Path/Motion Planning: An overview

Jonas Kvarnström Automated Planning and Diagnosis Group Department of Computer and Information Science Linköping University

jonas.kvarnstrom@liu.se – 2018

Path/Motion Planning (1)

- jonkv@ida
- Perhaps the easiest form of path planning / motion planning:
 - (I) A robot should move in <u>two dimensions</u> between start and goal
 - Avoiding known obstacles or it would be too easy...

Path/Motion Planning (2)

- Perhaps the easiest form of path planning / motion planning:
 - (2) The robot is <u>holonomic</u>
 - Informally: Can move in any direction (possibly by first rotating, then moving)

Path/Motion Planning (3)

- 4 Jonwynoj
- Problem: Generating an <u>optimal continuous path</u> is hard!
 - Common solution: Divide and conquer
 - <u>Discretize</u>: Choose a finite number of <u>potential waypoints</u> in the map
 - Assume there exists a robot-specific <u>local planner</u> to determine whether one can move <u>between</u> two such waypoints (and how)
 - Use <u>search algorithms</u> to decide which waypoints to use

Remaining task: choosing potential waypoints + finding a path using them

Choosing Potential Waypoints: Grid-Based Methods

Regular 2D Grid

- The simplest type of discretization: A <u>regular grid</u>
 - A robot <u>moves</u> only north, east, south or west
 - Details are left to the local planner

Regular 2D Grid: Real Obstacles

- Real obstacles do not correspond to square / rectangular cells...
 - But we can *cover* them with cells

Partially covered – can't be used

Obstacle

Regular 2D Grid: Discrete Graph

- View the grid <u>implicitly</u> as a <u>discrete graph</u>
 - Assume the <u>local</u> path planner can take us between <u>any neighboring cells</u>
 - Between blue nodes
 - No obstacles in the way

Simple (trivial?) local planner Discrete search handles the rest

Sufficient free space to deal with non-holonomic constraints

Regular 2D Grid: Discrete Graph (2)

- Connect start/goal configurations to the nodes in their cells
 - Within a cell → no obstacles → can plan a path using local planner
 - Here, the goal is unreachable...

Regular 2D Grid: Grid Density

Grid density matters!

- Here: 4 times as many grid cells
- Better approximation of the true obstacles, but many more nodes to search

Non-Regular Grids

- Alternative: Use <u>non-regular</u> grids
 - For example, denser around obstacles
 - (Or even non-rectangular cells)

Grid Representations

- Space-efficient data structure: <u>quadtree</u>
 - Each node keeps track of:
 - Whether it is completely covered, partially covered or non-covered
 - Each non-leaf node has exactly four children

Grid Representations

Can be generalized to 3D (octree), ...

Choosing Potential Waypoints: Geometry-Based Methods

Regular 2D Grid: Grid Density

- Grid-based methods can result in many nodes
 - Even with efficient representation, searching the graph takes time
 - Alternative idea: <u>Place</u> nodes <u>depending</u> on obstacles
- Simple case: Known road map
 - Model all non-road areas as obstacles, then add a dense grid?

Or <u>place</u> a node in each <u>intersection</u>?

Visibility Graphs

Visibility graphs

- Applicable to <u>simple polygons</u> straight sides without intersections
 - <u>Nodes</u> at all polygon corners
 - Edges wherever a pair of nodes can be connected using the local planner
- Mainly interesting in 2D
 - Optimal in 2D, not in 3D

Voronoi Diagrams

• <u>Voronoi</u> diagrams

- Find all points that have the same distance to two or more obstacles
 - Maximizes <u>clearance</u> (free distance to the nearest obstacle)
- Creates unnecessary <u>detours</u>
- Mainly interesting in 2D does not scale well

Complex Motion Planning Problems

Introduction

- So far, we implicitly assumed:
 - If we can <u>draw a line</u> between two waypoints, the robot can <u>move</u> between the waypoints

We need to introduce some new concepts...

But: How does an airplane fly this path?

Workspace (1)

- The workspace is (I) the physical space in which we work...
 - 3 physical dimensions, 3-dimensional coordinates, 3-dimensional obstacles
 - Need full 3D geometry to determine how the helicopter can move

Workspace (2)

- or (2) a <u>2D projection</u>, in case this is sufficient
 - For a car:
 - Can describe position, rotation in 2D
 - Can describe obstacles in 2D
 - → Workspace can be 2D
 - <u>Still represents physical locations</u>

Configuration Space

• Even a car has 3 **physical degrees of freedom** (DOF)!

- The <u>configuration space</u> of the car
 - **Location** in the plane (x/y),
 - <u>Angle</u> (θ)
- Each DOF is essential!
 - As part of the goal park at the correct angle
 - As part of the solution must turn the car to get through narrow passages

Motion planning takes place in configuration space: How do I get from (200, 200, 12°) to (800, 400, 90°)?

The Ladder Problem

The <u>ladder problem</u> is similar

- Move a ladder in a 2D workspace , with 3 physical DOF
- Configuration:
 - **Location** in the plane (x/y),
 - <u>Angle</u> (θ)
- Again, each DOF is essential:
 - As part of the goal
 - We want the ladder to end up at a specific angle
 - As part of the solution
 - We need to turn the ladder to get it past the obstacles

The Ladder Problem: Controllable DOF

- For ladders, each physical DOF is directly controllable!
 - You can:
 - Change x (translate sideways)
 - Change y (translate up/down)
 - Change angle (rotate in place)
 - Therefore:
 - If you want to get from (200, 200, 12°) to (800, 400, 90°), any path <u>connecting</u> these 3D points and <u>going through</u> free configuration space is sufficient
 - The ladder is <u>holonomic</u>!
 - Controllable DOF >= physical DOF

Controllable Degrees of Freedom

25 Z5

- For cars, we can <u>control</u> two DOF:
 - Acceleration/breaking
 - Turning (limited)
- In this parallel parking example:
 - There is free space between current and desired configurations
 - But we can't slide in sideways!
 - Fewer controllable DOF than physical DOF \rightarrow non-holonomic
 - Limits possible curves in 3D configuration space!

Work Space, Configuration Space

- Summary of important concepts:
 - Work space: The physical space in which you move
 - 3-dimensional for this robot arm

- Configuration space:
 The set of possible configurations of the robot
 - Usually <u>continuous</u>
 - Often <u>many-dimensional</u> (one dimension per physical DOF)
 - Will often be <u>visualized</u> in 2D for clarity
- We have to search in the <u>configuration space</u>!
 - Connect configurations, not waypoints

Searching the Configuration Space

- Divide and Conquer!
 - Local path planner
 - Determines whether two configurations can be connected with a path, and how
 - Considers vehicle-specific constraints

- High-level path planner
 - Generates configurations
 - Uses plug-in local planner to determine if the configurations can be connected
 - For each specific problem, uses search to determine which intermediate configurations to use

Low-Dimensional Problems

- In low-dimensional problems:
 - The high-level planner *could* use a grid
 - Car: 3-dim configuration space
 - Example: 4 angles considered per spatial location

Local Planner (1)

Ask local planner: "Can I connect these configurations"?

Local Planner (2)

Local planner also considers obstacles

High-Dimensional Problems

- For an <u>aircraft</u>, a configuration could consist of:
 - **location** in 3D space (x/y/z)
 - pitch angle
 - yaw angle
 - roll angle

A path is:

- a continuous <u>curve</u> in 6-dimensional configuration space avoiding <u>obstacles</u> and obeying <u>constraints</u> on how the aircraft can turn
 - and obeying <u>constraints</u> on now the anti-
 - Can make tighter turns at low speed
 - Can't fly at arbitrary pitch angles

• • • •

High-Dimensional Problems (2)

32 Jonkwold

- For a <u>robot arm</u>, a configuration could consist of:
 - The position / angle of each joint
- A <u>path</u> is a continuous <u>curve</u> in n-dimensional configuration space (all joints move continuously to new positions, without "jumping"), avoiding <u>obstacles</u> and obeying <u>constraints</u> on joint endpoints etc.
- Typical goal: Reach inside the car you are painting / welding, without colliding with the car itself

High-Dimensional Problems (3)

kv@ida

Moving in tight spaces, again...

High-Dimensional Problems (4)

- For a **humanoid robot**, a configuration could consist of:
 - Position in x/y space
 - The position of each joint
- The Nao robot:
 - 14, 21 or 25 degrees of freedom depending on model
 - Up to 25-dimensional motion planning!
- Grid methods generally do not scale
 - 25-dimensional configuration space, with 1000 cells in each direction: 10⁷⁵ cells...

High-Dimensional Problems (5)

Honda Asimo: 57 DOF

We can often omit some DOF from planning...

But then we don't use the robot's full capabilities!

Alpha Puzzle: Narrow Passages

(c).2001.James.Kuffner

Choosing Potential Configurations: Probabilistic Methods

Preliminaries: Coverage Domain

- Given a <u>configuration</u> q in the <u>free config space</u>:
 - A particular <u>local planner</u> can connect it to a set of other configs
 - Called the **coverage domain** D(q) generally an infinite set

Can connect q to any config in the green area

Can't connect q to any other points

Preliminaries: Preprocessing

- Preprocessing: <u>Suppose</u> we can select configurations so that:
 - Their domains <u>cover</u> the entire config space
 - The configs can be <u>connected</u>

(Imagine many obstacles, hundreds or thousands of configurations, many dimensions...)

Preliminaries: Solving

Solving:We get...

- Start configuration q_{start}
 - Connect to another configuration
 - Must be possible:

The *domains* of the existing configurations *covered the entire space*

- Goal configuration q_{goal}
 - Connect...

 Find a path through the graph!

Preliminaries: Coverage Domains are Implicit

- Problem: We <u>can't calculate</u> the coverage domain D(q)
 - Local planner answers "can you connect q_1 with the specific config q_2 ?
 - Computing "all the configurations you can connect q_1 to":
 - High-dimensional spaces (57D???)
 - Complex motion constraints, not just physical obstacles
 - Too computationally complex, even if finite
 - Usually infinitely many possibilities

Preliminaries: Probabilistic Methods

Solution: Probabilistic methods

- Given a set of configurations $Q = \{q_1, \dots, q_n\}$:
 - Don't compute

$$\bigcup_{q\in Q} D(q)$$

- Directly compute probability:
 - $P\left(\bigcup_{q\in Q} D(q) \text{ covers entire free configuration space}\right)$

• Or:

$$P\left(\text{if you pick a random free config, it belongs to } \bigcup_{q \in Q} D(q)\right)$$

Add configurations until probability is sufficiently high

Probabilistic Roadmaps

- 43 J
- Probabilistic Roadmaps (PRM): <u>Construction Phase</u>
 - - **do** {
 - randomly generate configuration *q* in free config space
 - **if** (*q* was previously unreachable, so it would extend coverage) {
 - add q and associated edges to M
 - } else if (q was reachable, but now connects
 two previously unconnected configs) {

add *q* and associated edges to M

} **until** (sufficient coverage)

A new config here would *not* be added!

PRM: Sufficient Coverage

44 dumpine

- When do you have sufficient coverage?
 - Suppose you have tested n configurations in a row without being able to add one to the road map
 - Then the roadmap covers the free config space with probability $1 \frac{1}{n}$
 - Example: $n = 1000 \Rightarrow$ coverage with 99.9% probability
- Why generate randomly? Why don't we select a non-covered config?
 - How? Many dimensions, complex connectivity, ...
 - Random

 no need to explicitly calculate coverage domains!
- Construction phase done in advance
 - In a sense, a <u>learning phase</u>
 - Road map reused for many queries

PRM: Node Placement

- Node placement is random but not always uniform
 - Can be biased towards difficult areas

The "obstacles" above are "obstacles" in **configuration space**!

PRM: Protein Folding

(Second example was from a protein folding application...)

PRM: Query Phase

goa

Query Phase:

Add and connect start and goal configs to the roadmap (should be possible, as we have good coverage)

start

PRM: Result

PRM: Properties

Properties:

- Scales better to higher dimensions
- Deterministically incomplete, probabilistically complete
 - The more configurations you create, the greater the probability that a path can be found if one exists (approaching 1.0)

Graph Search

Graph Search (1)

- Given a discretization, how do we find a path?
 - One option: Heuristic search using A*
 - Heuristics in <u>simple geometric paths</u>: Manhattan distance (4 directions), Chebyshev distance (moving in 8 directions), Euclidian distance (in general), ...
 - Other heuristics in <u>complex configuration spaces</u>

Graph Search (2)

Suppose <u>new obstacles</u> are detected during execution

- A*: Update map and replan from scratch
 - Inefficient
- D* (Dynamic A*): Informed <u>incremental</u> search
 - First, find a path using information about known obstacles
 - When new obstacles are detected:
 - Affected nodes are returned to the OPEN list, marked as RAISE: More expensive than before
 - Incrementally updates only those nodes whose cost change due to the new obstacles
- Focused D*:
 - Focuses propagation towards the robot additional speedup

Graph Search (3)

- **<u>Anytime</u>** algorithms:
 - Be able to answer whenever I interrupt you!
 - In practice: Create some path quickly, then incrementally improve it
 - "Repeated weighted A*" (standard technique)
 - Run A* with $f(n) = g(n) + W \cdot h(n)$, where W > 1: Faster but suboptimal

- Decrease W and <u>repeat</u>
- But: Has to <u>redo search</u> from scratch in each run!

Graph Search (3)

• **<u>Anytime</u>** algorithms:

Anytime Repairing A*

. . .

- Like "repeated weighted A*", but reuses search results from earlier iterations
- Anytime Dynamic A* (AD*)
 - <u>Both</u> replanning when problems change and anytime planning

Path Smoothing

Suboptimal Paths

- Paths are often <u>suboptimal</u> in the continuous space
 - Only the chosen points in the cells are used
 - In this example: The midpoints

Smoothing

- Paths can be improved through **smoothing** after generation
 - Still generally does not lead to optimal paths
 - This is just a simple example, where smoothing is easy

Open Motion Planning Library

- Want to experiment?
 - Open Motion Planning Library
 - <u>http://ompl.kavrakilab.org/index.html</u>

58