Automated Planning

Domain-Configurable Planning;
Hierarchical Task Networks

Jonas Kvarnstrom

Automated Planning Group

Department of Computer and Information Science

Linkoping University

HTNs: Ideas

Classical Planning vs. Hierarchical Task Networks:

9
jonkv@ida

Objective is to achieve a goal: Objective is to perform a task:
at(TimesSquare) - travel-to(TimesSquare)
{ on(A,B), on(C,D) } place-blocks-correctly

Use "templates”
to incrementally refine the task
Find any sequence of actions - until you reach primitive actions
that achieves the goal
travel-to(TimesSquare) =
taxi-to(airport); fly-to(JFK); ...

Provides guidance but still requires planning

Total-Order

Simple Task Networks

A simple form of Hierarchical Task Network,
as defined in the book

a
jonkv@ida

Terminology 1: Primitive Task

A primitive task is an action

Anything that can be directly executed

Dark green

(in this presentation):
"Done", no need to think further

point(camera4, obj“

As in classical planning, what is primitive depends on:

= The execution system

= How detailed you want your plans to be

Example:
= For you, fly(here,there) may be a primitive task

= For the pilot, it may be decomposed into many smaller steps

Tasks can be ground or non-ground: stack(A,?x)

= No separate terminology, as in operator/action

Terminology 2: Non-Primitive Task

a
jonkv@ida

A non-primitive task:

Cannot be directly executed
Must be decomposed into 0 or more subtasks

Orange:
There's a "problem”
that we need to solve

Should be decomposed to
pickup, putdown, stack, unstack
tasks / actions!

a
jonkv@ida

Terminology 3: Method

A method specifies one way to decompose a non-primitive task

Task: travel(from, to)

Method: go-by-plane(from, to)

buy-ticket (airport(x), airport(y))

fly(airport(x), airport(y)) travel (airport(y), y)
travel (x, airport(x))

The decomposition is a graph (N, E)

Nodes in N correspond to subtasks to perform

= Can be primitive or not!

Edges in E correspond to ordering relations

3
jonkv@ida

Totally Ordered STNs

In Totally Ordered Simple Task Networks (STN),

each method must specify a sequence of subtasks

Can still be modeled as a graph (N, E)

buy-ticket (airport(x), airport(y)) g travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

Alternatively: A sequence < t4, ..., t; >
<buy-ticket(airport(x), airport(y)),
travel(x, airport(x)),

fly(airport(x), airport(y)),
travel(airport(y), y) >

9
jonkv@ida

Totally Ordered STNs (2)

We can illustrate the entire decomposition in this way
(horizontal arrow =» sequence)

The “travel” task has a method travel(x,y) Task
called “go-by-plane” go- by plane(x,y) Method name

>

buy-ticket (airport(x), airport(y)) | travel (x, airport(x)) fly(airport(x), airport(y)) § travel (aport(v),y)

Multiple Methods

jonkv@ida

A non-primitive task can have many methods

So: You still need to search, to determine which method to use

— Task
taxi-travel(x,y) Method
*« l > Non-primitive

AR RERARAATE LA subtasks

foot-travel(x,y)

|

Primitive
subtask

...and to determine parameters (shown later)

Composition

An HTN plan:

Hierarchical

Consist of tasks

Based on graphs = networks

Task
go-by-plane(x,y) Method

fly airport(x), airportly))

buy-ticket (airport(x), airport(y)) @ travel (x, airport(x))

travel (airport(y), y)

taxi-travel(x,airport(x)) foot-travel(x,y)

get-taxi-at(x) ride-taxi(x, airport(x)) pay-driver

jonkv@ida

Domains, Prablems, Solutions

An STN planning domain specifies:

A set of tasks General HTNs:
Can have additional
constraints to be
enforced

A set of operators used for primitive tasks
A set of methods

An STN problem instance specifies:

An STN planning domain
An initial state

An initial task network, which should be ground (no variables)

= Total Order STN example:
<travel(home,work); do-work(); travel(work,home) >

Domains, Problems, Solutions (2)

9
jonkv@ida

Suppose you:

Start with the initial task network

Recursively apply methods to non-primitive tasks, expanding them

Continue until all non-primitive tasks are expanded

Totally ordered =» yields an action_sequence

If this is executable: A solution

(No goals to check — implicit in the method structure!)

The planner uses only the methods specified for a given task
Will not try arbitrary actions...

For this to be useful, you must have useful “recipes” for all tasks

DWR Example:

Moving the Topmost Container

A simple "template expansion”

o
=
®

—
-

=

o
o —

Let’s switch to Dock Worker Robots...

Example Tasks:
Primitive — all DWR actions pl Jocl

Move the topmost container between piles

Move an entire stack from one pile to another

Move a stack, but keep it in the same order

Move several stacks in the same order

Methods

To move the topmost container from one pile to another:

a
jonkv@ida

task: The task has parameters
move-topmost-container(pilel, pile2) given from above
method: A method can have
take-and-put(cont, crane, locypilel, pile2; c1, c2) additional parameters,

whose values are
chosen by the planner —
just as in classical planning!

precond: attached(pilel, loc), attached(pile2, loc),
belong(crane, loc),
top(cont, pilel), on(cont, c1),
top(c2, pile2)

The precond adds constraints:
crane must be some crane
in the same loc as the piles,
cont must be the topmost

container of pilel, ...

Interpretation:

If you are asked to move-topmost-container(pilel, pile2),
check all possible values for cont, crane, loc, c1, c2 where the preconds are satisfied

Methods (2)

To move the topmost container from one pile to another:
task:
move-topmost-container(pilel, pile2)

method:
take-and-put(cont, crane, loc, pilel, pile2, c1, c2)

[16 JE

precond: attached(pilel, loc), attached(pile2, loc),
belong(crane, loc),
top(cont, pilel), on(cont, c1),
top(c2, pile2)

subtasks: <take(crane, loc, cont, c1, pilel),
put(crane, loc, cont, c2, pile2)>

move-topmost-container pl el, pile
take-and-put(..
/\\ cont

cl c2

pilel pile2

DWR Example:

Moving a Stack of Containers

Iteration with no predetermined bound

Moving a Stack of Containers

a
jonkv@ida

How can we implement the task move-stack(pilel, pile2)?

Should move all containers in a stack

There is no limit on how many there might be...

top(A, pilel) top(A, pile2)
on(A,B) on(C,B)
on(B,C) on(B,A)
on(C,pallet) on(A,pallet)

AL I 4 AL I 4
o s o s

jonkv@ida

Recursion (1)

We need a loop with a termination condition

HTN planning allows recursion

= Move the topmost container (we know how to do that!)
= Then move the rest

First attempt:

= task: move-stack(pilel, pile2)

= method: recursive-move(pilel, pile2)

= precond: true

= subtasks: <move-topmost-container(pilel, pile2), move-stack(pilel, pile2)>

take-and-put(...) recursive-move(pilel, pile2, ...)

Recursion (2)

jonkv@ida

But consider the BW and DWVR "pile models”...

clear(A) top(A, pilel)

“ on(A,B) “ on(A,B)
e e

on(B,C) on(B,C)

ontable(C) | cin(C,paIIet)
- N A

e

The bottom block The bottom block
is not "on" anything is "on" the pallet, a "special container"

What if the pallet is "topmost"?
We don't want to move it!

9
jonkv@ida

Recursion (3)

To fix this: Add two method params —
"non-natural”, as in "ordinary" planning;
does not give the planner a real choice

Task: move-stack(pilel, pile2)

= method: recursive-move(pilel, pile2, cont, x)
= precond: top(cont, pilel), on(cont, x)
= subtasks: <move-topmost-container(pilel, pile2), move-stack(pilel, pile2)>

cont is on top of something (x), so cont can’t be the pallet

Recursion (4)

The planner can now create a structure like this:

move-stack(pile1, pile2)

recursive-move(pile1, pile2, ...)

move-topmost-container(pile1, pile2) move-stack(pile1, pile2)

take-and-put(...) recursive-move(pile1, pile2, ...)

move-stack(pile1, pile2)

recursive-move(pilel, pile2, ...)

move-topmost move-stack

But when will the recursion end?

jonkv@ida

Recursion (5)

At some point, only the pallet will be left in the stack

= Then recursive-move will not be applicable

= But we must execute some form of move-stack! s,

move-stack(pile1, pile2)

recursive-move(pile1, pile2, ...) \

move-topmost-container(pile1, pile2)

take-and-put(...)

move-stack(pile1, pile2)

pilel is empty!
No applicable methods...
Planner would backtrack!

NY
S
jonkv@ida

Recursion (6)

We need a method that terminates the recursion

Task: move-stack(p, q) Unique pallet object -
not a variable!

move-stack(pile1, pile

= method: already-moved(p,
= precond: top(pallet, p)

= subtasks: <> recursive-move(pile1, pile2, ...)
L —— >
— \
move-topmost-container(pile1, pile2 move-stack(pilel, pile

take-and-put(...) recursive-move(pile1, pile2, ...

)
/\ - g
put(...)

move-topmost-container(pile1, pile2 move-stack(pilel, pile

take-and-put(...) already-moved(pile1,pile2)

>
/\\ Method preconds satisfied

put(...) Zero subtasks!

DWR Example:

Moving a stack, in the same order

jonkv@ida

Ordering (1)

Using move-stack inverts a stack:

AT g AT s ATEN s AT g

~ ~

Ordering (2)

To avoid this: Use an intermediate pile

jonkv@ida

c3 c1 c3
c2) c2) c2
C1 c3 c1

NY
9
jonkv@ida

Ordering (3)

Example:

Task: move-stack-same-order(pilel, pile2)

= method: move-each-twice(pilel, pileX, pile2, loc) RGERUT-EE LLIDN [@

= precond: top(pallet, pileX), finds location
pilel != pileX, pile2 != pileX, pilel != pile2,
attached(...), // All in the same location

= subtasks: ; move twice:
<move-stack(pilel, pileX), move-stack(pileX, pile2)>

Why does pileX have to be empty initially?

Because the second move-stack moves all containers from the intermediate pile...

DWR Example:

Moving Three Stacks

Letting the planner choose parameters

Overall Objective

jonkv@ida

Our overall objective is:

Moving three entire stacks of containers, preserving order

cranel crang? cranel
c31
c21 c32
cli plc L_Eii_),,ﬂ”’—‘i;;;_j7 33 p3c
cl2 (A €23 A4 c34 A4
bla plb VE pZb 3a p3b
locl loc2 loc3

Initial state, with 3 locations, 3 piles to move

cranel crane2 * crane3 c31

cZ1 c32

cll c22 £33

cl2 c23 cid |

plc p2c p3c
L 7 Eplb L ____ 7 Epzb L S ‘:Iﬁb
pla : pZa : p3a ;

locl loc2 loc3

Corresponding objective, all piles moved

Overall Objective: Defining a Task

Define a task for this objective
Task: move-three-stacks()
= method: move-each-twice()

= precond: ;no preconditions apart from the subtasks'
= subtasks: ; move each stack twice:
<move-stack-same-order(pla,plc),
move-stack-same-order(p2a,p2c),
move-stack-same-order(p3a,p3c) >

. c21
Use this task H

crane3
c31
c32 —
c33 p3c

12 4 23 Y —4
BT 7 “pib PE 7 “p2b

as the initial task network oot ioc2

(a) initial state

cranel crane2
cZ1
cll c22
cl2 7 c23 7
plc

p2c

AEEmy ARnmy
pia plb 73 pZb

locl loc2

(b) goal

c34 A4
XE 7 p3b
loc3

c32
c33

A3]
p3c

L7
p3b

*crane3H _' €31

p3a
loc3

jonkv@ida

DWR Example:

Moving 77 stacks

Letting the planner choose parameters

Goal Predicates in HTNs

3
w
jonkv@ida

Here the entire objective was encoded in the initial network
move-three-stacks

S 4 <move-stack-same-order(pla,plc),
move-stack-same-order(p2a,p2c),
move-stack-same-order(p3a,p3c) >

To avoid this:

New predicate should-move-same-order(pile, pile) encoding the goal
Task: move-as-necessary()

= method: move-and-repeat(pilel, pile2)

= precond: should-move-same-order(pilel, pile2)

= subtasks: <move-stack-same-order(pilel, pile2), ;; makes should-move... false!
move-as-necessary>

Task: move-as-necessary()
= method: all-done
= precond: not exists pilel, pile2? [should-move-same-order(pilel, pile2)]

= subtasks: <>

Uninformed Planning in HTNs

w
S
jonkv@ida

Can even do uninformed unguided planning

Doing something, anything:

= Task do-something =>» operator pickup(x)

= Task do-something =>» operator putdown(x) Planner chooses
= Task do-something =>» operator stack(x,y) all parameters
= Task do-something =>» operator unstack(x,y)

Repeating:

= Task achieve-goals =» <do-something, achieve-goals>

Ending:

= Task achieve-goals =» <>, with precond: entire goal is satisfied

Or combine aspects of this model

with other aspects of ’standard” HTN models!

Useful Modeling Strategies:

Delivery Example - Delivering a package

Modeling "conditional” actions

[36 JE

Delivery 1: First Variation

Delivery:

A single truck

Pick up a package, drive to its destination, unload

Task: deliver(package, dest)
= method: move-by-truck(package, packageloc, dest)
= precond: at(package, packageloc)

= subtasks: <driveto(packageloc), load(package),
driveto(dest), unload(package)>

What if the truck is already at the package location?

First driveto is unnecessary!

3
~
jonkv@ida

Delivery 2: Second Variation

Alternative: Two alternative methods for deliver

Task: deliver(package, dest)
= method: move-by-truck-1(package, packageloc, truckloc, dest)

= precond: at(truck, truckloc), at(package, packageloc),
packageloc = truckloc

= subtasks: <load(package), driveto(dest), unload(package)>

Task: deliver(package, dest)
= method: move-by-truck-2(package, packageloc, truckloc, dest)

= precond: at(truck, truckloc), at(package, packageloc),
packageloc = truckloc

= subtasks: <driveto(packageloc),
load(package), driveto(dest), unload(package)>

Do we really have to repeat the entire task?

Many "conditional” subtasks = combinatorial explosion

Delivery 3: Third variation

w
9
jonkv@ida

Make the choice in the subtask instead!
Task: deliver(package, dest)
= method: move-by-truck-3(package, packageloc, truckloc, dest)
= precond: at(truck, truckloc), at(package, packageloc)
= subtasks: <be-at(packageloc),load(package), be-at(dest), unload(package)>

Task: be-at(loc)
= method: drive(loc)
= precond: lat(truck, loc)

= subtasks: <driveto(loc)>

Task: be-at(loc)
= method: already-there
= precond: at(truck, loc)

= subtasks: <>

A Planning Algorithm:

Total Order Forward Decomposition

Total Order Forward Decomposition

Total Order Forward Decomposition:

Task to perform, specified in the
move-stack(pile1, pile2) problem instance

Check preconds in sO first!

move-stack(pile1, pile2)
recursive-move(pile1, pile2, ...)

Check
preconds...

Like forward search, TFD generates actions

in the same order in which they’ll be executed
=» When we plan the next task, we know the
current state of the world

Definitions

Primitive Tasks vs. Operators:

We've said...

= A primitive task is an action

mtc(pilel, pile2)

take-and-put(...)

Primitive task = action

The book says... mtc(pile1, pile2)
= A primitive task is decomposed to a single action take-and-put(...)

Primitive task

Action

Not an essential difference,
as long as you are consistent!

Solving Total-Order STN Problems (1)

3
NY
jonkv@ida

TFD takes an STN problem instance:
S — the current state
<tl,...,tk> — a list of tasks to be achieved in the specified order

O — the available operators (with params, preconds, effects)
M — the available methods (with params, preconds, subtasks)
Returns:

A sequential plan
= Loses the hierarchical structure of the final plan

= Simplifies the presentation — but the structure could also be kept!

TED(s, <t1,...,tk>, O, M):

= //If we have no tasks left to do...
if (k = 0) then return the empty plan

\-;)
w
jonkv@ida

Solving Total-Order STN Problems (2)
TEFD(s, <t1,...,tk>, O, M):

For simplicity: The case where
= if (k = 0) then return the empty plan all tasks are ground

= if (t1 is primitive) then

// A primitive task is decomposed into a single action!

// May be many to choose from (e.g. method has more params than task).

actions € ground instances of operators in O

candidates € {a | a € actions and
a is relevant for t1 and // Achieves the task
a is applicable in s }

if (candidates = @) return failure

Waiting in line

to be decomposed
in the next step

jonkv@ida

Solving Total-Order STN Problems (3)

TFD(s, <t1,...,tk>, O, M): For simplicity: The case where

= if (k = 0) then return the empty plan all tasks are ground
= if (t1 is primitive) then
// A primitive task is decomposed into a single action!

// May be many to choose from (e.g. method has more params than task).

actions € ground instances of operators in O

candidates < {a| a€actionsand
a is relevant for t1 and // Achieves the task
ais applicablein s }

if (candidates = @) return failure

" nondeterministically choose any a € candidates // Or use backtracking
- newstate < y(s,a) // Apply the action, find the new state
remaining & <t2,...,tk>

M & TED(newstate, remaining, O, M)
if (1T = failure) return failure

else return a.mm // Concatenation: a + the rest of the plan
k) 2= pu.)

remaining

45 JF

Solving Total-Order STN Problems (4)

TFD(s, <t1,...,tk>, O, M): The case where tasks are non-
= if (k = 0) then return the empty plan ground: move(container1,X)
= if (t1 is primitive) then

// A primitive task is decomposed into a single action!

// May be many to choose from (e.g. method has more params than task).

actions € ground instances of operators in O

candidates < { (a,0) | a € actions and
0 is a substitution s.t. action a achieves o(tl) and

if (candidates = @) ret a;s.z{lpphcable ins] Basically, o can specify variable
1 leandiaates = 1) retuin fatiure bindings for parameters of t1...

(|taI|cs = variables)

t1 =take(crane, loc1, cont2, cont, p|e
candidates

R TR SRl o - (cranercranet, contrcontS)
_ take(crane locT, cont2, cont5, piles) AR at el b ety

Solving Total-Order STN Problems (5)

jonkv@ida

TEFD(s, <t1,...,tk>, O, M):
if (k = 0) then return the empty plan

if (t1 is primitive) then
actions € ground instances of operators in O
candidates < {(3,0) | a € actions and
o is a substitution s.t. action a achieves o(t1) and
a is applicable in s }
if (candidates = @) return failure

" nondeterministically choose any (a,0) € candidates// Or use backtracking
- newstate <y(s,a) // Apply the action, find the new state
remaining < o(<t2,...,tk>) // Must have the same variable bindings!
M & TFD(newstate, remaining, O, M) // Handle the remaining tasks

if (1T = failure) return failure

else return a.mm
E

(italics = variables) put(cranel, ...)

s | t1=take(crane,loc1,cont2, cont, pile)

t2=put(crane,...)
chosen: i cLGE L H AR eRd) =l ¢ = { crane>cranel, cont—contb }

ake(crane2,loc1, cont2, cont5, pile8 { cranecrane?2, cont—cont5 }

3
~
jonkv@ida

Solving Total-Order STN Problems (6)

TED(s, <t1,...,tk>, O, M):
= if (k = 0) then return the empty plan
= if (t1 is primitive) then ...

» else// t1 is travel(LiU, Resecentrum), for example
// A non-primitive task is decomposed into a new task list.
// May have many methods to choose from: taxi-travel, bus-travel, walk, ...

ground €< ground instances of methods in M
As before, :
but candidates €< { (m,0) | m € ground and
t;: q 0 is a substitution s.t. task(m) = o(t1) and
,mi (d) Sf m is applicablein s} // Methods have preconds!
m:ctei?)nso if (candidates = @) return failure

nondeterministically choose any (m,0) € candidates // Or use backtracking

ravel(x,y,

taxi-travel(x,y)

get-taxi-at(x, riae-taxi(x, y, pay-ariver

Solving Total-Order STN Problems (7)

jonkv@ida

TED(s, <t1,...,tk>, O, M):

= if (k = 0) then return the empty plan
= if (t1 is primitive) then ...
= else //tlistravel(LiU, Resecentrum), for example
// A non-primitive task is decomposed into a new task list.
// May have many methods to choose from: taxi-travel, bus-travel, walk, ...
ground < ground instances of methods in M
candidates < {(m,0) | m € ground and
0 is a substitution s.t. task(m) = o(t1) and
m is applicableins} // Methods have preconds!
if (candidates = @) return failure
nondeterministically choose any (m,0) € active // Or use backtracking

// No actions are applied here, so no new state!

hRepIaI:eb remaining < subtasks(m) . o(<t2,...,tk>) // Prepend new list!
e t.as Y mw€ TFEDG, remaining, O, M)
Its if (11 = failure) return failure InTFD
subtasks

else return 11

the "origin" of a task is discarded:

avel(x. Vv

taxi-travel(x,y) No longer needed,

\\ only the subtasks are relevant

Limitations of

Total-Order HTN Planning

3
o
jonkv@ida

Limitation of Ordered-Task Planning

TFD requires totally ordered methods

Can’t interleave subtasks of different tasks

Suppose we want to fetch one object somewhere,
then return to where we are now

Task: fetch(obj)
= method: get(obj, mypos, objpos)

precond: robotat(mypos) & at(obj, objpos)
subtasks: <travel(mypos, objpos), pickup(obj), travel(objpos, mypos)>
I’'m at A, the thing to fetch is at B
Task: travel(x, y)
* method: walk(x, y) fetch(p)

= method: stayat(x) get(p,a,b)

\Z_D

jonkv@ida

Limitation of Ordered-Task Planning

Suppose we want to fetch two objects somewhere, and return

(Simplified example — consider “fetching all the objects we need”)

One idea: Just “fetch” each object in sequence

Task: fetch-both(objl, obj2)
= method: get-both(obj1l, obj2, mypos, objposl, objpos2)
precond: -

subtasks: <fetch(objl, mypos, objposl), fetch(obj2, mypos, objpos2)>

I’'m at A, both objects are at B

get-both(p,q)
.Imu.,-, S fetch(q)
get(p) get(q)
 Tavella,b) g PICKUPIP) | TraVeliD,a) g travelia,by M IR

Have to start with the first Fetch... I’'m back at A and have to walk again!

Alternative Methods

To generate more efficient plans using total-order STNs:

D
NY
jonkv@ida

Use a different domain model!

Task: fetch-both(objl, obj2)
= method: get-both(objl, obj2, mypos, objposl, objpos2)
precond: objposl != objpos2 & at(objl, objposl) & at(obj2, objpos2)

subtasks: <travel(mypos, objposl), pickup(objl),
travel(objpos1, objpos2), pickup(obj2),
travel(objpos2, mypos)>

Task: fetch-both(objl, obj2)
= method: get-both-in-same-place(objl, obj2, mypos, objpos)

precond: robotat(mypos) & at(objl, objpos) & at(obj2, objpos)

subtasks: <travel(mypos, objpos), pickup(objl), pickup(obj2),
travel(objpos, mypos)>

Or: load-all; drive-truck; unload-all

HTN Planning with

Partially Ordered Methods

Partially Ordered Methods

Partially ordered method:

jonkv@ida

The subtasks are a partially ordered set {t,, ..., t,} — a network

travel(x,y)

go-by-plane(x,y)

No horizontal arrow
ordering all tasks

buy-ticket (a(x),a(y)) | travel (x,a(x)) travel (a(y), y)

method go-by-plane(x,y)
task: travel(x,y)
precond: long-distance(x,y)
network: u =buy-ticket(a(x),a(y)), u,= travel(x,a(x)), us= fly(a(x), a(y))

u,= travel(a(y),y),
{(upug); (uzyug)’ (u3 :u4)}

a
a
jonkv@ida

Partially Ordered Methods

With partially ordered methods, subtasks can be interleaved

etch-both(p, g

get-both(p,q)

N

get(p) get(q)

m

walk(a,b) stay-at(b) walk(b,a) stay-at(a)

Requires a more complicated planning algorithm: PFD

SHOP2: implementation of PFD-like algorithm + generalizations

Conclusion

Conclusion

D
~
jonkv@ida

Control Rules or Hierarchical Task Networks?

Both can be very efficient and expressive

If you have "recipes” for everything, HTN can be more convenient
= Can be modeled with control rules, but not intended for this purpose
= You have to forbid everything that is "outside” the recipe

If you have knowledge about "some things that shouldn’t be done’:
= With control rules, the default is to "try everything”

= Can more easily express localized knowledge
about what should and shouldn’t be done

= Doesn’t require knowledge of all the ways in which the goal can be reached

