
jonas.kvarnstrom@liu.se – 2018

Automated Planning
Plan-Space Planning /

Partial Order Causal Link Planning

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University
Partly adapted from slides by Dana Nau

Licence: Creative Commons Attribution-NonCommercial-ShareAlike, http://creativecommons.org/licenses/by-nc-sa/2.0/

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Motivating Problem
 Simple planning problem:

 Two crates

▪ At A

▪ Should be at B

 One robot

▪ Can carry up to two crates

▪ Can move between locations, which requires one unit of fuel

▪ Has only two units of fuel

Let's see what a forward-chaining planner might do (depending on heuristics)…

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Motivating Problem 2: Forward Search

D
e
ad

 e
n
d
,

b
ac

k
tr

ac
k

C
yc

le
, b

ac
k
tr

ac
k

D
e
ad

 e
n
d
, b

ac
k
tr

ac
k Why is this

not a cycle?

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Motivating Problem 3

Keep

backtracking…

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Motivating Problem 4
 Observations:

 Most actions we added before backtracking were useful and necessary!

 At first, we added them in the wrong order

 Forward and backward planning commits immediately to action order

▪ Puts each action in its final place in the plan

 State space heuristics must tell us:

▪ Which actions are useful

▪ When to add them to the plan

What if we could rearrange actions?

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8First Step
 Sequences with arbitrary insertion: Useful?

 Add actions in sequence, as in state space planning…

 Realize you need another one…

 Make a space…

 …and place the action there

How to decide where to insert it?

How to check that ”old” preconditions remain satisfied?

How to decide which action to insert, if not at the end

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Second Step
 If we must deal with this complexity:

 We can ”get more for the same price”

 Let’s skip sequences completely – a plan could be partially ordered:

 A set of actions 𝐴 = { 𝑎1, 𝑎2, 𝑎3, … }

 A set of precedence constraints { 𝑎1 < 𝑎2, 𝑎1 < 𝑎3, … }

▪ 𝑎1 must finish before 𝑎2 starts, …

▪ Here: solid arrows

How do we generate these plans?

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10POCL 1: Introduction
 Partial Order Causal Link (POCL) planning

 Use a partial order, as described

▪ Not when executing the plan

▪ Only to delay commitment to ordering

 As in backward search:

▪ Add useful actions to achieve necessary conditions

▪ Keep track of what remains to be achieved

▪ But: Insert actions ”at any point” in a plan

More sophisticated ”bookkeeping” required!

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11POCL 2: Comparison to Backward Search
 Search tree for backward search, earlier:

Goal g =

set of literals

to achieve

Goal
= γ

new set of

literals to

achieve

Goal
= γ

new set of

literals to

achieve

The goal is a set of literals – simple!

From a search node,

you know how to reach the goal

using a sequence of actions

Every step takes you to

a new set of literals to achieve

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12POCL 3: Comparison to Backward Search
 In POCL planning:

 There is no sequence – and no clear ”before” relation!

The goal is a set of literals –

simple!

But no set of literals

can describe what must be true

before put(c1,B)…

Because we could add a new

action "in parallel"…

…or even between

put(c1,B) and the goal!

Has consequences for the POCL plan structure…

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13POCL 4: Conditions; Goal Action
 Must keep track of individual propositions to be achieved

 Throughout the plan – not a single state = γ

 May come from preconditions of every action in the plan

 May come from the problem goal as in backward search

▪ Let’s use a uniform representation

▪ Add a ”fake” goal action to every plan,

with the goals as preconditions!

Notation chosen for this

presentation: Preconditions

on the left/top side

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14POCL 5: Effects; Initial Action
 Must keep track of individual propositions that are achieved

 Throughout the plan – not from a single relevant action

 May come from effects of every action in the plan

 May come from the initial state

▪ Add a ”fake” initial action

to every plan,

with the initial state

as effects!

 Effects are sometimes omitted from

the slides, due to lack of space…

Notation chosen for this

presentation: Effects on the

right/bottom side

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15POCL 6: Precedence Constraints
 Plan structure so far:

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16POCL 7: Causal Links
 Must keep track of which action achieves which precondition

 Causal links Causal link (dashed):
must remain true

between the end of put and the beginning of goalaction.

No one must delete it!

Important for threat management (later)

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17POCL 8: Partial-Order Plans
 To summarize, a ground partial-order plan consists of:

 A set of actions

 A set of precedence constraints 𝑎 → 𝑏
▪ Action a must precede b

 A set of causal links 𝑎→
𝑝
𝑏

▪ Action a establishes the precond p needed by b

Causal link (dashed)

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Partial-Order Solutions
 Original motivation: performance

 Therefore, a partial-order plan is a solution

iff all sequential plans satisfying the ordering are solutions

▪ Similarly, executable iff corresponding sequential plans are executable

▪

▪

▪

▪

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Partial Orders and Concurrency
 Can be extended to allow concurrent execution

 Requires a new formal model!

▪ Our state transition model does not define what happens
if and are picked up simultaneously!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21

Backward search: A search node is a "current goal"

Forward search: A search node is a "current state"

Context: Forward, Backward

Node Modification Node Modification Node

NodeModificationModification NodeNode

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22No Current State during Search!
 With partial-order plans: No “current” state or goal!

 What is true after below?

▪ Depends on the order in which other actions are executed

▪ Changes if we insert new actions before !

A search node can’t correspond to a state or goal!

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Search Nodes are Partial Plans
 A node has to contain more information: The entire plan!

 The initial search node contains the initial plan

▪ The special initial and goal actions

▪ A precedence constraint Therefore, this is

one form of

”plan-space” planning!

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Branching Rule
 We need a branching rule as well!

 Forward planning: One successor per action applicable in s

 Backward planning: One successor per action relevant to g

 POCL planning: One successor for every way

that a flaw in the plan (open goal or threat)

can be repaired

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Search Space
 Gives rise to a search space

 Use search strategies, backtracking, heuristics, ... to search this space!

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Flaws
 Flaw, noun:

1. a feature that mars the perfection of something; defect; fault: beauty without

flaw; the flaws in our plan.

2. a defect impairing legal soundness or validity.

3. a crack, break, breach, or rent.

 Flaw, in POCL planning:

 Something we need to take care of to complete the plan

 Technical definition: An open goal or a threat

 Not:

 Something that has ”gone wrong”

 A problem during planning

 A mistake in the final solution

 …

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Flaw Type 1: Open Goals
 Open goal:

 An action a has a precondition p with no incoming causal link

We haven't decided how to

achieve any of these six goals

 they are flaws in the plan

clear(A) is already true in , but there is no causal link…

Adding one from means clear(A) must never be deleted!

We need other alternatives too: Delete clear(A), then re-achieve it for goalaction…

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Flaw Type 1: Open Goals
 To resolve an open goal :

 Find an action b that causes p

▪ Can be a new action

▪ Can be an action already in the plan,

if we can make it precede a

 Add a causal link

Partial order! This was not

possible in backward search…

Essential:

Even if there is already an action that causes p,

you can still add a new action that also causes p!

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Resolving Open Goals 1
 Here: Six open goals

 Could choose to find support for clear(A):

▪ From initaction

▪ From a new , , or

▪ From a new , , , or

 Could choose to find support for on(A,B):

▪ Only from a new instance of

 …

8 distinct

successors

successor

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Resolving Open Goals 2
 Suppose we add stack(A,B) to support (achieve) on(A,B)

 Must add a causal link for on(A,B)

▪ Dashed line

 Must also add precedence constraints

 Looks totally ordered

▪ Because it actually only has one “real” action…

Causal link says:

This instance of stack(A,B)

is responsible for

achieving on(A,B)

for the goalaction

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Resolving Open Goals 3
 Now: open goals (one more!)

 Can choose to find support for

▪ From the initaction

▪ From the instance of that we just added

▪ From a new instance of

▪ From a new instance of

 …

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Flaw Type 2: Threats
 Second flaw type: A threat

▪ supports for – there’s a causal link

▪ deletes , and may occur between initaction and

▪ So we can’t be certain that still holds when starts!

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34Flaw Type 2: Threats (2)
 Some possible execution orders:

 -- preconditions of OK

 -- preconditions of not satisfied

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Resolving Threats 1
 How to make sure that holds when starts?

 Alternative : The action that disturbs the precondition

is placed after the action that has the precondition

▪ Only possible if the resulting partial order is consistent (acyclic)!

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Resolving Threats 2
 Alternative 2:

▪ The action that disturbs the precondition

is placed before the action that supports the precondition

▪ Only possible if the resulting partial order is consistent – not in this case!

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Resolving Threats 3
 Summary:

Assign

f:=true

Need

f:=true

Assign

f:=false

Assign

f:=false

Can be

placed here

Can be

placed here

Make

f:=false

Can’t remain unordered – then it

might be executed between

Causal link

f == true

Prec constr

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Resolving Threats 4
 Only causal links can be threatened!

 Below, pickup(B) does not threaten the precond clear(B) of stack(A,B)

▪ We haven’t decided yet how to achieve clear(B): No incoming causal link

▪ So we can’t claim that its achievement is threatened!

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40POCL planning
 POCL planning – one possible formulation (sound/complete):

≠ ∅

 ∪
∅

φ ∈
 φ

 ∪

Can prove: The plan is correct

iff there are no remaining flaws

(no open goals, no threats)

One flaw chosen – no backtracking!

But all resolvers must be tested…

Requires

heuristics

Requires

heuristics

Returns a partially ordered solution plan

Any total ordering of this plan will achieve the goals

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41The PSP Procedure
 Plan-Space Planning (book): Same principle, slightly different

 ∪
∅

φ ∈
 φ

∅

ρ ∈
 ρ

 Call PSP(the initial plan)

Nondeterministic choice

instead of "foreach resolver",

list of open nodes

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42

1) Every flaw has to be resolved

2) Choosing this flaw later cannot

help us resolve it

3) Choosing this flaw later cannot

help us resolve some other flaw

Understanding Backtracking in POCL

≠ ∅

 ∪
∅

φ ∈
 φ

 ρ
 ∪

If we choose a random flaw to resolve

and then can't find a plan, we don't

have to try another flaw. Why?

Choosing one resolver can prevent

other problem resolutions.

• Open goal: Use action A or B?

• Threat: Which order to choose?

We must be able to try

different resolvers.

Why?

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44Partial Instantiation
 Suppose we want to achieve holding(B)

 Ground search generates many alternatives

▪ …

▪

 Let’s take the idea of least commitment one step further

 Lifted search generates two partially instantiated alternatives

▪

▪

So far, we see no reason

why we should unstack B

from any specific block!

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Partial-Order Plans
 A lifted partial-order plan consists of:

 A set of possibly unground actions

 A set of precedence constraints: a must precede b

 A set of causal links: action a establishes the precond p needed by b

 A set of binding constraints:

▪ equality constraints e.g., v1 = v2 or v = c

▪ inequality constraints e.g., v1 ≠ v2 or v ≠ c

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Resolving Threats
 Another way of resolving threats for lifted plans:

 For partly uninstantiated actions, we may find potential threats

▪ stack(B,y) may threaten the causal link, but only if x=y

▪ Can be resolved by adding a constraint: x != y

stack(B,y)

Precond: …

Effects: clear(y)

putdown(x)

Precond: …

Effects: clear(x)

pickup(x)

Precond: clear(x)

Effects: …

clear(x)

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Example
 Running Example: Similar to an example in AIMA

 Russell and Norvig’s Artificial Intelligence: A Modern Approach (1st ed.)

▪

▪

▪

▪

▪

▪

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49Example (continued)
 PSP takes a plan π as its argument

 Initial plan: initaction, goalaction, and an ordering constraint

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Example (continued)
 Four flaws exist: Open goals

 Suppose our heuristics tell us to resolve first

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

Selected…

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Example (continued)
 ot achieved by any action in the current plan

 achieves

▪ Partially instantiate:
(right now we don’t care where we buy it)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

At() Sells(,)

Have() achieves for goalaction –

keep track of this with a causal link

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Example (continued)
 Alternative Notation for simplicity

 Variable bindings are implicit in the diagram

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

At() Sells(, Drill)

Have(Drill)
achieves for goalaction –

keep track of this with a causal link

Now we have five open goals:

The preconditions of Buy

must also be achieved!

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Example (continued)
 The first three refinement steps

 These are the only possible ways to establish the Have preconditions

 We don’t care in which order we buy things!

At(st1) At(st2) At(st3)Sells(st1, Drill) Sells(st2,Milk) Sells(st3,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54Example (continued)
 Three more refinement steps

 No action causes Sells(…) to be true – except the “fake” initial action!

 Use it for support

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

New causal

links and

variable

bindings!

st1 must be

HWS: No action

causes Sells() to

be true

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55Example (continued)
 It’s getting messy!

 Let’s omit the precedence constraints that are implicit in causal links…

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

If you do this,

SAY SO

EXPLICITLY!

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Example (continued)
 To establish At(HWS): Must go there from somewhere

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(l1)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57Example (continued)
 Does at(l1) threaten At(SM)?

 No! Only a causal link to At(SM) can be threatened

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(l1)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)

58

jo
nk

v@
id

a
jo

nk
v@

id
a

58

At(l1)
At(l2)

Example (continued)
 To establish At(SM): Must go there from somewhere

 Mutual threats…

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)
At(SM)At(l2)

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59

At(l1)
At(l2)

Example (continued)
 Let’s use the same action for both At(SM) preconditions…

 More threats – could deal with them now or wait

At(HWS) At(SM) At(SM)Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS)At(l1)
At(SM)At(l2)

60

jo
nk

v@
id

a
jo

nk
v@

id
a

60Example (continued)
 Nondet. choice: how to resolve the threat to At(HWS)?

 Our choice: make the “requirer” precede the “threatener”

 Also happens to resolve the other two threats

▪ “Threatener” before “achiever”

At(SM)Sells(SM,Milk) Sells(SM,Bananas)

At(l2)

At(l1)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

61

jo
nk

v@
id

a
jo

nk
v@

id
a

61Example (continued)
 Nondet. choice: how to establish ?

 We’ll do it from , with

At(Home)

At(SM)Sells(SM,Milk) Sells(SM,Bananas)

At(l2)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62Example (continued)
 Nondeterministic choice: how to establish ?

 We’ll do it from , with

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

63

jo
nk

v@
id

a
jo

nk
v@

id
a

63Example (continued)
 The only possible way to establish for

 This creates several new threats

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas)

At(Home)

At(l3)

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64Example (continued)
 To remove the threats to and :

 Make and precede

 This also removes the other threats

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(l3)

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65Final Plan
 Establish with

Go(SM, Home)

At(Home)

At(SM)

Buy(Drill, s1)

goalaction

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(SM)

Final Plan
Straightened out…

(Note: Still

does not constrain

the order between

buying milk and

bananas)

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS)

At(SM)

Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas)At(Home)

At(SM)

Many precedence constraints

are omitted here…

Final Plan
Straightened out…

(Note that this still

does not constrain

the order between

buying milk and

bananas)

At(Home)

At(SM)

Buy(Drill, s1)

initaction

goalaction

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(HWS)

At(HWS)

At(SM)

Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)

Buy(Drill, HWS)

Have(Drill) Have(Milk) Have(Bananas)At(Home)

At(SM)

Go(SM, Home)

This sequence assumed optimal choices!

Heuristics are required

Still, planners try many other alternatives, dead ends, etc.

Many precedence constraints

are omitted here…

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69POCL planning
 POCL planning – one possible formulation (sound/complete):

∅

 ∪
∅

φ ∈
 φ

 ρ
 ∪

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70Plan Selection
 Examples of (generally non-admissible) plan selection heuristics:

 Count the number of flaws (see SNLP, UCPOP)

▪ ℎ𝑓(𝜋) = | {flaws in 𝜋} |

 Count the number of open goals

▪ ℎ𝑜𝑐(𝜋) = | {open goals in 𝜋} |

 Adapt the additive heuristic (VHPOP)

ℎ𝑎𝑑𝑑 𝜋 =

𝑜𝑝𝑒𝑛 𝑔𝑜𝑎𝑙𝑠
𝑞
𝑎𝑖 𝑖𝑛 𝜋

ℎ𝑎𝑑𝑑(𝑞)

 Can be modified to address reuse of actions already in the plan (VHPOP):

h𝑎𝑑𝑑
𝑟 𝜋 =

𝑜𝑝𝑒𝑛 𝑔𝑜𝑎𝑙𝑠
𝑞
𝑎𝑖 𝑖𝑛 𝜋

൞
0

if there is an action 𝑎𝑗 ∈ π that achieves q

and could be before 𝑎𝑖
ℎ𝑎𝑑𝑑(𝑞) otherwise

 Adapt planning graphs (RePOP)

71

jo
nk

v@
id

a
jo

nk
v@

id
a

71Flaw Selection
 Examples of flaw selection heuristics:

 Choose threats before open goals (SNLP, UCPOP)

▪ LIFO: Prefer the threat (or open goal) that was added last

 Defer some threats until later

▪ DSep: Delay threats that can be resolved through variable bindings ("separation")

▪ DUnf: Delay threats that can be resolved in more than one way

 Prefer the flaw with the fewest refinement options

 Prefer open goals that must be resolved against the initial state

▪ Cannot be achieved by any operator in the domain

 As in plan selection, estimate costs of resolving flaws

▪ hadd(), …

 …

72

jo
nk

v@
id

a
jo

nk
v@

id
a

72Summary
 Partial-order planning delays commitment to action ordering

 Lower branching factor

 More efficient in some situations

 Many POP planners still assume sequential execution

 The intention was to find plans quickly,

not to find partially constrained plans

