{\circ}\right)$ to $\left(800,400,90^{\circ}\right)$?

The Ladder Problem

－The ladder problem is similar
－Move a ladder in a 2D workspace，with 3 physical DOF
－Configuration：
－Location in the plane (x / y) ，
－Angle（ θ ）
－Again，each DOF is essential：
－As part of the goal
－We want the ladder to end up at a specific angle
－As part of the solution
－We need to turn the ladder to get it past the obstacles

The Ladder Problem: Controllable DOF

- For ladders, each physical DOF is directly controllable!
- You can:
- Change x (translate sideways)
- Change y (translate up/down)
- Change angle (rotate in place)
- Therefore:
- If you want to get from $\left(200,200,12^{\circ}\right)$ to $\left(800,400,90^{\circ}\right)$, any path connecting these 3 D points and going through free configuration space is sufficient
- The ladder is holonomic!
- Controllable DOF >= physical DOF

Controllable Degrees of Freedom

- For cars, we can control two DOF:
- Acceleration/breaking
- Turning (limited)
- In this parallel parking example:
- There is free space between current and desired configurations
- But we can't slide in sideways!
- Fewer controllable DOF than physical DOF \rightarrow non-holonomic
- Limits possible curves in 3D configuration space!

Work Space, Configuration Space

- Summary of important concepts:
- Work space:The physical space in which you move
- 3-dimensional for this robot arm
- Configuration space:

The set of possible configurations of the robot

- Usually continuous
- Often many-dimensional (one dimension per physical DOF)
- Will often be visualized in 2D for clarity
- We have to search in the configuration space!
- Connect configurations, not waypoints

Searching the Configuration Space

- Divide and Conquer!
" Local path planner
- Determines whether two configurations can be connected with a path, and how
- Considers vehicle-specific constraints

- High-level path planner
- Generates configurations
- Uses plug-in local planner to determine if the configurations can be connected
- For each specific problem, uses search to determine which intermediate configurations to use

Low-Dimensional Problems

- In low-dimensional problems:
- The high-level planner could use a grid
- Car: 3-dim configuration space
- Example: 4 angles considered per spatial location

$\left(0,0,0^{\circ}\right)$
$\left(0,0,90^{\circ}\right)$
$\left(0,0,180^{\circ}\right)$
$\left(0,0,270^{\circ}\right)$

$\left(1,0,0^{\circ}\right)$
$\left(1,0,90^{\circ}\right)$
$\left(1,0,180^{\circ}\right)$
$\left(1,0,270^{\circ}\right)$

$\left(2,0,0^{\circ}\right)$
($2,0,90^{\circ}$)
($2,0,180^{\circ}$)
$\left(2,0,270^{\circ}\right)$
$\left(0, I, 0^{\circ}\right)$
$\left(0, I, 90^{\circ}\right)$
$\left(0, I, I 80^{\circ}\right)$
$\left(0, I, 270^{\circ}\right)$

$\left(I, I, 0^{\circ}\right)$
$\left(I, I, 90^{\circ}\right)$
$\left(I, I, 180^{\circ}\right)$
$\left(I, I, 270^{\circ}\right)$

($2, I, 0^{\circ}$)
(2, $1,90^{\circ}$)
($2, I, 180^{\circ}$)
($2,1,270^{\circ}$)

Local Planner (1)

" Ask local planner: "Can I connect these configurations"?

Local Planner (2)

- Local planner also considers obstacles

High-Dimensional Problems

- For an aircraft, a configuration could consist of:
- location in 3D space $(x / y / z)$
- pitch angle
- yaw angle
- roll angle
- A path is:

- a continuous curve in 6-dimensional configuration space avoiding obstacles
and obeying constraints on how the aircraft can turn
- Can make tighter turns at low speed
- Can't fly at arbitrary pitch angles
- ...

High-Dimensional Problems (2)

- For a robot arm, a configuration could consist of:
- The position / angle of each joint
- A path is a continuous curve in n-dimensional configuration space (all joints move continuously to new positions, without "jumping"), avoiding obstacles and obeying constraints on joint endpoints etc.
- Typical goal: Reach inside the car you are painting / welding, without colliding with the car itself

High-Dimensional Problems (3)

(33)

- Moving in tight spaces, again...

High-Dimensional Problems (4)

- For a humanoid robot, a configuration could consist of:
- Position in x / y space
- The position of each joint
- The Nao robot:
- 14,21 or 25 degrees of freedom depending on model
- Up to 25-dimensional motion planning!
- Grid methods generally do not scale
- 25-dimensional configuration space, with 1000 cells in each direction: 10^{75} cells...

HighhDimensional Problems (5)

- Honda Asimo: 57 DOF

We can often omit some DOF from planning...

But then we don't use the robot's full capabilities!

Alpha Puzzle: Narrow Passages

(c).2001.James.Kuffiner

Choosing Potential Configurations: Probabilistic Methods

Preliminaries: Coverage Domain

- Given a configuration q in the free config space:
- A particular local planner can connect it to a set of other configs
- Called the coverage domain $D(q)$ - generally an infinite set

Example: Simple 2D planning, local planner uses straight lines...

Can connect q to any config in the green area

Can't connect q to any other points
$D(q)$
q
Obstacle

Obstacle

Preliminaries: Preprocessing

- Preprocessing: Suppose we can select configurations so that:
- Their domains cover the entire config space
- The configs can be connected

(Imagine many obstacles, hundreds or thousands of configurations, many dimensions...)

Preliminaries: Solving

- Solving:We get...
- Start configuration $q_{\text {start }}$
- Connect to another configuration
- Must be possible:

The domains of the existing configurations covered the entire space

- Goal configuration $q_{\text {goal }}$
- Connect...
- Find a path through the graph!

Preliminaries: Coverage Domains are Implicit/41

- Problem:We can't calculate the coverage domain $D(q)$
" Local planner answers "can you connect q_{1} with the specific config q_{2} ?
- Computing "all the configurations you can connect q_{1} to":
- High-dimensional spaces (57D???)
- Complex motion constraints, not just physical obstacles
- Too computationally complex, even if finite
- Usually infinitely many possibilities

Preliminaries: Probabilistic Methods

- Solution: Probabilistic methods
- Given a set of configurations $Q=\left\{q_{1}, \ldots, q_{n}\right\}$:
- Don't compute

$$
\bigcup_{q \in Q} D(q)
$$

- Directly compute probability:

$$
P\left(\bigcup_{q \in Q} D(q) \text { covers entire free configuration space }\right)
$$

- Or:
$P\left(\right.$ if you pick a random free config, it belongs to $\left.\bigcup_{q \in Q} D(q)\right)$
- Add configurations until probability is sufficiently high

Probabilistic Roadmaps

- Probabilistic Roadmaps (PRM): Construction Phase
- $\mathrm{M} \leftarrow$ empty roadmap
- do \{
randomly generate configuration q in free config space
if (q was previously unreachable, so it would extend coverage) \{ add q and associated edges to M
$\}$ else if (q was reachable, but now connects A new config here two previously unconnected configs) \{ would not be added! add q and associated edges to M
\}
\} until (sufficient coverage)

PRM: Sufficient Coverage

- When do you have sufficient coverage?
- Suppose you have tested n configurations in a row without being able to add one to the road map
- Then the roadmap covers the free config space with probability $1-\frac{1}{n}$
- Example: $n=1000 \rightarrow$ coverage with 99.9% probability
- Why generate randomly? Why don't we select a non-covered config?
- How? Many dimensions, complex connectivity, ...
- Random \rightarrow no need to explicitly calculate coverage domains!
- Construction phase done in advance
- In a sense, a learning phase
- Road map reused for many queries

Obstacle

PRM: Node Placement

- Node placement is random but not always uniform
- Can be biased towards difficult areas

The "obstacles" above are "obstacles" in configuration space!

PRM: Protein Folding

- (Second example was from a protein folding application...)

PRM: Query Phase

- Query Phase:

Add and connect start and goal configs to the roadmap (should be possible, as we have good coverage)

PRM: Result

Visualized i 2D
Could be 25D Even in 2D, we have no closed form description of the shape - must sample!

Limit permitted edge length \rightarrow denser map

- Properties:
- Scales better to higher dimensions
- Deterministically incomplete, probabilistically complete
- The more configurations you create, the greater the probability that a path can be found if one exists (approaching I.0)

Graph Search

Graph Search (1)

- Given a discretization, how do we find a path?
- One option: Heuristic search using A*
- Heuristics in simple geometric paths: Manhattan distance (4 directions), Chebyshev distance (moving in 8 directions), Euclidian distance (in general), ...
- Other heuristics in complex configuration spaces

Graph Search (2)

- Suppose new obstacles are detected during execution
- A^{*} : Update map and replan from scratch
- Inefficient
- $D^{*}\left(D y n a m i c A^{*}\right)$: Informed incremental search
- First, find a path using information about known obstacles
- When new obstacles are detected:
- Affected nodes are returned to the OPEN list, marked as RAISE: More expensive than before
- Incrementally updates only those nodes whose cost change due to the new obstacles
- Focused D*:
- Focuses propagation towards the robot - additional speedup

Graph Search (3)

- Anytime algorithms:
- Be able to answer whenever I interrupt you!
- In practice: Create some path quickly, then incrementally improve it
" "Repeated weighted $\mathrm{A}^{* \prime \prime}$ (standard technique)
- Run A^{*} with $f(n)=g(n)+\boldsymbol{W} \cdot h(n)$, where $W>1$: Faster but suboptimal
$w=1:$
Standard A*

$$
w=5:
$$

Distance
from goal is
exaggerated
\rightarrow
suboptimal

- Decrease W and repeat
- But: Has to redo search from scratch in each run!

Graph Search (3)

- Anytime algorithms:
- Anytime Repairing A*
" Like "repeated weighted A*", but reuses search results from earlier iterations
- Anytime Dynamic A* (AD*)
- Both replanning when problems change and anytime planning

Path Smoothing

Suboptimal Paths

- Paths are often suboptimal in the continuous space
- Only the chosen points in the cells are used
- In this example:The midpoints

Smoothing

- Paths can be improved through smoothing after generation
- Still generally does not lead to optimal paths
- This is just a simple example, where smoothing is easy

Open Motion Planning Library

- Want to experiment?
- Open Motion Planning Library
- http://ompl.kavrakilab.org/index.html

