
jonas.kvarnstrom@liu.se – 2018

Automated Planning

Domain-Configurable Planning:
Planning with Control Formulas

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Assumptions
 Recall the fundamental assumption that we only specify

 Structure: Objects and state variables

 Initial state and goal

 Physical preconditions and physical effects of actions

We only specify what can be done

The planner should decide what should be done

But even the most sophisticated heuristics and domain analysis methods

lack our intuitions and background knowledge…

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Domain-Configurable Planners

 Planners taking advantage of additional knowledge can be called:

▪ Knowledge-rich

▪ Domain-configurable

▪ (Sometimes incorrectly called “domain-dependent”)

How can we make a planner take advantage

of what we know?

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Comparisons (1)

Domain-specific

Must write an entire planner

Can specialize the planner for very high performance

Domain-configurable

High-level (but sometimes complex) domain definition

Can provide more information for high performance

“Domain-independent”

Provide minimal information about actions

Less efficient

More effort
Higher

performance

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Comparisons (2)

Domain-specific

Only works in a single domain

Domain-configurable

Easier to improve expressivity and efficiency

 Often practically useful for a larger set of domains!

“Domain-independent”

Should be useful for a wide range of domains

Larger problem classes

can be handled efficiently

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7

Guidance says: This

branch seems better…

Guidance says: This

branch seems worse…

Goal:

B on C on A

Two Kinds of Search Guidance (1)
Prioritization: Which part of a search tree should be visited first?

Could use heuristic functions, could use other methods…

Keep this, maybe

return later

 high memory

usage

Go this way first

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Prioritization
 Properties of prioritization:

 We can always return to a node later

 No need to be absolutely certain of your priorities

 This is why many domain-independent heuristics work well

 Provide reasonable advice in most cases

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9

Cost g(n)=1

Admissible heuristic h(n)=4

Any solution

below s3

will cost

at least 5

We found a

solution of cost 4

Two Kinds of Search Guidance (2)
Pruning: Which part of a search tree are definitely useless?

Prune them!

Can be done using heuristics –

example: Branch and Bound Search

Prune!

Never

consider the

node or its

descendants

again…

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Pruning
 Can we prune when we search for the first solution?

 A single mistake may remove all paths to solutions

  Difficult to find good domain-independent pruning criteria

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Example: Emergency Services Logistics
 Emergency Services Logistics

 Goal:

 Now:

 Picking up again is physically possible

 It “destroys” , which is a goal – obviously stupid!

The branch beginning with could be pruned from the tree!

How do we detect this in a domain-independent way?

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Example: Towers of Hanoi

 Goal:

 Now:

 Moving disk to the third peg is possible but “destroys” a goal fact:

▪ Is this also obviously stupid?

▪ No, it is necessary! Disk is blocking us from moving disk …

Should we always prevent the destruction of achieved goals?

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Heuristics
 Heuristics may or may not detect:

Moving disk1 is goodPicking up crate1 is bad

Will generally depend on the entire state

+ which alternative states exist,

not just the fact that you "destroy goal achievement"

Might delay investigating either alternative for a while,

return to try this later

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Pruning
 With a domain-configurable planner:

 We could provide domain-specific heuristics

▪ Strongly discouraging the destruction of goals in Emergency Services Logistics

▪ Would keep the option to investigate such actions later (not necessary!)

 We can directly provide stronger domain-specific pruning criteria

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Control Formulas
 Control formulas: One way of specifying when to prune

 Motivation

 Examples

 Formalism

 Evaluation of control formulas

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Precondition Control





▪

▪

▪ …and the goal doesn’t require that crate should end up at location!

 Alternative 1: New predicate ” ”

▪ Duplicates the information already specified in the goal

▪

 Alternative 2: New language extension ” φ ”

▪ Evaluated in the set of goal states, not in the current state

▪

Simplest control information: Precondition Control

How to express this, given that the goal requires at(crate,loc)?

Supported by

all planners

Requires

extensions, but

more convenient

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18State Constraints
 A UAV should never be where it can’t reach a refueling point

 Can’t possibly extend such plans into solutions

at(depot)

fuel-level=120

at(pos1)

fuel-level=105

at(pos2)

fuel-level=112

Reaching nearest

refueling point

requires 108 fuel

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19State Constraints
 A UAV should never be where it can’t reach a refueling point

 If this happens in a plan, we can’t possibly

extend it into a solution satisfying the goal

 How to express this?

Must be verified for every action:
, …

Must be checked even when

the UAV is idle, hovering

Inconvenient!

Using preconditions again?

Defined once,

applied to every generated state





Using state constraints?

Comparatively simple extension!

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20

Current state

Precondition true?
If not, don’t apply!

New state

State constr. true?
If not, backtrack!

Testing State Constraints
 Testing such state constraints is simple

 Apply an action  new state is generated

▪ Formula false in that state  Prune!

 Similar to preconditions

▪ But tested in the state after an action is applied, not before!

apply

unstack(a,c)

apply

fly(…)

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Temporal Conditions (1)
 A package on a carrier should remain there until it reaches its destination

▪ For any plan 𝜋 where we move it prematurely,

there is a more efficient plan 𝜋′ where we don’t

How to express this as a single formula?

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Temporal Conditions (2)
 “A package on a carrier should remain there

until it reaches its destination”

¬on(pkg1,carr3)

at(pkg1, depot4)
on(pkg1,carr3)

¬on(pkg1,carr3)

at(pkg1,dest1)

If the

package is

on a

carrier…

…it must remain on the carrier

in all future states…

up to some

future state

where it is

at its dest!

unload(pkg1,dest1)

¬on(pkg1,carr3)

at(pkg1, depot4)
on(pkg1,carr3)

¬on(pkg1,carr3)

at(pkg1,otherloc)

on carrier must remain… backtrack!

unload(pkg1,otherloc)

We need a formula constraining an entire state sequence, not a single state!

In planning, this is called a control formula or control rule

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Linear Temporal Logic

 One possibility: Use Linear Temporal Logic (as in TLplan)

 All formulas evaluated relative to a state sequence and a current state

 Assuming that is a formula:

▪  is true in the next state

▪ ♢ is true either now or in some future state

▪ □ is true now and in all future states

▪ ⋃ is true now), or (is true in some future state s’

and is true in all states until/before then)

We need to extend the logical language!

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Control Formula
 “A package on a carrier should remain there

until it reaches its destination”

▪

▪ Should be true starting in the initial state

φ
∀𝑣. type−predicate 𝑣 → 𝜙

For all values of ?var that satisfy type-predicate, φ must be true

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Control Formula
▪

p1 on c1 here Remains on c1 until at its destination

p1 on c1 here Until at its dest

p2 on c2 here Until at its dest

p2 on c2 here …

always



time 0

always



time 1

always

time 2

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Blocks World
 How do we come up with good control rules?

 Good starting point: ”Don’t be stupid!”

 Trace the search process – suppose the planner tries this:

 Placing F on top of B is stupid, because we’ll have to remove it later

▪ Would have been better to put F on the table!

 Conclusion: Should not extend a good tower the wrong way

▪ Good tower: a tower of blocks that will never need to be moved

goal

st
ac

k
(F

,B
)

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Blocks World Example (continued)
 Rule : Every goodtower must always remain a goodtower



s0 s1 s2 s3



29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Blocks World Example (continued)
 Rule , second attempt:



s0 s1 s2 s3







30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Supporting Predicates
 Some planners allow us to define a predicate recursively

 goodtowerbelow(x) means we will not have to move x

▪ 







 

 

 

 

 

goal

goodtowerbelow: B, C, H

X is on the table,

and shouldn’t be on anything else

X is on something else

Shouldn’t be on the table,

shouldn’t be holding it,

shouldn’t be clear

If x should be on z, then it is (z is y)

If z should be on y, then it is (z is x)

The remainder of the tower is also good

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Supporting Predicates
 goodtower(x) means x is the block at the top of a good tower

▪ goodtower(x)  clear(x)   GOAL(holding(x))  goodtowerbelow(x)

 badtower(x) means x is the top of a tower that isn’t good

▪ badtower(x)  clear(x)  goodtower(x)

goal
goodtower: B

goodtowerbelow: B, C, H

badtower: G, E

(neither: D, A)

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Blocks World
 Step 2: Is this stupid?

 Placing F on top of E is stupid, because we have to move E later…

▪ Would have been better to put F on the table!

▪ But E was not a goodtower, so the previous rule didn’t detect the problem

 Never put anything on a badtower!

▪

goal

st
ac

k
(F

,E
)

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Blocks World
 Step 3: Is this stupid?

 Picking up F is stupid!

▪ It is on the table, so we can wait until its destination is ready:

▪

goal

p
ic

k
u
p
(F

)

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Pruning using Control Formulas
 How do we decide when to prune the search tree?

 Obvious idea:

▪ Take the state sequence corresponding to the current action sequence

▪ Evaluate the formula over that sequence

▪ If it is false: Prune / backtrack!

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Evaluation 1
 Problem:

▪

s0

No package on a carrier

in the initial state:

Everything is OK

”Every boat I own

is a billion-dollar yacht

(because I own zero boats)”

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Evaluation 2
 Problem:

▪

When we add an action

placing a package

on a carrier…

s0
s1

(on-carrier p4 c4)

…there is no future state

where the package is

at its destination!

The formula is violated,

but only because the solution is not complete yet!

We must be allowed to continue,

generating new states…

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Evaluation 3: What's Wrong?
 We had an obvious idea:

 Take the state sequence corresponding to the current plan

 Evaluate the formula over that sequence

 If it is false: Prune / backtrack!

 This is actually wrong!

 Formulas should hold in the state sequence of the solution

 But they don’t have to hold in every intermediate action sequence…

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Analysis
 Analysis:

…

We have applied some

actions, yielding a

sequence of states

We intend to generate

additional actions and states,

but right now we don’t know which ones

The control formula should be satisfied

by the entire state sequence corresponding to a solution

We only know some of

those states

Should only backtrack if we can prove

that you can't find additional states

so that the control formula becomes true

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Analysis 2
 Analysis 2:

…

The control formula should be satisfied

by the entire state sequence corresponding to a solution

Evaluate those parts of

the formula that refer to

known states

Leave other parts of the formula

to be evaluated later

If the result can be proven to be FALSE, then backtrack

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Progressing Temporal Formulas (1)
 We use formula progression

 We progress a formula Φ through a single state s at a time

▪ First the initial state, then each state generated by adding an action

 The result is a new formula

▪ Containing conditions that we must "postpone",

evaluate starting in the next state

φ is true in

state …

If and only if
progress(φ,)

is true in

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Progressing Temporal Formulas (2)
 More intuitions?

 Suppose you are reading a book. A page is analogous to a state.

"The figure appears 5 pages from here"

is true on page 7

"The figure appears 4 pages from here"

is true on page 8

"Fig 1 appears 3 pages from here

and fig 2 appears 5 pages from here"

is true on page 7

"Fig 1 appears 2 pages from here

and fig 2 appears 4 pages from here"

is true on page 8

"Starting where I am now,

there's a figure on every page"

is true on page 7

There actually is a figure on page 7, and

"Starting where I am now,

there's a figure on every page"

is true on page 8

"If there's a figure on this page,

there is no figure on the next page

[otherwise I don't care]"

is true on page 7

Check if there is a figure on this page.

If so: f="There's no figure on this page".

Otherwise: f="true".

Check whether f is true on page 8.

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Progressing Temporal Formulas (3)
 Base case: Formulas without temporal operators (“on(A,B)  on(C,D)”)

▪ Must be true here, in this state

▪ progress(Φ, s) = TRUE if Φ holds in s (we already know how to test this)

▪ progress(Φ, s) = FALSE otherwise

If ”f  g”

is true
in state …

Then progress
returns ,

which is true in

If ”f  g”

is false
in state …

Then progress
returns ,

which is false in

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44Progressing Temporal Formulas (4)
 Simple case: next

 progress(next f, s) = f

▪ Because ”next f” is true in this state iff f is true in the next state

▪ This is by definition what progress() should return!

”next f” is true
in state …

If and only if ”f”

is true in state

”next
)” is

true in …

iff) is

true in

Additional cases are discussed in the book (always, eventually, until, …)

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Progression in Depth First Search
1. Calculate and store Φ0=progress(Φ, s0)

Resolves all references to values in state s0!

2. Φ1=progress(Φ0, s1)

Note: Uses Φ0, not Φ

4. Φ16=progress(Φ1, s16)

No need to "restart"

evaluation from scratch

3. Φ17=p(Φ1, s17)

Suppose this is FALSE

Φ = original control formula

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46DFS with Pruning

GT

GT: Destroys a goodtower

BT: Adds to a badtower

CT: Creates a badtower

PU: Pickup without the

destination being ready

pickup(C): GT
pickup(B) 

pickup(D): GT

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Performance
 International Planning Competition

 TALplanner received the top award

for a “hand-tailored” (i.e., domain-configurable) planner

 International Planning Competition

 TLplan won the same award

 Both of them (as well as SHOP, an HTN planner):

 Ran several orders of magnitude faster

than the “fully automated” (i.e., not domain-configurable) planners

▪ especially on large problems

 Solved problems on which other planners ran out of time/memory

 Required a considerably greater modeling effort

for each planning domain

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49TALplanner Example Domain
 Example Domain: ZenoTravel

 Planes move people between cities (board, debark, fly)

 Planes have limited fuel level; must refuel

 Example instance:

▪ people

▪ planes

▪ cities

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50ZenoTravel Problem Instance
 A smaller problem instance

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51What Just Happened?

 No additional domain knowledge specified yet!

 Pure depth first…
initial node

one of the

goal nodes

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Control Rules

 First problem in the example:

 Passengers debark whenever possible.

 Rule: "At any timepoint, if a passenger debarks, he is at his goal.”



→

∨

∧

[t]: ”now”

[t+1]: ”next”

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Control Rules

 Second problem in the example:

 Passengers board planes, even at their destinations

 Rule: "At any timepoint, if a passenger boards a plane, he was not at his

destination.”



∧
→

∧
∧

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54Zeno Travel, second attempt

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55What's Wrong This Time?

 Only constrained passengers

 Forgot to constrain airplanes

 Which cities are reasonable destinations?

 1. A passenger’s destination

 2. A place where a person wants to leave

 3. The airplane’s destination

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Control Rules


→



57

jo
nk

v@
id

a
jo

nk
v@

id
a

57Zeno Travel, third attempt

