
jonas.kvarnstrom@liu.se – 2018

Planning Graphs
-- As a search space

-- To calculate informed heuristics

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Recap: Backward Search

BACKWARD SEARCH

 We know if the effects of an action

can contribute to the goal

 Need guidance to determine

which backward paths

will lead to (good) solutions

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

Large search

tree, no path

to initial state?

One approach: Use heuristics. But other methods exist…

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Reachable States
 Suppose that we could quickly determine:

 reachable(𝑠0, 𝑠) – is state 𝑠 reachable from 𝑠0?

 Then we could prune many ”fruitless branches”:

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

Large search

tree, no path

to initial state?

But reachable(𝑠0, 𝑠) takes too much time to compute…

Not reachable

Reachable

Reachable

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Possibly Reachable States
 Instead of exact classification:

 Find an approximation: possibly-reachable(𝑠0, 𝑠)!

Reachable Not reachable

Possibly reachable Not (possibly reachable)

Actually reachable

(not known

which ones!)

Unreachable…

Definitely

unreachable…

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Possibly Reachable States: Pairwise Mutexes
 Discussing ℎ2, we saw that if Δ2 𝑠0, 𝑝, 𝑞 = ∞:

 Starting in s0, can't reach any state where p and q are true

 Starting in s0, p and q are mutually exclusive (mutex)

 Could use: possibly-reachable(𝑠0, 𝑠) ↔ Δ2 𝑠0, 𝑝, 𝑞 ≠ ∞ where 𝑝, 𝑞 in goal

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

Δ2(𝑠0, 𝑎𝑡 ℎ𝑜𝑚𝑒 ,

Reachable

Δ2(𝑠0, 𝑎𝑡 ℎ𝑜𝑚𝑒 ,

Much better than nothing, but not strong:

(1) only considers pairs p,q that are never achievable (2) ℎ2 does not detect all of those

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Possibly Reachable States at Step #i
 Improving the accuracy of possibly-reachable(𝑠0, 𝑠):
 Complex – partly because we must consider paths of arbitrary length

 Instead: Apply ideas from iterative deepening search

▪ Is there a plan of length 0? Of length 1? Length 2? 3? 4? …

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Possibly Reachable States: Example
▪ possibly-reachable-at-step(𝑠0, 0, 𝑠)? No!

▪ possibly-reachable-at-step(𝑠0, 1, 𝑠)? No!

▪ possibly-reachable-at-step(𝑠0, 2, 𝑠)? No!

▪ possibly-reachable-at-step(𝑠0, 3, 𝑠)? No!

▪ possibly-reachable-at-step(𝑠0, 4, 𝑠)? No!

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

possibly-reachable-at-step(𝑠0, 5, 𝑠)? Yes!

possibly-reachable-at-step(𝑠0, 4, 𝑠)?
Hopefully no (prune), maybe yes (search)!

Might not actually find

a solution

in 5 steps

(possibly reachable!)

Prunes some parts,

but search still needed

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Keep Iterating
 If no solution was found:

 Keep going with plan length 6, 7, …

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

possibly-reachable-at-step(𝑠0, 6, 𝑠)? Yes!

possibly-reachable-at-step(𝑠0, 5, 𝑠)?
Hopefully no (prune), maybe yes (search)!

Same answer to possibly reachable,

but might now also be actually reachable

An efficient representation

for possibly reachable states

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Planning Graph
 A Planning Graph also considers possibly executable actions

 Useful to generate states – also useful in backwards search!

Initial

state

10 possibly

executable

actions

8 possibly

reachable

states

47 possibly

executable

actions

200

possibly

reachable

states

1200

possibly

executable

actions

4000

possibly

reachable

states

k+1 proposition levels

Which propositions may possibly hold in any reachable state?

k action levels

Which actions may possibly be executed in each step?

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12GraphPlan: Plan Structure
 GraphPlan’s plans are sequences of sets of actions

  Fewer levels required!

Initial

state

10 possibly

executable

actions

8 possibly

reachable

states

47 possibly

executable

actions

200

possibly

reachable

states

1200

possibly

executable

actions

4000

possibly

reachable

states

load(Package1,Truck1),

load(Package2,Truck2),

load(Package3,Truck3)

drive(T1,A,B),

drive(T2,C,D),

drive(T3,E,F)

unload(Package1,Truck1),

unload(Package2,Truck2),

unload(Package3,Truck3)

Can be executed in

arbitrary order

Can be executed in

arbitrary order

Arbitrary

order

Not necessarily in parallel – original objective was a sequential plan

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Running Example
 Running example due to Dan Weld (modified):

 Prepare and serve a surprise dinner,

take out the garbage,

and make sure the present is wrapped before waking your sweetheart!



 

 



14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Reachable States
 Suppose we actually computed all reachable states



▪ 



▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪



▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

Let’s calculate

reachable literals

instead!

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Reachable Literals (1)


 



 



 

 

 











 

 



D
e
p
e
n
d
in

g
o
n
 w

h
ic

h
ac

ti
o
n
s

w
e

ch
o
o
se

h
e
re

…

We can't reach all combinations

of literals in proposition level 1…

No need to consider sets of actions:

All literals made true

by any combination of ”parallel” actions

are already there

But we can reach only such combinations!

Can not reach a state where served is true

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Reachable Literals (2)
 Planning Graph Extension:

 Start with one ”prop level”

▪ Set of reachable literals

 For each applicable action

▪ Add its effects

to the next proposition level

▪ Add edges to preconditions

and to effects

for bookkeeping (used later!)












 

 



But wait!

Some propositions are missing…

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Reachable Literals (3)
 Depending on the actions chosen,

facts could persist

from the previous level!

 To handle this consistently:

maintenance (noop) actions
 One for each literal

 Precond = effect =









 

 



 

 



  

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Reachable Literals (4)
 Now the graph is sound

 If an action might be executable

in step n,

it is part of the graph

 If a literal might hold

after n actions,

it is part of the graph

 But it is quite “weak”!

 Even at proposition level 1,

it seems any literal

except served

can be achieved

 We need more information

 In an efficiently useful format

 Mutual exclusion








 

 



20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Mutex 1: Inconsistent Effects



▪ One causes ,

the others cause not



 

 









 

 



Two actions in a level are mutex

if their effects are inconsistent

Can’t execute them in parallel, and

order of execution is not arbitrary

No mutexes at proposition level 0:

We assume a consistent initial state!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Mutex 2: Interference

 is mutex with

▪ deletes

▪ needs

 is mutex with

▪ deletes

▪ needs

 …









 

 



Two actions in one level are mutex

if one destroys a precondition

of the other

Can’t be executed in arbitrary order

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Mutex 3: Inconsistent Support (A)









 

 



Two propositions are mutex

if one is the negation of the other

Can’t be true at the same time…

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Mutex 4: Inconsistent Support (B)

 can only be achieved by ,

can only be achieved by ,

and are mutex

  and are mutex

 can only be achieved by ,

can only be achieved by ,

and are mutex

  and are mutex



 








 

 



Two propositions are mutex

if they have inconsistent support

All actions that achieve them

are pairwise mutex

in the previous level

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Mutexes: Only pairwise
Note:

In reality you cannot have
{  }

after a single (non-mutex)

action level!

Not detected:

Examining triples is more expensive
and not worth the cost









 

 



25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Mutual Exclusion: Overview

 Two actions at the same action level are mutex if

 Inconsistent effects: an effect of one negates an effect of the other

 Interference: one deletes a precondition of the other

 Competing needs: they have mutually exclusive preconditions (not shown)

 Otherwise:

 Both might appear at the same time step in a solution plan

 Two literals at the same proposition level are mutex if

 Inconsistent support A: one is the negation of the other,

 Inconsistent support B: all ways of achieving them are pairwise mutex

Recursive

propagation

of mutexes

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Early Solution Check
 Is there a possible solution?





 No: Cannot reach a state

where served is true

in a single (multi-action) step









 

 



28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Expanded Planning Graph









 

 















All goal literals are present in level 2, and none of them are (known to be) mutex!

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Solution Extraction (1)









 

 



















31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Solution Extraction (2)









 

 

















32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Solution Extraction (3)









 

 



















33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Solution Extraction (4)









 

 















34

jo
nk

v@
id

a
jo

nk
v@

id
a

34Solution Extraction (5)









 

 















35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Solution Extraction (6)
The proposition level,

starting at the highest level

The set of goals we are

trying to achieve

A form of backwards search,

but only among the actions in the graph

(generally much fewer, esp. with mutexes)!

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Important Properties
 Possible literals:

 What is achieved is always carried forward by no-ops

  Monotonically increase over proposition levels

 Possible actions:

 Action included if all precondition literals exist in the preceding prop level

  Monotonically increase over action levels







 









37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Important Properties (2)
 Mutex relationships:

 Mutexes between included literals monotonically decrease

▪ If two literals could be achieved together in the previous level,

we could always just “do nothing”, preserving them to the next level

 (Mutexes to newly added literals can be introduced)

 At some point, the Planning Graph “levels off”

 After some time k all levels are identical

 (Why?)

A planning graph is exactly what we described here –

not some arbitrary planning-related graph

Top: Real state reachability for a Rover problem ("avail" facts not shown)

Bottom: Planning Graph for the same problem (mutexes not shown)

At each step, an overestimate of reachable propositions / applicable actions!

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Parallel Optimality
 A form of iterative deepening:

 Therefore, GraphPlan is optimal in the number of time steps

 Not perfect, as we normally care much more about:

▪ Total action cost

▪ Number of actions (special case where action cost = 1)

▪ Total execution time (”makespan”)

Classical problem P

Plan!

load(Package1,Truck1),

load(Package2,Truck2),

load(Package3,Truck3)

drive(T1,A,B),

drive(T2,C,D),

drive(T3,E,F)

unload(Package1,Truck1),

unload(Package2,Truck2),

unload(Package3,Truck3)

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Introduction
Heuristics as approximations of h+ (optimal DR)

cost(p and q) = max(cost(p), cost(q))

Optimistic relative to 𝒉+:

As if achieving the most expensive goal

would always achieve all the others

Gives far too little information

cost(p and q) = sum(cost(p), cost(q))

Pessimistic relative to 𝒉+:

As if achieving one goal

could never help in achieving any other

Informative, but always exceeds h+

and can exceed even h* by a large margin!

How can we take some interactions into account?

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Relaxed Planning Graphs
 The planning graph takes many interactions into account

 One possible heuristic h(s):

▪ Use GraphPlan to find a solution starting in s

▪ Return the number of actions in the solution

 Too slow (requires plan generation), but:

Let’s apply delete relaxation, then construct a planning graph!

(Called a relaxed planning graph -- pioneered by FastForward, FF)

Recall: Delete relaxation assumes we have positive preconds, goals

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Building Relaxed Planning Graphs
 Building a relaxed planning graph:

 Construct proposition level 0 ()

▪ Atoms in the initial state

 Construct action level 1 ()

▪ Actions whose preconditions are included in

 Two actions in are mutex if:

▪ Their effects are inconsistent

▪ One destroys a precondition of the other

 Construct state level 1 ()

▪ All effects of actions in

 Two propositions in are mutex if:

▪ One is the negation of another

▪ All actions that achieve them are mutex

Can't happen!

Only positive effects!

Can't happen!

Only positive propositions,

no mutex actions!

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44No Backtracking
 No backtracking: Recall the backwards search procedure

▪ Goal specifies which propositions to achieve in

▪ Choose one of many possible sets of achieving actions in

▪ If they are mutex, backtrack

▪ Determine which propositions must be achieved in (preconds of actions)

▪ Choose actions in

▪ If they are mutex,

backtrack

▪ …









 

 















No delete effects



No mutexes



No backtracking

Situation with delete effects:

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Properties of Relaxed Planning Graphs
 The relaxed planning graph considers positive interactions

 For example, when one action achieves multiple goals

 Ignores negative interactions

 No delete effects  no mutexes to calculate

(no inconsistent effects, no interference, …)

 No mutexes exist  can select more actions per level,

fewer levels required

 No mutexes exist  no backtracking needed in solution extraction

 Can extract a Graphplan-optimal relaxed plan (minimal number of steps)

in polynomial time

hFF(s) = number of actions in relaxed plan from state s

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Complexity

 The plan that is extracted is only GraphPlan-optimal!

▪ Optimal number of time steps

▪ Possibly sub-optimal number of actions (or suboptimal action costs)

▪  hFF is not admissible,

can be greater than h+ (but not smaller!)

and can be greater than h* (or smaller)

 Still, the delete-relaxed plan can take positive interactions into account

▪  Often closer to true costs than hadd is

 Plan extraction can use several heuristics (!)

▪ Trying to reduce the sequential length of the relaxed plan,

to get even closer to true costs

How can this be efficient?

Sounds as if we calculate h+, which is NP-complete!

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48HSP
 Recall hill climbing in HSP!

 Works approximately like this (some intricacies omitted):

▪



∅



At each step, choose a child
with minimal heuristic value

Allow a few steps without
improvement of heuristic value

Too many such steps 
Restart at some other point

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49

Not expanded

Enforced Hill Climbing
 FF uses enforced hill climbing – approximately:

 s  init-state

 repeat

expand breadth-first until a better state s' is found

until a goal state is found

Step 1

Step 2

Wait longer to decide which branch to take

Don't restart – keep going

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50

We commit to this part of the plan!

If there is a descendant with lower h(n),

one will be found…

But what if the only solution

is somewhere else?

Properties of EHC
 Is Enforced Hill-Climbing complete?

 No!

Never expanded

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Properties of EHC
 If you reach a dead end:

 HSP used random restarts

 FF uses best-first search from the initial state (with an open list),

using only the inadmissible FF heuristic for guidance

(no consideration of "cost so far")

▪ So FF is complete, but EHC is not

 Is Enforced Hill-Climbing efficient / effective?

 In many cases (when paired with FF's Relaxed Planning Graph heuristic)

 But can spend considerable time on:

▪ Breadth first search to escape plateaus / local minima

▪ Best first search when EHC does not work

▪ Analysis: Hoffmann (2005),

Where `ignoring delete lists' works: Local search topology in planning benchmarks

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Helpful Actions
 Pruning Technique in FF: Helpful Actions in state s

 Recall: FF's heuristic function for state s

▪ Construct a relaxed planning graph starting in s

▪ Extract a relaxed plan (choose actions among potentially executable in each level)

 Helpful actions:

▪ The actions selected in action level 1

▪ Plus all other actions

that could achieve the same subgoals

(but did not happen to be chosen)

▪ More likely to be useful to the plan

than other executable actions

 FF constrains EHC

to only use helpful actions!

▪ Sometimes also called

preferred operators

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54FF: Helpful Actions (2)

Possible in A-level 1:

carry, roll, clean,

cook, wrap

Used in relaxed plan:

cook, wrap

Achieved at P-level 1:

clean, dinner, wrapped

Helpful actions:

cook, wrap, clean

prop level 0 prop level 1Action level 1

garbage

clean

asleep

garbage

clean

asleep

dinner

wrapped

carry

roll

cook

wrap

…more levels

Suppose this

is the

relaxed plan

generated by

FF…

clean

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55FF: EHC with Helpful Actions
 EHC with helpful actions:

 Non-helpful actions crossed over, never expanded

10

12

11

16

16

7

8

11

6

8

5

10

7

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56FF: EHC with Helpful Actions (2)
 EHC with helpful actions:









 Incomplete

if there are dead ends!

If EHC fails, fall back on

best-first search using

f(s)=hFF(s)

