Path/Mation Planning:

An overview

Jonas Kvarnstrom

Automated Planning and Diagnosis Group

Department of Computer and Information Science

Linkoping University

Path/Motion Planning (1)

Perhaps the easiest form of path planning / motion planning:

9
jonkv@ida

(1) A robot should move in two dimensions between start and goal

= Avoiding known obstacles — or it would be too easy...

- -
Start position

—
Goal position

jonkv@ida

Path/Motion Planning (2)

Perhaps the easiest form of path planning / motion planning:

(2) The robot is holonomic

= Informally: Can move in any direction
(possibly by first rotating, then moving)

Path/Motion Planning (3)

Problem: Generating an optimal continuous path is hard!

Common solution: Divide and conquer
= Discretize: Choose a finite number of potential waypoints in the map

=
4 JE
2,

= Assume there exists a robot-specific local planner

to determine whether one can move between two such waypoints (and how)

= Use search algorithms to decide which waypoints to use

-
Start position

-
Goal posjtion

Remaining task: choosing potential waypoints + finding a path using them

Choosing Potential Waypoints:

Grid-Based Methods

a
jonkv@ida

Regular 2D Grid

The simplest type of discretization: A regular grid

A robot moves only north, east, south or west

= Details are left to the local planner

Start position -

-
Goal position

3
jonkv@ida

Regular 2D Grid: Real Obstacles

Real obstacles do not correspond Partially covered — can't be used

to square / rectangular cells...

But we can cover them with cells

- -
Start position

Goal position

a
jonkv@ida

Regular 2D Grid: Discrete Graph

View the grid implicitly as a discrete graph

Assume the local path planner can take us between any neighboring cells

* Between blue nodes Simple (trivial?) local planner

= No obstacles in the way Discrete search handles the rest

= Sufficient free space to deal with non-holonomic constraints

9
jonkv@ida

Reqular 2D Grid: Discrete Graph (2)

Connect start/goal configurations to the nodes in their cells

Within a cell =» no obstacles =» can plan a path using local planner
Here, the goal is unreachable...

- _

a
jonkv@ida

Regular 2D Grid: Grid Density

Grid density matters!

Here: 4 times as many grid cells

Better approximation of the true obstacles,
but many more nodes to search

jonkv@ida

Non-Reqular Grids

Alternative: Use non-regular grids

For example, denser around obstacles

(Or even non-rectangular cells)

jonkv@ida

Grid Representations

Space-efficient data structure: quadtree

Each node keeps track of:

= Whether it is completely covered, partially covered or non-covered

Each non-leaf node has exactly four children

jonkv@ida

Grid Representations

Can be generalized to 3D (octree), ...

v
| . V7 AN
A e
| A s *"“- -
A \; .
il W
A
|

Choosing Potential Waypoints:

Geometry-Based Methods

Reqular 2D Grid: Grid Density

Grid-based methods can result in many nodes

Even with efficient representation, searching the graph takes time
Alternative idea: Place nodes depending on obstacles

......

. lkpkats evEge R
Simple case: Known road map _—
Model all non-road areas as obstacles,
then add a dense grid!? - »
111 I I I (;:i.',hgs 3 ah'.m Gy ;,-,,\...1_:,_”5‘”4'@-%6
ROad
[T T+
§ Mister Mattias v =)
g g
Or place a node in each intersection!
f@,ﬁm%q
é
&F

o
)
E)

—
e

o
o —

jonkv@ida

Visibility Graphs

Visibility graphs

Applicable to simple polygons — straight sides without intersections

= Nodes at all polygon corners

= Edges wherever a pair of nodes can be connected using the local planner
Mainly interesting in 2D

= Optimal in 2D, not in 3D

Qinit 3

Voronoi Diagrams

jonkv@ida

Voronoi diagrams

Find all points that have the same distance to two or more obstacles

= Maximizes clearance (free distance to the nearest obstacle)

Creates unnecessary detours

Mainly interesting in 2D —
does not scale well

Complex Motion Planning Problems

Introduction

jonkv@ida

So far, we implicitly assumed:

If we can draw a line between two waypoints,
the robot can move between the waypoints

But: How does an airplane fly this path?

We need to introduce
some new concepts...

ey | —— I ———

I I I ———

jonkv@ida

Workspace (1)

The workspace is (1) the physical space in which we work...

3 physical dimensions, 3-dimensional coordinates, 3-dimensional obstacles

= Need full 3D geometry to determine how the helicopter can move

Workspace (2)

... or (2) a 2D projection, in case this is sufficient

For a car:

o
)
E)

—
e

o
o —

= Can describe position, rotation in 2D —
.) R L e 4
= Can describe obstacles in 2D < g
=1_ Valla :"’a,
@%& i
=>» Workspace can be 2D 1o .
o huse
= Still represents physical locations §é et
«opings Hans Majjerg |, ang
Ifklubb = en
§
é“; Mister Mattias vag
%‘*tb,, ' :
&
é‘fgﬁb
7= N \TLL)
Q@G.

ar
el
i

Configuration Space

Even a car has 3 physical degrees of freedom (DOF)!

The configuration space of the car

= Location in the plane (x/y),

- Angle (9)
Each DOF is essential!

= As part of the goal — park at the correct angle

= As part of the solution — must turn the car to get through narrow passages

Motion planning takes place in configuration space:
How do | get from (200, 200, 12°) to (800,400, 90°)?

jonkv@ida

The Ladder Problem

The ladder problem is similar

NY
9
jonkv@ida

Move a ladder in a 2D workspace , with 3 physical DOF

Configuration:

= Location in the plane (x/y),
= Angle (6)

Again, each DOF
is essential:

As part of the goal

= We want the ladder to end up
at a specific angle

As part of the solution

= We need to turn the ladder
to get it past the obstacles

The Ladder Problem: Controllable DOF

For ladders, each physical DOF is directly controllable!

You can:

[24 JE

= Change x (translate sideways)
= Change y (translate up/down)
= Change angle (rotate in place)

Therefore:

= If you want to get from (200, 200, 12°) to (800,400, 90°),
any path connecting these 3D points
and going through free configuration space
is sufficient

The ladder is holonomic!
= Controllable DOF >= physical DOF

NY
\;-I)
jonk\;@ida

Controllable Degrees of Freedom

For cars, we can control two DOF:;

Acceleration/breaking

Turning (limited)
In this parallel parking example:

There is free space between current and desired configurations
= But we can't slide in sideways!

Fewer controllable DOF than physical DOF =» non-holonomic
= Limits possible curves in 3D configuration space!

jonkv@ida

Work Space, Configuration Space

Summary of important concepts:

Work space:The physical space in which you move

conf-3

= 3-dimensional for this robot arm

conf-1
conf-2

Configuration space:
The set of possible configurations of the robot -

= Usually continuous

= Often many-dimensional
(one dimension per physical DOF)

= Will often be visualized in 2D for clarity

We have to search
in the configuration space!

= Connect configurations, not waypoints obstacle

Eshou

jonkv@ida

Searching the Configuration Space

Divide and Conquer!

Local path planner

= Determines whether two configurations
can be connected with a path, and how

= Considers vehicle-specific constraints

High-level path planner

= Generates configurations

= Uses plug-in local planner to determine
if the configurations can be connected

= For each specific problem, uses search obstacle
to determine which intermediate
configurations to use

Eshou

Low-Dimensional Problems

o

jonkv@ida

In low-dimensional problems:

The high-level planner could use a grid
= Car: 3-dim configuration space

= Example: 4 angles considered per spatial location

(0,0, 0°) (1,0,0°) (2,0,0°)
(0,0, 90°) (1,0,90°) (2,0,90°)
(0,0, 180°) (1,0, 180°) (2,0, 180°)
(0,0,270°) (1,0,270°) (2,0,270°)
0, 1,0°) (1,1,0° 2, 1,0°)
0, 1,90°) (1,1,90°) 2, 1,90°)
0, 1, 180°) (1,1, 180°) 2, 1, 180°)
0, 1,270°) (1, 1,270°) 2, 1,270°)

Local Planner (1)

jonkv@ida

Ask local planner: "Can | connect these configurations"?

A

—R

Try to connect red arrows:

The local planner might say
"Sorry, too complex”
=>» have to go through
intermediate configs...

.
—u_

Divide and conquer:
Local planner should be fast,
the rest is handled through

the high-level planner

A

« B -

Why not make the local
planner smarter? v

jonkv@ida

Local Planner (2)

Local planner also considers obstacles

Obstacle here =

Local planner says "no"
(Go through other points
instead of directly)

g
31)E
/ S.

High-Dimensional Problems

For an aircraft, a configuration could consist of:

location in 3D space (x/y/z) Roll =

pitch angle ab
yaw angle — .
roll angle r
Pitch
A path is:

a continuous curve in 6-dimensional configuration space
avoiding obstacles
and obeying constraints on how the aircraft can turn

= Can make tighter turns at low speed

= Can’t fly at arbitrary pitch angles

High-Dimensional Problems (2)

jonkv@ida

For a robot arm, a configuration could consist of:

= The position / angle of each joint

A path is a continuous curve in n-dimensional configuration space
(all joints move continuously to new positions, without “jumping”),
avoiding obstacles and obeying constraints on joint endpoints etc.

Typical goal: Reach inside the car you are painting / welding,
without colliding with the car itself

u,(t)

High-Dimensional Problems (3)

Moving in tight spaces, again...

jonkv@ida

High-Dimensional Problems (4)

For a humanoid robot, a configuration could consist of:

= Position in x/y space

= The position of each joint

The Nao robot: q
= 14,21 or 25 degrees of freedom
depending on model

= Up to 25-dimensional motion planning!

Grid methods generally do not scale k wu J

= 25-dimensional configuration space,
with 1000 cells in each direction:
107> cells...

jonkv@ida

Honda Asimo: 57 DOF

We can often omit some DOF w -
from planning...

L
(2
b

But then we don't use
the robot's full capabilities!

Alpha Puzzle: Narrow Passages J 36)

Choosing Potential Configurations:

Probabilistic Methods

Preliminaries: Coverage Domain

w
9
jonkv@ida

Given a configuration g in the free config space:

A particular local planner can connect it to a set of other configs

Called the coverage domain D(q) — generally an infinite set

Example: Simple 2D planning,
local planner uses straight lines...

D(q)

Can connect q to

any config in the green area Obstacle

Can’t connect q to
any other points

Obstacle

Preliminaries: Preprocessing

w
9
jonkv@ida

Preprocessing: Suppose we can select configurations so that:

Their domains cover the entire config space

The configs can be connected

=

\
|
I Obstacle
ncomplete
so far...

(Imagine many obstacles, hundreds or thousands of configurations,

many dimensions...)

Preliminaries: Solving

Solving:We get...
Start configuration qgtart
= Connect to another configuration

= Must be possible:

The domains of the existing configurations covered the entire space

Goal configuration dgoal

= Connect...

Find a path
through the graph! .

Obstacle

Obstacle

jonkv@ida

o
=
E)

=
=

Preliminaries: Coverage Domains are Implicit (P

jon

Problem:We can’t calculate the coverage domain D(q)

Local planner answers "’can you connect g, with the specific config g,!?

Computing "all the configurations you can connect g; to’:
= High-dimensional spaces (57D???)

= Complex motion constraints,
not just physical obstacles

= Too computationally complex,
even if finite

= Usually infinitely many possibilities

- vert.
~obstacle

Pelb
JI.

*= Eshou

Preliminaries; Probabilistic Methods

3
NY
jonkv@ida

Solution: Probabilistic methods

Given a set of configurations Q = {qy, ..., q, }:

| Jr@

qeQ

= Don’t compute

= Directly compute probability:

P (U D(q) covers entire free configuration space)
qeQ

= Or:

p (if you pick a random free config, it belongs to U D(q))
qeqQ

= Add configurations until probability is sufficiently high

3
w
jonkv@ida

Probabilistic Roadmaps

Probabilistic Roadmaps (PRM): Construction Phase

M € empty roadmap
= do {

randomly generate configuration q in free config space
if (g was previously unreachable, so it would extend coverage) {
add g and associated edges to M
} else if (g was reachable, but now connects A new config here

two previously unconnected configs) { would not be added!
add g and associated [7/
edges to M
) —
} until (sufficient coverage)

e
‘
|

Obstacle

PRM: Sufficient Coverage

When do you have sufficient coverage!

Suppose you have tested n configurations in a row

without being able to add one to the road map
Then the roadmap covers the free config space

with probability 1 —%

= Example:n = 1000 =>» coverage with 99.9% probability

Why generate randomly? Why don't we select a non-covered config?

How?! Many dimensions, complex connectivity, ...

Random =» no need to explicitly calculate
coverage domains!

Construction phase done in advance

In a sense, a learning phase

Road map reused for many queries

jonkv@ida

— |

|

Obstacle

jonkv@ida

PRM: Node Placement

Node placement is random but not always uniform

Can be biased towards difficult areas

L o [A RRREEEE).‘ C-free ".‘q"l_:‘.
S *N‘LC) :
4 P
: X ‘
x“ : ! :!,L .
-_5(:' . ',
= “‘-’i._‘_ .---
X x : "1‘/ ?'f
vdW Collisions vdW Collisions

*Nat[ve

The "obstacles" above are "obstacles" in configuration space!

jonkv@ida

PRM: Protein Folding

(Second example was from a protein folding application...)

. A f
| il Qe q{? Vil N o 5
Zja . == e) \\‘—\\ /s / s—; [

2GB1(16) T1EOL(28)

PRM: Query Phase

3
~
jonkv@ida

Query Phase:

A* search

Add and connect start and
goal configs to the roadmap
(should be possible, as we
have good coverage)

PRM: Result

jonkv@ida

conf-1

vert.
obstacle

Limit permitted
edge length =»

denser map

¥ shou

Visualized i 2D
Could be 25D

Even in 2D, we have no
closed form description of
the shape — must sample!

PRM: Properties

3
(W)
jonkv@ida

Properties:

Scales better to higher dimensions

Deterministically incomplete, probabilistically complete

= The more configurations you create,
the greater the probability that a path can be found if one exists
(approaching 1.0)

Graph Search

[51 JF

Graph Search (1)

Given a discretization, how do we find a path?

One option: Heuristic search using A*

= Heuristics in simple geometric paths: Manhattan distance (4 directions),
Chebyshev distance (moving in 8 directions),
Euclidian distance (in general), ...

= Other heuristics in complex configuration spaces

o |

Graph Search (2)

D
NY
jonkv@ida

Suppose new obstacles are detected during execution

A*: Update map and replan from scratch

* |nefficient

D* (Dynamic A*): Informed incremental search

= First, find a path using information about known obstacles
= When new obstacles are detected:

Affected nodes are returned to the OPEN list, marked as RAISE:
More expensive than before

Incrementally updates only those nodes whose cost change
due to the new obstacles

Focused D*;

= Focuses propagation towards the robot — additional speedup

Graph Search (3)

Anytime algorithms:

D
w
jonkv@ida

Be able to answer whenever | interrupt you!

In practice: Create some path quickly, then incrementally improve it

”Repeated weighted A*” (standard technique)
= Run A* with f(n) = g(n) + W - h(n), where W > 1:Faster but suboptimal

w=05:
Distance
from goal is

w=1:

Standard A*

exaggerated
>

suboptimal

=" L

= Decrease I and repeat
= But: Has to redo search from scratch in each run!

Graph Search (3)

(& n
S
jonkv@ida

Anytime algorithms:

Anytime Repairing A*

= Like "repeated weighted A*”, but reuses search results from earlier iterations

Anytime Dynamic A* (AD¥)
= Both replanning when problems change
and anytime planning

Path Smoothing

Suboptimal Paths

a
a
jonkv@ida

Paths are often suboptimal in the continuous space

Only the chosen points in the cells are used

In this example:The midpoints

%-

D
~
jonkv@ida

Smoothing

Paths can be improved through smoothing after generation
Still generally does not lead to optimal paths

This is just a simple example, where smoothing is easy

Open Motion Planning Library

Want to experiment!?
Open Motion Planning Library
http://ompl.kavrakilab.org/index.html

ANO OMPL

Start Pose
Position
X -4.96
Y 7057
Z 40.62
Goal Pose

Position

X 200.00
Y 70.57

Z 4062

P Solve K " Clear | | Animate Speed: —€)

{ Problem Planner

Bounding box

Rotation

=l 0.00
%] 0.00

21 0.00

Rotation

%) 0.00
] 0.00

] 0.00

jonkv@ida

http://ompl.kavrakilab.org/index.html

