Automated Planning

Heuristics for Forward State Space Search: Overview and Examples

Jonas Kvarnström
Automated Planning Group

Department of Computer and Information Science Linköping University

Heuristics in Forward State Space Search: Introduction

Heuristic Forward State Space Search

- General Forward State Space Search Algorithm
- forward-search $\left(A, s_{0}, g\right)\{$
open $\leftarrow\left\{\left\langle\mathrm{s}_{0}, \varepsilon\right\rangle\right\}$
while (open $\neq \emptyset$) $\{$
use a strategy to select and remove one $n=<s$, path $>$ from open
if goal g satisfied in state s then return path
foreach $a \in A$ such that $\gamma(s, a) \neq \emptyset\{$ $\left\{s^{\prime}\right\} \leftarrow \gamma(s, a)$ path' $\leftarrow \operatorname{append}($ path, a) add $n^{\prime}=\left\langle s^{\prime}\right.$, path'> to open
\}
\}
return failure;

Requires a heuristic function
How do we calculate $h(n)$? $\boldsymbol{h}_{1}(\boldsymbol{n}), \boldsymbol{h}_{2}(\boldsymbol{n}), \boldsymbol{h}_{\text {add }}(\boldsymbol{n})$, landmarks, pattern databases, ...

-

- A heuristic strategy bases its decisions on:
- Heuristic value $h(n)$
- Often other factors, such as $\mathbf{g}(\mathbf{n})=$ cost of reaching \mathbf{n}

Requires a heuristic search strategy
How do we use $h(n)$?
\mathbf{A}^{*}, IDA*, D^{*}, simulated annealing, hill-climbing, (various forms of) best first search, ...

Example (1)

Example: 3 blocks, all on the table in s0

We now have
1 open node, which is unexpanded

Example (2)

We visit s_{0} and expand it

A heuristic function estimates the distance from each open node to the goal: We calculate $\boldsymbol{h}\left(\boldsymbol{s}_{1}\right), \boldsymbol{h}\left(\boldsymbol{s}_{2}\right), \boldsymbol{h}\left(s_{3}\right)$
A heuristic strategy uses this value (and other info) to prioritize

Example (3)

Suppose the strategy chooses to visit s_{1} :

We now have 4 open nodes, which are unexpanded

2 new heuristic values are calculated: $\boldsymbol{h}\left(\boldsymbol{s}_{\mathbf{1 6}}\right), \boldsymbol{h}\left(\boldsymbol{s}_{17}\right)$
The search strategy now has 4 nodes to prioritize

Heuristic Functions: What to Measure?

What to Measure?

Question IA: What should a heuristic function measure?

A heuristic strategy bases its decisions on:
Heuristic value $h(s)$
Often other factors, such as $\mathbf{g}(\mathbf{s})=$ cost of reaching \mathbf{s}
Very general definition
\Rightarrow could measure anything that some strategy might find useful!

Often: $\mathrm{h}(\mathrm{s})$ tries to approximate the cost of achieving the goal from s
Useful for finding cheap plans and often, as a side effect, for finding plans cheaply

\Rightarrow Question IB: What is "cost'?

Plan Quality and Action Costs

- Maybe: Long plan = expensive plan
- $c(\pi)=|\pi|$ (number of actions in plan π)
- Reasonable in Towers of Hanoi
- But: How to make sure your car is clean?

go to car wash	get supplies
go to car dealer	bush car

Heuristic $h(s)$ estimates:

"How many actions will I need to reach the goal from s?"

wash car

shortest plan is best?

- Would prefer to support different action costs
- Supported by most current planners
- Each action $a \in A$ associated with a cost $c(a)$
- Total cost:

$$
\mathrm{c}(\pi)=\sum_{a \in \pi} c(a)
$$

Heuristic $h(s)$ estimates:
"How expensive actions will I need to reach the goal from s?"

Action Costs in PDDL

- PDDL: Specify requirements
- (:requirements :action-costs)
- Numeric state variable for the total cost, called (total-cost)
- And possibly numeric state variables to calculate action costs
- (:functions (total-cost)
(travel-slow-cost ?f1-count ?f2-count)
(travel-fast-cost ?f1-count ?f2-count)

Built-in type supported by cost-based planners

- Initial state
- (:init (= (total-cost) 0)
(= (travel-slow-cost n0 n1) 6) (= (travel-slow-cost n0 n2) 7)
(= (travel-slow-cost n0 n3) 8) (= (travel-slow-cost n0 n4) 9) ...)
- Special increase effects to increase total cost
- (:action move-up-slow
:parameters (?lift - slow-elevator ?f1 - count ?f2 - count)
:precondition (and (lift-at ?lift ?f1) (above ?f1 ?f2) (reachable-floor ?lift ?f2))
:effect (and (lift-at ?lift ?f2) (not (lift-at ?lift ?f1))
(increase (total-cost) (travel-slow-cost ?f1 ?f2))))

Remaining Costs

- The remaining cost in any search state s:
- The cost of a cheapest (optimal) solution starting in s
- Denoted by $h^{*}(s)$
- Star ${ }^{*} \rightarrow$ the best, optimal, estimate: exact cost
- The cost of an optimal solution to $\left(\Sigma, s_{0}, S_{g}\right)$:
- $\mathrm{h}^{*}\left(s_{0}\right)$

True Remaining Costs (1)

True Cost of Reaching a Goal from $n: h^{*}(n)$

Initially: A, B, C on the table pickup, putdown cost I stack, unstack cost 2 (must be more careful)

True Remaining Costs (2)

True Cost of Reaching a Goal: $\mathbf{h *}(\mathbf{n})$

Two reachable goal states

True Remaining Costs (3)

True Cost of Reaching a Goal: $\mathbf{h *}(\mathbf{n})$

Three reachable goal states (there can be many)

True Remaining Costs (4)

If we knew the true remaining cost $h^{*}(\mathrm{n})$ for every node:

Algorithm simplePlan:

node \leftarrow initstate

while (not reached goal) \{
node \leftarrow a successor of node with minimal $h^{*}(\mathrm{n})$

Trivial straight-line path minimizing h^{*} values gives an optimal solution!

 \}

Reflections

- What does this mean?
- Calculating $h^{*}(n)$ is a good idea, because then we can easily find optimal plans?
- No - because we can prove that finding optimal plans is hard!
- So the hard part must be calculating $h^{*}(n) \ldots$
I.We can always quickly compute h^{*} (n)

2. Given $h^{*}(n)$,
we can quickly find optimal solutions
3. ...so one of these premises must be false
4. We can quickly find optimal solutions for any classical planning problem
5. Known to be false! (PSPACE-complete)

Must settle for an estimate that helps us search less than otherwise

Heuristic Functions:

What properties should an estimate have?

Minimization: Intro

Example Strategy: Depth first search; select a child with minimal $h(s)$

If I start with pickup(A), then make optimal choices: Plan cost $=55$

If I start with pickup(C), then make optimal choices:

$$
\text { Plan cost }=62
$$

Minimization, case 1

Strategy: Depth first search; select a child with minimal $h(s)$

Which is best?

The strategy only cares about relative values
$h^{*}, h A, h B$ result in identical choices: $s_{\mathbf{1}}$ first! Close!

Far from the truth...

Minimization, case Z

Strategy: Depth first search; select a child with minimal $h(s)$

Which is best?

The strategy only cares about relative values
$h^{*}, h A, h B$ result in identical choices: $s_{\mathbf{1}}$ first!

Close!
Large overestimate!

Minimization, case 3

Strategy: Depth first search; select a child with minimal $h(s)$

Which is best?

$h *$ and $h B$ result in identical choices
hA is worse for this strategy, despite being closer to h^{*} : Goes to s_{3} first

Even if we continue optimally, cost ≥ 62 !

les
sl
s2
s2

A^{*}, case 1

Back to case I - but suppose the strategy is A^{*}

Which is best?

A* expands all nodes

where $g(s)+h(s) \leq$ optcost
As long as \boldsymbol{h} is admissible $\left[\forall \boldsymbol{s}: \boldsymbol{h}(\boldsymbol{s}) \leq \boldsymbol{h}^{*}(\boldsymbol{s})\right]$, increasing it is always better

A^{*}, case 2

Case 2: Suppose the strategy is A^{*}

Which is best?

A* expands all nodes

where $g(s)+h(s) \leq$ optcost
Because hB is not admissible, optimal solutions may be missed!

A^{*}, case 3

Case 3: Suppose the strategy is A^{*}

Which is best?

A* expands all nodes

where $g(s)+h(s) \leq$ optcost
As long as $\boldsymbol{h}(\boldsymbol{s})$ is admissible

$$
\left[h(s) \leq h^{*}(s)\right]
$$

increasing it is always better hA better than hB

Two Requirements for Heuristic Guidance

- Heuristic planners must consider two requirements

Define a search strategy able to take guidance into account

Examples:

A* uses a heuristic function Hill-climbing uses a heuristic... differently!

Find a heuristic function suitable for the selected strategy

Example:

Find a heuristic function
suitable specifically for A^{*} or hill-climbing

Can be domain-specific, given as input in the planning problem

Can be domain-independent, generated automatically by the planner given the problem domain

We will consider both - heuristics more than strategies

Some Desired Properties (1)

- What properties do good heuristic functions have?
- Informative, of course:

Provide good guidance to the specific search strategy we use

- Admissible?
- Close to $h^{*}(n)$?
" Correct "ordering"?
" ...

Some Desired Properties (2)

- What properties do good heuristic functions have?
- Efficiently computable!
- Spend as little time as possible deciding which nodes to expand
- Balanced...
- Many planners spend almost all their time calculating heuristics
- But: Don't spend more time computing h than you gain by expanding fewer nodes!
- Illustrative (made-up) example:

Heuristic quallity	Nodes expanded	Expanding one node	Calculating h for one node	Total time
Worst	100000	$100 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	10100 ms
Better	20000	$100 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	2200 ms

Some Desired Properties (3)

- [Table copy for the online lecture notes!]

Heuristic quality	Nodes expanded	Expanding one node	Calculating h for one node	Total time
Worst	100000	$100 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	10100 ms
Better	20000	$100 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	2200 ms
\ldots	5000	$100 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	1000 ms
\ldots	2000	$100 \mu \mathrm{~s}$	$1000 \mu \mathrm{~s}$	2200 ms
\ldots	500	$100 \mu \mathrm{~s}$	$10000 \mu \mathrm{~s}$	5050 ms
Best	200	$100 \mu \mathrm{~s}$	$100000 \mu \mathrm{~s}$	20020 ms

Speed vs. Cost

Cheap Plans, Cheap Planning?

- Cost can be indirectly related to plan generation time

Prioritizing Speed or Plan Cost

Can design strategies to prioritize speed or plan cost

Find a solution quickly

Expand nodes where you think you can easily find a way to a goal node

Find a good solution

Expand nodes where you think you can find a way to a good (high quality) solution, even if finding it will be difficult

Should prefer
Open nodes
Accumulated plan cost $\mathbf{g (n) = 5 0 ,}$ estimated "cost distance" $h(n)=10$

Should prefer Accumulated plan $g(n)=5$, estimated "cost distance" $h(n)=30$

Often one strategy+heuristic can achieve both reasonably well, but for optimum performance, the distinction can be important!

A Simple

Domain-Independent Heuristic and Search Strategy

Heuristics given Structured States

- In planning, we often want domain-independent heuristics
- Should work for any planning domain - how?
- Take advantage of structured high-level representation!
- Plain state transition system
- We are in state

572,342,104,485,172,012

- The goal is to be in one of the $10^{\wedge} 47$ states in $\mathrm{S}_{\mathrm{g}}=\{\mathrm{s}[482,293], \mathrm{s}[482,294]$, ... \}
- Should we try action

A297,295,283,291
leading to state
572,342,104,485,172,016?

- Or maybe action A297,295,283,292 leading to state 572,342,104,485,175,201?

- Classical representation

- We are in a state where disk 1 is on top of disk 2
- The goal is for all disks to be on peg C
- Should we try take(B), leading to a state where we are holding disk 1 ?
- ...

An Intuitive Heuristic

- An intuitive idea:
- Number of steps required to reach the goal from s should be approximately proportional to how many goal requirements are not yet achieved in s
- Let $h(s)=$ number of unsatisfied goals in s
- An associated search strategy:
- Suppose we want to minimize planning time
- Choose an open node with minimal $h(s)$
- Greedy: Only care about apparent amount of planning left to do

Counting Remaining Goals

- Count the number of facts that are "wrong"
- Requires that states and goals are sets of facts
- (Conjunctions - not disjunctions)

Optimal:

 unstack(A,C) $\operatorname{stack}(\mathbf{A}, \mathbf{B})$ pickup(C) stack(C,A)

Counting Remaining Goals (2)

- A perfect solution? No!
- We must often "unachieve"' individual goal facts to get closer to a goal state!

Optimal:

 unstack(A,C) putdown(A) pickup(B) stack(B,C) pickup(A) $\operatorname{stack}(\mathbf{A}, \mathbf{B})$
18 actions in π

States:
6463 calculated, 3222 visited
(With Dijkstra, 43150 / 33436 improved, but we can do better!)

- $h\left(s_{0}\right)=1$: Only one "missing" fact
- For a long time, all useful successors appear to increase remaining cost
- Removing a block that must be moved
- And many useless successors appear to decrease remaining cost
- Building towers that will need to be torn down

Not very informative!

Counting Remaining Goals (3)

Admissible?

- No!
- (Doesn't matter in our chosen search strategy)

- Can we make it admissible?
- Yes: Divide by the maximum number of facts modified by any action

Counting Remaining Goals (4): Analysis

- What we see from this example...
- Not very much: All heuristics have weaknesses!

Even the best planners will make "strange" choices, visit tens, hundreds or even thousands of "unproductive" nodes for every action in the final plan

The heuristic should make sure we don't need to
visit millions, billions or even trillions of " unproductive" nodes for every action in the final plan!

- But a thorough empirical analysis would tell us:
- This heuristic is far from sufficient!

Example Statistics

- Planning Competition 2011: Elevators domain, problem 1
- A^{*} with goal count heuristics
- States: 108922864 generated, gave up
- LAMA 2011 planner, good heuristics, other strategy:
- Solution: 79 steps, 369 cost
- States: 13236 generated, 425 evaluated/expanded
- Elevators, problem 5
- LAMA 2011 planner:
- Solution: 112 steps, 523 cost
- States: 41811 generated, 1317 evaluated/expanded
- Elevators, problem 20
- LAMA 2011 planner:
- Solution: 354 steps, 2182 cost
" States: 1364657 generated, 14985 evaluated/expand

Important insight:
Even a
state-of-the-art planner can't go directly to a goal state!

Generates many more states than those actually on the path to the goal...

Search Strategies and Heuristics for Optimal

 Forward State Space Planning
Optimal 1: Introduction

- Optimal plan generation:
- There is a quality measure for plans
- Minimal number of actions
- Minimal sum of action costs
- We must find an optimal plan!
- Suboptimal plans (0.5\% more expensive):

A Well Known Heuristic Search Algorithm: A*

Used in many optimal planners

- Optimal Plan Generation: Often uses \mathbf{A}^{*}
- A* focuses entirely on optimality
- Slowly expand from the initial state, systematically checking possibilities
" No point in trying to find a "reasonable" plan before the optimal one!
- Requires admissible heuristics to guarantee optimality
- Reason: Heuristic used for pruning (skipping some search nodes + all descendants)
- Search queue ordered by $f(n)=g(n)$ [actual cost] $+h(n)$ [heuristic]:

$$
\begin{array}{c|c|c}
\hline 11=10+1 & 12=10+2 & 12=12+0 \\
\hline \begin{array}{c}
\text { Pop - not a } \\
\text { solution }
\end{array} & \begin{array}{c}
\text { Pop - not a } \\
\text { solution }
\end{array} & \begin{array}{c}
\text { Pop - } \\
\text { solution! }
\end{array} \\
\hline
\end{array}
$$

$12=11+1$
$13=11+2$
Ignore:
g is known, h is an underestimate, so solutions found by expanding these nodes will cost $\geq \mathbf{g}+\mathbf{h}$ (and we have one of cost $\leq g+h$)

- Dijstra vs. A*:The essential difference

Dijkstra

- Selects from open a node n with minimal $g(n)$
- Cost of reaching n from initial node

Uninformed (blind)

A*

- Selects from open a node n with minimal $g(n)+h(n)$
- + underestimated cost of reaching a goal from n

Informed

- Example:
- Hand-coded heuristic function
- Can move diagonally \rightarrow $\mathrm{h}(\mathrm{n})=$ Chebyshev distance from n to goal $=$ $\underline{\max }(\operatorname{abs}(\mathrm{n} . \mathrm{x}$-goal.x), abs(n.y-goal.y))
- Related to Manhattan Distance $=$ sum(abs(n.x-goal.x), abs(n.y-goal.y))

- A*Search:

Here:
 A single physical obstacle

In general:

Many states where all available actions will increase gth (cost + heuristic)

Investigate all states
where $\mathrm{g}+\mathrm{h}=\mathrm{I} 5$, then all states where $g+h=16, \ldots$

- Given an admissible heuristic h, A^{*} is optimal in two ways
- Guarantees an optimal plan
- Expands the minimum number of nodes
required to guarantee optimality with the given heuristic
- Still expands many "unproductive" nodes in the example
- Because the heuristic is not perfectly informative
- Even though it is hand-coded
- Does not take obstacles into account
- If we knew $h^{*}(n)$:
- Expand optimal path to the goal

- What is an informative heuristic for A^{*} ?
- Basic requirement: Must be admissible $\boldsymbol{\rightarrow} \forall n . h(n) \leq h^{*}(n)$
- As always, $h(n)=h^{*}(n)$ would be perfect - but not attainable...
- As indicated before: The closer $h(n)$ is to $h^{*}(n)$, the better
- Suppose hA and hB are both admissible
- Suppose $\forall \mathbf{n} . \mathbf{h A}(\mathbf{n}) \geq \mathbf{h B}(\mathbf{n}): h A$ is at least close to true costs as $h B$
- Then A^{*} with hA cannot expand more nodes than A^{*} with hB

Problem

Given an arbitrary planning problem

$$
P=\left(\Sigma, s_{0}, g\right)
$$

find an admissible heuristic function $h(s)$

Creating Admissible Heuristic Functions: The General Relaxation Principle

The Problem

- We have:
- An arbitrary planning problem $P=\left\langle\Sigma, S_{0}, S_{g}\right\rangle$
- We want:
- A way to compute an admissible heuristic $h(s)$
- Given P and some state s

What do we do?
 Where do we start?
 How do we think?

Fundamental Ideas (1)

- One obvious method:

Every time we need $h(s)$ for some state $s \ldots$

1. Solve P optimally starting in s, resulting in an actual solution $\pi^{*}(s)$
2. Let $h(s)=h^{*}(s)=\operatorname{cost}\left(\pi^{*}(s)\right)$

- Admissible - why?
- Obvious, but stupid
- If we find $\pi(s)$, we're already done!

Also:These are hard to find (or we wouldn't need a heuristic)

Solutions π to P starting in s (set of plans!)

Optimal solutions $\pi \pi^{*}$ to P

Fundamental Ideas (2)

- Let's modify the obvious idea:
- Change / transform P to make it easy (quick) to solve
- But make sure optimal solutions cannot become more expensive!
- Example:Add more goal states to P \rightarrow easier to reach!

Relaxation will be one specific way of (I) finding a simplifying transformation, and (2) proving "not-more-expensive"!

Compute an admissible heuristic:

- Solve the modified planning problem optimally
- $h(s)=$ cost of optimal solution for modified problem
<=
$h^{*}(s)=$ cost of optimal solution for original problem
- Definition of admissibility!
- Preferably:
- Keep $h(s)$ as close as possible to $h^{*}(s)$ - we want strong cost information!

Fundamental Ideas (3)

- More formally:
- Before planning, find a simpler problem P^{\prime}, such that in every state s (of P):
- We can quickly transform s into a state s' for P'
- Then we can quickly find an optimal solution π^{\prime} for P^{\prime} starting in s'
- The solution is never more expensive: $\operatorname{cost}\left(\pi^{\prime}\right) \leq \operatorname{cost}\left(\pi^{*}\right)$

Fundamental Ideas (4)

During planning:

- Every time we need $h(s)$ for some state s :
- Transform s to s^{\prime}
- Quickly solve problem P^{\prime} optimally starting in s^{\prime}, resulting in solution $\pi^{\prime}-$ for the transformed problem
- Let $h(s)=\operatorname{cost}\left(\pi^{\prime}\right)$
- Throw away π^{\prime} : It isn't interesting in itself
- We then know:
- $\quad \mathrm{h}(\mathrm{s})=\operatorname{cost}\left(\pi^{\prime}(s)\right)=\operatorname{cost}\left(\right.$ optimal-solution $\left.\left(P^{\prime}\right)\right) \leq \operatorname{cost}($ optimal-solution $(P))$
- $\quad h(s)$ is admissible

Fundamental Ideas (5)

- Important:
- What we need: cost(optimal-solution(P')) $\leq \operatorname{cost}($ optimal-solution(P))
- Could use a transformation yielding completely disjoint solution sets + a proof that optimal solutions to P^{\prime} are not more expensive

Difficult to find transformations, prove correctness - we need a method

Fundamental Ideas (6)

- How to prove cost(optimal-solution $\left.\left(\mathrm{P}^{\prime}\right)\right) \leq \operatorname{cost}($ optimal-solution $(\mathrm{P}))$?
- Sufficient criterion: One optimal solution to P remains a solution for P^{\prime}
- $\operatorname{cost}\left(\right.$ optimal-solution $\left.\left(\mathrm{P}^{\prime}\right)\right)=\min \left\{\operatorname{cost}(\pi) \mid \pi\right.$ is any solution to $\left.\mathrm{P}^{\prime}\right\}<=$ cost(optimal-solution(P))

Includes the optimal solutions to P, so min $\{\ldots\}$ cannot be greater

Fundamental Ideas (7)

- Another sufficient criterion: All solutions to P remain solutions for P^{\prime}
- Stronger, but often easier to prove
- This is called relaxation: P^{\prime} is a relaxed version of P
- Relaxes the constraint on what is accepted as a solution: The is-solution(plan)? test is "expanded, relaxed" to cover additional plans

Fundamental Ideas (8)

- Case I: P’ has identical cost (for some starting state s)
- Unlikely!

Fundamental Ideas (9)

- Case 2: P’ has lower cost (for some starting state s)

Relaxation:

Definition and Examples

Relaxation for Planning Problems

- A classical planning problem $P=\left(\Sigma, s_{0}, S_{g}\right)$ has a set of solutions
- Solutions $(P)=\{\pi: \pi$ is an executable action sequence leading from s_{0} to a state in S_{g} \}
- Suppose that:
- $P=\left(\Sigma, s_{0}, S_{g}\right)$ is a classical planning problem
- $P^{\prime}=\left(\Sigma^{\prime}, s_{0}{ }^{\prime}, S_{g}{ }^{\prime}\right)$ is another classical planning problem
- Solutions $(\mathrm{P}) \subseteq$ Solutions $\left(\mathrm{P}^{\prime}\right)$
- Then (and only then): P^{\prime} is a relaxation of P

Solutions for P:
Sol1, cost 10
Sol2, cost 12
Sol3, cost 27

Solutions for P':

Sol1, cost 10
Sol2, cost 12
Sol3, cost 27
Sol4, cost 8
Sol5, cost 42

All old solutions remain solutions!

Now sol4 is optimal

Relaxation Example: Basis

- A simple planning problem (domain + instance)
- Blocks world, 3 blocks
- Initially all blocks on the table
- Goal: (and (on B A) (on A C)) (only satisfied in s19)
- Solutions: All paths from init to goal (infinitely many - can have cycles)

Relaxation Example 1

- Example I:Adding new operators to the domain
- All old solutions still valid, but new solutions may exist
- Modifies the STS by adding new edges / transitions
- This particular example: shorter solution exists

Relaxation Example 2

- Example 2: Adding goal states
- New goal formula: (and (on B A) (or (on A C) (on C B)))
- All old solutions still valid, but new solutions may exist
- This particular example: Optimal solution from $\boldsymbol{s}_{\mathbf{0}}$ retains the same length

Relaxation Example 3

- Example 3: Ignoring state variables
- Ignore the handempty fact in preconditions and effects
- Different state space, no simple addition or removal, but all the old solutions (paths) still lead to goal states!
- 22 reachable states
$\rightarrow 26$
- 42 transitions
$\rightarrow 72$

Relaxation Example 3b

- Example 3, enlarged

Relaxation Example 4

- Example 4:Weakening preconditions of existing actions

Possible first moves:
Move 8 right
Move 4 up
Move 6 left

- Precondition relaxation: Tiles can be moved across each other
- Now we have 21 possible first moves: New transitions added to the STS
- All old solutions are still valid, but new ones are added
" To move " 8 " into place:
" Two steps to the right, two steps down, ends up in the same place as " 1 "

Can still be solved through search
The optimal solution for the relaxed 8-puzzle can never be more expensive than the optimal solution for original 8-puzzle

Relaxation Heuristics: Summary

- Relaxation: One general principle for designing admissible heuristics for optimal planning
- Find a way of transforming planning problems, so that given a problem instance P:
" Computing its transformation P^{\prime} is easy (polynomial)
- Finding an optimal solution to P^{\prime} is easier than for P
- All solutions to \mathbf{P} are solutions to \mathbf{P} ', but the new problem can have additional solutions as well
- Then the cost of an optimal solution to P' is an admissible heuristic for the original problem P

Relaxation:

Search or Direct Computation?

Search or Direct Computation (1)

- As stated:
- Compute an actual solution π^{\prime} for the relaxed problem P
- Compute $\operatorname{cost}\left(\pi^{\prime}\right)$
- Example:The 8-puzzle...
- Ignore blank(x,y) in preconditions and effects
- Run the problem through an optimal planner
- Compute the cost of the resulting plan π^{\prime}

```
(:action move-up
    :parameters (?t ?px ?py ?by)
    :precondition (and
            (tile ?t) (position ?px) (position ?py) (position ?by)
            (dec ?by ?py) (blank ?px ?by) (at ?t ?px ?py))
    :effect (and (not (blank ?px ?by)) (not (at ?t ?px ?py))
        (blank ?px ?py) (at ?t ?px ?by)))
```


Search or Direct Computation (2)

- But we only use π^{\prime} to compute its cost!
- Let's analyze the problem...
- Each piece has to be moved to the intended row
- Each piece has to be moved to the intended column
- These are exactly the required actions given the relaxation!
- \rightarrow optimal cost for relaxed problem
= sum of Manhattan distances
- \rightarrow admissible heuristic for original problem= sum of Manhattan distances
- \rightarrow Cost of any optimal solution π^{\prime} can be computed efficiently without π^{\prime} :

But now we had to analyze the problem:
(I) Decide to ignore "blank"
(2) Find "sum of manhattan distances"

Soon: How do we automatically find good relaxations + computation methods?

Relaxation:
 Essential Facts

Relaxation Heuristics: Balance

- The reason for relaxation is rapid calculation
- Shorter solutions are an unfortunate side effect:

Leads to less informative heuristics

- Relax too much \rightarrow not informative
- Example:Any piece can teleport into the desired position $\rightarrow h(n)=$ number of pieces left to move

Relaxation Heuristic: Important Issues!

You cannot "use a relaxed problem as a heuristic". What would that mean?
You use the cost of an optimal solution to the relaxed problem as a heuristic.

Relaxation Heuristic: Important Issues!

Solving the relaxed problem can result in a more expensive solution \rightarrow inadmissible!

You have to solve it optimally to get the admissibility guarantee.

Relaxation Heuristic: Important Issues!

You don't just solve the relaxed problem once.
Every time you reach a new state and want to calculate a heuristic,
you have to solve the relaxed problem
of getting from that state to the goal.

Relaxation Heuristic: Important Issues!

Relaxation does not always mean "removing constraints" in the sense of weakening preconditions (moving across tiles, removing walls, ...) Sometimes we get new goals. Sometimes the entire state space is transformed.

Sometimes action effects are modified, or some other change is made.
What defines relaxation: All old solutions are valid, new solutions may exist.

Admissibility: Important Issues!

Relaxation is useful for finding admissible heuristics.
A heuristic cannot be admissible for some states. Admissible == does not overestimate costs for any state!

Admissibility: Important Issues!

If you are asked "why is a relaxation heuristic admissible?", don't answer "because it cannot overestimate costs". This is the definition of admissibility!

> "Why is it admissible?" == "Why can't it overestimate costs?"

Admissible heuristics can "lead you astray" and you can "visit" suboptimal solutions.
But with the right search strategy, such as A^{*}, the planner will eventually get around to finding an optimal solution. This is not the case with $A^{*}+$ non-admissible heuristics.

Delete Relaxation

Delete Relaxation (1)

- In classical planning:
- Negative effects can "un-achieve" goals or preconditions
- A plan may have to achieve the same fact many times
- Example: If handempty is a goal

Delete Relaxation (2)

- Suppose we remove all negative effects
- Example: (unstack ?x ?y)
- Before transformation: :precondition (and (handempty) (clear ?x) (on ?x ?y)) :effect (and (not (handempty)) (holding ?x) (not (clear ?x)) (clear ?y) (not (on ?x ? y))
- After transformation:

```
:precondition (and (handempty) (clear ?x) (on ?x ?y))
:effect (and (holding ?x) (clear ?y))
```

- A fact that is achieved stays achieved

Is this a relaxation?

Delete Relaxation (3)

- Suppose we use the book's classical representation:
- Precondition $=$ set of literals that must be true
- Goal $=$ set of literals that must be true
- Effects $\quad=$ set of literals (making atoms true or false)
- Suppose we have a solution <A1,A2>:
- Initially handempty
- Action A1
\rightarrow handempty:= false
- Action A2 $\quad \rightarrow$ requires (not handempty)
- Remove all negative effects:
- Initially handempty
- Action A1 $\quad \rightarrow$ no effect
- Action A2 \rightarrow requires (not handempty), not executable
- <A1,A2> is no longer a solution; can't be a relaxation

Delete Relaxation (4)

- Suppose we use PDDL's plain :strips level
- Forbids negative preconditions / goals
- Precondition $=$ set of atoms (no negations!)
- Goal $\quad=$ set of atoms (no negations!)
- Effects $\quad=$ set of literals (making atoms true or false)
- No solution can depend on a fact being false in a visited state
- No solution can disappear because we stop making facts false

This is a relaxation if the problem lacks negative preconditions / goals!

Delete Relaxation (5): Example

Delete-relaxed STRIPS problem

Delete Relaxation (8): Example

Delete-relaxed STRIPS problem
STS for the original problem

> No goal requires the absence of a fact

Delete Relaxation (9)

- Negative effects are also called "delete effects"
- They delete facts from the state
- So this is called delete relaxation
- "Relaxing the problem by getting rid of the delete effects"

Delete relaxation does not mean that we "delete the relaxation" (anti-relax)!

Delete relaxation is only a relaxation if preconditions and goals are positive!

Delete Relaxation (10)

- Since solutions are preserved when facts are added:

A state where additional facts are true can never be "worse"! (Given positive preconds/goals)

Given two states (sets of true atoms) $\mathrm{s}, \mathrm{s}^{\prime}$:

$$
\mathbf{s} \supset s^{\prime} \rightarrow h^{*}(s)<=h^{*}\left(s^{\prime}\right)
$$

Delete Relaxation:

State Space Examples

Reachable State Space: BW size 2

Delete-Relaxed BW size 2: Detail View

Delete-Relaxed: "Loops" Removed

5 states
 8 transitions

The Optimal Delete Relaxation Heuristic

Optimal Delete Relaxation Heuristic

- If only delete relaxation is applied:
- We can calculate the optimal delete relaxation heuristic, $h^{+}(n)$
- $h^{+}(n)=$ the cost of an optimal solution to a delete-relaxed problem
starting in node n

Accuracy of h+ in Selected Domains

- How close is $h^{+}(n)$ to the true goal distance $h^{*}(n)$?
- Worst case asymptotic accuracy as problem size approaches infinity:
- Blocks world:
1/4
$\rightarrow h^{+}(n) \geq \frac{1}{4} h^{*}(n)$

Optimal plans in delete-relaxed Blocks World can be down to 25% of the length of optimal plans in "real" Blocks World

A			A	Standard:	
			B	unstack(A, B)	pickup(G)
				putdown(A)	$\operatorname{stack}(\mathrm{G}, \mathrm{H})$
C			C	unstack(B,C)	pickup(F)
D			D	putdown(B)	$\operatorname{stack}(\mathrm{F}, \mathrm{G})$
E			E	unstack(C,D)	pickup(E)
F			E	putdown(C)	stack(E,F)
F					pickup(D)
G			G	unstack(H, I)	$\operatorname{stack}(\mathrm{D}, \mathrm{E})$
H			H	stack(H,J)	...
I	J	1	J		

Relaxed:
unstack(A,B)
unstack(B,C)
unstack(C,D)
unstack(D,E)
unstack(E,F)
unstack(F,G)
unstack(G,H)
unstack(H,I) stack(H,J) DONE!

Accuracy of h+ in Selected Domains (2)

- How close is $h^{+}(n)$ to the true goal distance $h^{*}(n)$?
- Worst case asymptotic accuracy as problem size approaches infinity:
- Blocks world:
1/4
$\rightarrow h^{+}(n) \geq \frac{1}{4} h^{*}(n)$
- Gripper domain:
- Logistics domain:
- Miconic-STRIPS:
- Miconic-Simple-ADL:
- Schedule:
- Satellite:
(single robot moving balls)
(move packages using trucks, airplanes)
(elevators)
(elevators)
(job shop scheduling)
(satellite observations)
- Details:
- Malte Helmert and Robert Mattmüller Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Example of Accuracy

- How close is $h^{+}(n)$ to the true goal distance $h^{*}(n)$?
" In practice:Also depends on the problem instance!

$$
\operatorname{pickup}(B) ; \operatorname{stack}(B, C) ; \operatorname{stack}(A, B)
$$

$\rightarrow \mathbf{h}+=3\left[\mathbf{h}^{*}=5\right]$
Good action!
unstack $(A, C) ; \operatorname{stack}(B, C) ; \operatorname{stack}(A, B)$
$\rightarrow \mathbf{h +}=\mathbf{3}\left[\mathbf{h}^{*}=7\right]$
Seems equally good as unstack, but is worse
unstack(A,C); pickup(B);
$\operatorname{stack}(B, C) ; \operatorname{stack}(A, B)$
$\rightarrow \mathbf{h +}=4\left[\mathbf{h}^{*}=7\right]$

- Performance also depends on the search strategy
- How sensitive it is to specific types of inaccuracy

Computing the
 Optimal Delete Relaxation Heuristic

Computingh+

- Is $h^{+}(n)$ easier to compute than $h^{*}(n)$?
- $h^{*}(n)=$ length of optimal plan for arbitrary planning problem
- Supports negative effects
- If we can execute either a1;a2 or a2;a1:
- a1 removes $p, a 2$ adds $p \rightarrow$ net result: add p
" a2 adds p, a1 removes $p \rightarrow$ net result: remove p
- Both orders must be considered
- $h^{+}(n)=$ length of optimal plan after removing negative effects
- If we can execute either a1;a2 or a2;a1:
- Must lead to the same state (add p1 before p2, or p2 before p1)
- Sufficient to consider one order - simpler?
- Incomplete analysis
- But the worst case for $h^{+}(n)$ is easier than the worst case for $h^{*}(n)$

Calculating h+

- Still difficult to calculate in genera!!
- NP-equivalent (reduced from PSPACE-equivalent)
- Since you must find optimal solutions to the relaxed problem
- Even a constant-factor approximation is NP-equivalent to compute!
- Finding $h(n)$ so that $\forall n . h(n) \geq c \cdot h^{+}(n)$
- Therefore, rarely used "as is"
- But forms the basis of many other heuristics

Optimal Classical Planning:
 The Admissible h_{1} Heuristic

Intuitions (1)

- Why is $h^{+}(n)$ so "slow"?

Must compute the exact cost of an optimal plan achieving all goals

As problem sizes grow, the number of goals will grow
\rightarrow plan lengths grow (even delete-relaxed!)
\rightarrow number of plans to check (directly or indirectly) grows exponentially

Intuitions (2)

- Suppose we delete-relax, then only consider one goal fact
- Remove goal requirements $\boldsymbol{\rightarrow}$ add new goal states in S_{g}
- Relaxation!
" "Old" plans achieving all goals are still valid solutions
- Also has much shorter solutions, much faster to compute

> Too relaxed!
> And which goal to choose?

Intuitions (3)

- Given two admissible heuristics $h_{A}(n)$ and $h_{B}(n)$:
- $h_{A B}(n)=\max \left(h_{A}(n), h_{B}(n)\right)$ is admissible
- If neither heuristic overestimates, their maximum cannot overestimate

The h_{1} Heuristic

- Idea (from HSPr*): Consider one goal atom at a time

Treat each goal atom separately
Take the maximum of the costs

Uses a set of relaxations!

Computing $\boldsymbol{h}_{\mathbf{1}}(\boldsymbol{n})$

The h_{1} Heuristic: Example (action cost = 1)

Avoid interactions:

Find the best way to achieve clear(A)
Then find the best way to achieve on(A,B)

Use backward search, starting with the goals
s_{0} : clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The h_{1} Heuristic: Example (attion cost = 1)

We have two preconditions to achieve.
Reduce interactions even more:
Consider each of these as a separate "subgoal"!
First holding(A), then clear(B).
s_{0} : clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The h_{1} Heuristic: Intuitions (2)

Idea:Treat each goal atom separately
Take the maximum of the costs
$\mathrm{h}_{1}(\mathrm{n})$: Split the problem even further; consider individual subgoals at every "level"

The h_{1} Heuristic: Example (continued)

Goal:	$\operatorname{clear}(\mathrm{A})$	on (A, B)	$\operatorname{on}(\mathrm{B}, \mathrm{C})$	$\operatorname{ontable}(\mathrm{C})$	$\operatorname{clear}(\mathrm{D})$	ontable (D)
	$\operatorname{cost} 0$	cost 2	$\operatorname{cost} 2$	$\operatorname{cost} 0$	$\operatorname{cost} 0$	$\operatorname{cost} 0$

unstack((A, C)	
handempty	$\operatorname{clear}(A)$
on (A, C)	

s_{0} : clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The h ${ }_{1}$ Heuristic. Important Property 1

We don't search for a valid plan achieving on(B,C)!

Then we would need putdown(A)...

The heuristic considers individual subgoals at all levels, misses interactions at all levels

holding(B) clear(C) cost 1 cost 1

Each precondition considered separately!

The h heuristic. Important Property 2

Given a problem using :strips expressivity, we ignore negative effects!
(Given a goal atom, find an action achieving it, without considering any other effects)
stack(B,C)
holding(B) clear(C)
cost 1 cost 1

unstack(A,C)
handempty $\operatorname{clear}(A) \quad$ on (A, C)
$h_{\text {I }}$ takes the delete relaxation heuristic, relaxes it further

The h_{1} Heuristic Important Property 3

Theh Heuristic: Formal Definition

$h_{I}(s)=\Delta_{1}(s, g)-$ the heuristic depends on the goal g

- For a goal, a set g of facts to achieve:
- $\Delta_{\mathrm{l}}(\mathrm{s}, \mathrm{g})=$ the cost of achieving the most expensive proposition in g
- $\Delta_{1}(\mathrm{~s}, \mathrm{~g})=0$ (zero) if $\mathrm{g} \subseteq \mathrm{s} \quad / /$ Already achieved entire goal
- $\Delta_{l}(\mathrm{~s}, \mathrm{~g})=\max \left\{\Delta_{l}(\mathrm{~s}, \mathrm{p}) \mid \mathrm{p} \in \mathrm{g}\right\}$ otherwise // Part of the goal not achieved

The cost of each atom in goal g

Max: The entire goal must be at least as
expensive as the most expensive subgoal

Implicit delete relaxation:
Cheapest way of achieving $\mathrm{p} 1 \in \mathrm{~g}$ may actually delete $\mathrm{p} 2 \in \mathrm{~g}$

So how expensive is it to achieve a single proposition?

Theh Heuristic: Formal Definition

$h_{1}(s)=\Delta_{1}(s, g)-$ the heuristic depends on the goal g

- For a single proposition p to be achieved:
- $\Delta_{l}(s, p)=$ the cost of achieving prom s
- $\Delta_{l}(s, p)=0 \quad$ if $p \in s \quad / /$ Already achieved p
- $\Delta_{l}(\mathrm{~s}, \mathrm{p})=\infty \quad$ if $\forall \mathrm{a} \in \mathrm{A} . \mathrm{p} \notin$ effects $^{+}(\mathrm{a})$ // Unachievable
- Otherwise:

$$
\begin{gathered}
\Delta_{l}(\mathrm{~s}, \mathrm{p})=\min \left\{\operatorname{cost}(\mathrm{a})+\Delta_{1}(\mathrm{~s}, \text { precond }(\mathrm{a})) \mid \mathrm{a} \in \mathrm{~A} \text { and } \mathrm{p} \in \text { effects }^{+}(\mathrm{a})\right\} \\
\text { Must execute an action a } \in \mathrm{A} \text { that achieves } \mathrm{p}, \\
\text { and before that, acheive its preconditions }
\end{gathered}
$$

Min: Choose the action
that lets you achieve the proposition p as cheaply as possible

The h_{1} Heuristic: Examples

- In the problem below:
- $g=\{$ ontable(C), ontable(D), clear(A), clear(D), on(A,B), on(B,C) $\}$
- So for any state s :
- $\Delta_{1}(s, g)=\max \left\{\quad \begin{array}{lll}\Delta_{1}(s, \text { ontable }(C)), & \Delta_{1}(s, \text { ontable }(D)), & \Delta_{1}(s, \text { clear }(A)), \\ \Delta_{1}(s, \text { clear }(D)), & \Delta_{1}(s, \text { on }(A, B)), & \Delta_{1}(s, \text { on }(B, C))\end{array}\right\}$
- With unit action costs:

The h_{1} Heuristic: Properties

- $h_{1}(s)$ is:
- Easier to calculate than the optimal delete relaxation heuristic $\mathrm{h}+$
- Somewhat useful for this simple BW problem instance
- Not sufficiently informative in general
- Example:
- Forward search in Blocks World using Fast Downward planner, A*

Blocks	nodes blind	nodes h I
5	1438	476
6	6140	963
7	120375	24038
8	1624405	392065
9	25565656	14863802
10	>84 million (out of mem)	208691676

Optimal Classical Planning:
 The Admissible h_{m} Heuristics

The h_{m} Heuristics

- Next idea: Could we generalize to multiple but few atoms?
- $\mathrm{h}_{1}(\mathrm{~s})=\Delta_{1}(\mathrm{~s}, \mathrm{~g})$: The most expensive atom
- $\mathrm{h}_{2}(\mathrm{~s})=\Delta_{2}(\mathrm{~s}, \mathrm{~g})$: The most expensive pair of atoms
- $h_{3}(s)=\Delta_{3}(s, g)$: The most expensive triple of atoms
- ...
- \rightarrow A family of admissible heuristics $h_{m}=h_{1}, h_{2}, \ldots$ for optimal classical planning

The h_{2} Heuristic

- $h_{2}(s)=\Delta_{2}(s, g)$ The most expensive pair of goal propositions

Goal	$\Delta_{2}(s, g)=0$	if $g \subseteq s$	// Already achieved
(set)	$-\Delta_{2}(s, g)=\underline{\max }\left\{\Delta_{2}(s, p, q) \mid p, q \in g\right\}$	otherwise	// Can have $\mathrm{p}=\mathrm{q}!$

Pair of propositions	- $\Delta_{2}(\mathrm{~s}, \mathrm{p}, \mathrm{q})=0$
	- $\Delta_{2}(\mathrm{~s}, \mathrm{p}, \mathrm{q})=\infty$
	- $\Delta_{2}(\mathrm{~s}, \mathrm{p}, \mathrm{q})=\underline{\min }\{$
$\begin{aligned} & \text { (maybe } \\ & \mathrm{p}=\mathrm{q} \text {) } \end{aligned}$	$\min \left\{\operatorname{cost}(\mathrm{a})+\Delta_{2}(\mathrm{~s}\right.$, precond(a) $)$
	$\min \left\{\operatorname{cost}(\mathrm{a})+\Delta_{2}(\mathrm{~s}, \operatorname{precond}(\mathrm{a}) \mathrm{U}\{\mathrm{q}\})\right.$
	$\min \left\{\operatorname{cost}(\mathrm{a})+\Delta_{2}(\mathrm{~s}, \operatorname{precond}(\mathrm{a}) \cup\{\mathrm{p}\})\right.$
	$\}$ 边

if $p, q \in s \quad / /$ Already achieved if $\forall \mathrm{a} \in \mathrm{A} . \mathrm{p} \notin$ effects $^{+}(\mathrm{a})$ or $\forall \mathrm{a} \in \mathrm{A}$. $\mathrm{q} \notin$ effects $^{+}(\mathrm{a})$
$\mid a \in A$ and $\left.p, q \in \operatorname{effects}^{+}(a)\right\}$, $\mid \mathrm{a} \in \mathrm{A}, \mathrm{p} \in$ effects $^{+}(\mathrm{a}), \mathrm{q} \notin$ effects $\left.^{-}(\mathrm{a})\right\}$, $\mid a \in A, q \in$ effects $^{+}(a), p \notin$ effects $\left.^{-}(a)\right\}$

- $h_{2}(s)$ is more informative than $h_{1}(s)$, requires non-trivial time
- $m>2$ rarely useful

The h_{2} Heuristic and Delete Effects

- In this definition of h_{2} :

```
- \(\Delta_{2}(\mathrm{~s}, \mathrm{p}, \mathrm{q})=\underline{\min }\{\)
        \(\operatorname{cost}(\mathrm{a})+\min \left\{\Delta_{2}(\mathrm{~s}, \operatorname{precond}(\mathrm{a}))\right.\)
        \(\operatorname{cost}(a)+\min \left\{\Delta_{2}(s, \operatorname{precond}(a) U\{q\})\right.\)
        \(\operatorname{cost}(a)+\min \left\{\Delta_{2}(s, \operatorname{precond}(a) \cup\{p\})\right.\)
\}
```

 \(\mid a \in A\) and \(\left.p, q \in \operatorname{effects}^{+}(a)\right\}\),
 \(\mathrm{a} \in A, \mathrm{p} \in \operatorname{effects}^{+}(\mathrm{a}), \mathrm{q} \notin\) effects \(\left.^{-}(\mathrm{a})\right\}\),
 \(a \in A, q \in \operatorname{effects}^{+}(a), p \notin\) effects \(\left.^{-}(a)\right\}\)

Takes into account some delete effects

 So h_{2} is not a delete relaxation heuristic (but it is admissible)!- Misses other delete effects
- Goal: \quad ap, q, r\}
- A1: Adds $\{\mathrm{p}, \mathrm{q}\}$
- A2: Adds $\{p, r\} \quad$ Deletes $\{q\}$
- A3: Adds $\{\mathrm{q}, \mathrm{r}\} \quad$ Deletes $\{\mathrm{p}\}$
- $\Delta_{2}(s, p, q), \Delta_{2}(s, q, r), \Delta_{2}(s, p, r)=1$: Any pair can be achieved with a single action
- $\Delta_{2}(\mathrm{~s}, \mathrm{~g})=\max \left(\Delta_{2}(\mathrm{~s}, \mathrm{p}, \mathrm{q}), \Delta_{2}(\mathrm{~s}, \mathrm{q}, \mathrm{r}), \Delta_{2}(\mathrm{~s}, \mathrm{p}, \mathrm{r})\right)=\max (1,1,1)=1$, but the problem is unsolvable!
- If $\Delta_{2}\left(s_{0}, p, q\right)=\infty$:
- Starting in s_{0}, can't reach a state where p and q are true
- Starting in $\mathrm{s}_{0}, \mathrm{p}$ and q are mutually exclusive (mutex)
- One-way implication!
- Can be used to find some mutex relations, not necessarily all

The h_{2} Heuristic and Delete Relaxation

- In the book:

```
- \(\Delta_{2}(s, p, q)=\underline{\min }\{\)
    \(1+\min \left\{\Delta_{2}(s, \operatorname{precond}(\mathrm{a}))\right.\)
    \(1+\min \left\{\Delta_{2}(s, \operatorname{precond}(\mathrm{a}) \cup\{q\}) \quad \mid a \in A, p \in \operatorname{effects}^{+}(\mathrm{a})\right\}\),
    \(1+\min \left\{\Delta_{2}(s, \operatorname{precond}(a) \cup\{p\}) \quad \mid a \in A, q \in \operatorname{effects}^{+}(a)\right\}\)
\}
```

- This is not how the heuristic is normally presented!
- Corresponds to applying (full) delete relaxation
- Uses constant action costs (1)

The h ${ }_{m}$ Heuristics: Calculating

- Calculating $\mathrm{h}_{\mathrm{m}}(\mathrm{s})$ in practice:
- Characterized by Bellman equation over a specific search space
- Solvable using variation of Generalized Bellman-Ford (GBF)
- (Not part of the course)

$$
h^{m}(s)= \begin{cases}0 & \text { if } s \subseteq I \\ \min _{s^{\prime} \in \operatorname{succ}(s)} h^{m}\left(s^{\prime}\right)+\delta\left(s, s^{\prime}\right) & \text { if }|s| \leqslant m \\ \max _{s^{\prime} \subseteq s,\left|s^{\prime}\right| \leqslant m}^{m}\left(s^{\prime}\right) & \end{cases}
$$

Cost of cheapest action taking you from s to s^{\prime}

Accuracy of h_{m} in Selected Domains

- How close is $h_{m}(n)$ to the true goal distance $h^{*}(n)$?
- Asymptotic accuracy as problem size approaches infinity:
- Blocks world:

0
$\rightarrow \mathrm{h}_{\mathrm{m}}(n) \geq 0 \mathrm{~h}^{*}(\mathrm{n})$

- For any constant m !

Accuracy of h_{m} in Selected Domains (2)

- Consider a constructed family of problem instances:
- 10n blocks, all on the table
- Goal: n specific towers of 10 blocks each
- What is the true cost of a solution from the initial state?
- For each tower, 1 block in place + 9 blocks to move
- 2 actions per move
- $9^{*} 2^{*} n=18 n$ actions
- h_{1} (initial-state) $=2$ - regardless of n !
- All instances of clear, ontable, handempty already achieved

| A1 | A2 |
| :--- | :--- | :--- |
| B1 | B2 |
| C1 | C2 |
| D1 | D2 |
| E1 | E2 |
| F1 | F2 |
| G1 | C2 |
| H1 | H2 |
| I1 | I2 |
| J1 | J2 |

- Achieving a single on(...) proposition requires two actions
- h_{2} (initial-state) $=4$
- Achieving two on(...) propositions
- h_{3} (initial-state) $=6$

As problem sizes grow, the number of goals can grow and plan lengths can grow indefinitely

But $h_{m}(n)$ only considers a constant number of goal facts!
Each individual set of size m does not necessarily become harder to achieve, and we only calculate max, not sum...

Accuracy of h_{m} in Selected Domains (3)

- How close is $h_{m}(n)$ to the true goal distance $h^{*}(n)$?
- Asymptotic accuracy as problem size approaches infinity:
- Blocks world:
- Gripper domain:
- Logistics domain:
- Miconic-STRIPS:
- Miconic-Simple-ADL:
- Schedule:
- Satellite:
- For any constant m!
- Details:
- Malte Helmert, Robert Mattmüller Accuracy of Admissible Heuristic Functions in Selected Planning Domains

The h_{2} Heuristic: Accuracy

- Experimental accuracy of h2 in a few classical problems:
\(\left.\begin{array}{|l|r|r|}\hline Instance \& Opt. \& h(root)

\hline blocks-9 \& 6 \& 5

blocks-11 \& 9 \& 7

blocks-15 \& 14 \& 11

eight-1 \& 31 \& 15

eight-2 \& 31 \& 15

eight-3 \& 20 \& 12

grid-1 \& 14 \& 14

gripper-1 \& 3 \& 3

gripper-2 \& 9 \& 4

gripper-3 \& 15 \& 4

\hline\end{array}\right]\)| Seems to work well |
| :---: |
| for the blocks world... |

The h ${ }_{m}$ Heuristic: Nodes Expanded

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Blocks/length } & \text { nodes blind } & \text { nodes h } & \text { nodes h2 } & \text { nodes h3 } & \text { nodes h4 } \\ \hline 5 & 1438 & 476 & 112 & 18 & 13 \\ \hline 6 & 6140 & 963 & 78 & 23 & \\ \hline 7 & 120375 & 24038 & 1662 & 36 & \\ \hline 8 & 1624405 & 392065 & 3597 & & \\ \hline 9 & 25565656(25.2 \text { s) } & 14863802 & & & \\ \hline 10 & >84 \text { million } \\ \text { (out of mem) }\end{array}\right)$

Backward Search and $\boldsymbol{h}_{\boldsymbol{m}}$ Heuristics

Forward Search with h_{m}

- Consider $\mathbf{h}_{\mathbf{m}}$ heuristics using forward search:

Forward Search with h_{m} :Illustration

 current: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

Calculations depend very much on the entire current state! New search node \Rightarrow new current state \Rightarrow recalculate Δ_{m} from scratch

Backward Search with h_{m}

- In backward search:

$$
\begin{gathered}
\text { Need } \\
\Delta_{\mathrm{m}}(\mathrm{~s} 0, \mathrm{~g} 3), \\
\Delta_{\mathrm{m}}(\mathrm{~s} 0, \mathrm{~g} 4), \\
\Delta_{\mathrm{m}}(\mathrm{~s} 0, \mathrm{~g} 5)
\end{gathered}
$$

New search node \Rightarrow same starting state \rightarrow use the old Δ_{m} values for previously encountered goal subsets

A		$\mathbf{s 0}$
C	B	D

HSPr, HSPr*

- Results:
- Faster calculation of heuristics
- Not applicable for all heuristics!
- Many other heuristics work better with forward planning

Heuristics for Satisficing

 Forward State Space Planning
Optimal and Satisficing Planning

- Optimal planning often uses admissible heuristics + A*
- Are there worthwhile alternatives?
- If we need optimality:
- Can't use non-admissible heuristics
- Can't expand fewer nodes than A*
- But we are not limited to optimal plans!
- High-quality non-optimal plans can be quite useful as well
- Satisficing planning
- Find a plan that is sufficiently good, sufficiently quickly
- Handles larger problems

Investigate many different points on the efficiency/quality spectrum!

- What's sufficiently good, sufficiently quick?
- Strict definition of satisficing:
- Searching until you satisfy a quality threshold
- In automated planning:
- Usually no well-defined threshold that is tested during planning
- Try to find strategies and heuristics that seem reasonably quick and give reasonable results in our tests

The $h_{\text {add }}$ Heuristic Function

Also called h_{0}

Background

- h_{m} heuristics are admissible, but not very informative
- Only measure the most expensive goal subsets
- For satisficing planning, we do not need admissibility
- What if we use the sum of individual plan lengths for each atom!
- Result: $h_{\text {add }}$, also called h_{0}

The hadad Heuristic: Example

s_{0} : clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The $h_{\text {add }}$ Heuristic: Formal Definition

$h_{\text {add }}(s)=h_{0}(s)=\Delta_{0}(s, g)$ - the heuristic depends on the goal g

- For a goal, a set g of facts to achieve:
- $\Delta_{0}(s, g)=$ the cost of achieving the most expensive proposition in g
- $\Delta_{0}(\mathrm{~s}, \mathrm{~g})=0 \quad$ if $\mathrm{g} \subseteq \mathrm{s} \quad / /$ Already achieved entire goal
- $\Delta_{0}(\mathrm{~s}, \mathrm{~g})=\operatorname{sum}\left\{\Delta_{0}(\mathrm{~s}, \mathrm{p}) \mid \mathrm{p} \in \mathrm{g}\right\} \quad$ otherwise // Part of the goal not achieved

The cost of each atom p in goal g

Sum: We assume we have to achieve every subgoal separately

So how expensive is it to achieve a single proposition?

The $\mathrm{h}_{\text {add }}$ Heuristic: Formal Definition

$h_{\text {add }}(s)=h_{0}(s)=\Delta_{0}(s, g)-$ the heuristic depends on the goal g

- For a single proposition p to be achieved:
- $\Delta_{0}(\mathrm{~s}, \mathrm{p})=$ the cost of achieving p from s
- $\Delta_{0}(s, p)=0 \quad$ if $p \in s \quad / /$ Already achieved p
- $\Delta_{0}(\mathrm{~s}, \mathrm{p})=\infty \quad$ if $\forall \mathrm{a} \in \mathrm{A} . \mathrm{p} \notin$ effects $^{+}(\mathrm{a}) / /$ Unachievable
- Otherwise:

$$
\begin{aligned}
\Delta_{0}(s, p)=\min & \left\{\operatorname{cost}(a)+\Delta_{1}(s, \operatorname{precond}(a)) \mid a \in A \text { and } p \in \operatorname{effects}^{+}(a)\right\} \\
& \begin{array}{l}
\text { Must execute an action } a \in A \text { that achieves } p \\
\text { and before that, acheive its preconditions }
\end{array}
\end{aligned}
$$

Min: Choose the action
that lets you achieve p as cheaply as possible

The $\mathrm{h}_{\text {add }}$ Heuristic: Example

- $\mathrm{h}_{\mathrm{add}}(\mathrm{s})=\Delta_{0}(\mathrm{~s}, \mathrm{~g})$
- For another example:
" ontable(E): unstack(E,A), putdown(E) $\rightarrow 2$
" clear(A): unstack(E,A) $\boldsymbol{\rightarrow} 1$
" on(A,B): unstack(E,A), unstack(A,C), $\operatorname{stack}(A, B) \rightarrow 3$
- on(B,C): unstack(E,A), unstack(A,C), pickup(B), $\operatorname{stack}(B, C) \rightarrow 4$
- on(C,D): unstack(E,A), unstack(A,C), pickup(C), stack(C,D) $\boldsymbol{\rightarrow} 4$
" on(D,E): pickup(D), $\operatorname{stack}(\mathrm{D}, \mathrm{E}) \rightarrow 2$
\Rightarrow sum is $16\left[h+=10, h^{*}=12\right]$

Can underestimate but also overestimate, not admissible!

The $\mathrm{h}_{\text {add }}$ Heuristic: Admissibility

- Why not admissible?
- Does not take into account interactions between goals
- Simple case: Same action used
" on(A,B): unstack(E,A); unstack(A,C); $\operatorname{stack}(\mathrm{A}, \mathrm{B}) \boldsymbol{\rightarrow} 3$
- $\boldsymbol{\text { on(B,C)}}$: unstack(E,A); unstack(A,C); pickup(B); $\operatorname{stack}(\mathrm{B}, \mathrm{C}) \rightarrow 4$
- More complicated to detect:
- Goal: pand q
- A1: effect p
- A2: effect q
- A3: effect pand q
- To achieve p: Use AI - No specific action used twice
- To achieve q: Use A2 - Still misses interactions

Hill Climbing in HSP (Heuristic Search Planner)

Satisficing planning, in a nutshell:
Try to move quickly towards a reasonably good solution

HillClimbing (I)

- What about Steepest Ascent Hill Climbing?
- Greedy local search algorithm for optimization problems
- (I) Start in some current location

Hill Climbing (2)

- (2) Find the local neighborhood, which can easily be reached

Hill Climbing (3)

(3) Make a locally optimal choice at each step: Chooses the successor/neighbor that is best in this step (doesn't care about the future)

Hill Climbing (4)

- We don't have a metric state quality measure!
- Goal states are perfect, other states are not solutions at all
- But minimizing heuristic value might lead to a goal state...
- (Minimize $h(n)=$ maximize $-h(n)$)
- \rightarrow A good heuristic should order children in the best way

Hill Climbing (5)

- Example of hill climbing search:

Hill Climbing (6)

A* search:

$n \leftarrow$ initial state
open $\leftarrow \varnothing$

loop

if n is a solution then return n expand children of n calculate h for children
add children to open
$n \leftarrow$ node in open minimizing $f(n)=g(n)+h(n)$
end loop

Steepest Ascent Hill-climbing $n \leftarrow$ initial state

loop

if n is a solution then return n expand children of n calculate h for children
if (some child decreases $h(n)$): $n \leftarrow$ child with minimal $h(n)$
else stop // logal optimum end loop

Be stubborn:

Only consider children of this node, don't even keep track of other nodes to return to

Local Optima and Plateaus

Local Optima (1)

- (4) When there is nothing better nearby: Stop!
- HC is used for optimization
- Any point is a solution, we search for the best one
- Might find a local optimum:

The top of a hill

Local Optima (2)

- Classical planning \rightarrow absolute goals
- Even if we can't decrease $h(n)$, we can't simply stop

Steepest Ascent

 Hill-climbing$n \leftarrow$ initial state
loop
if n is a solution then return n expand children of n calculate h for children
if (some child decreases $h(n)$): $n \leftarrow$ child with minimal $h(n)$ else stop // local optimum end loop

Local Optima (3)

- Standard solution to local optima: Random restart
- Randomly choose another node/state
- Continue searching from there
- Hope you find a global optimum eventually
- Can planners choose arbitrary random states?

Steepest Ascent

Hill-climbing with Restarts
$n \leftarrow$ initial state
loop
if n is a solution then return n expand children of n
calculate h for children
if (some child decreases $h(n)$): $n \leftarrow$ child with minimal $\mathrm{h}(n)$ else $n \leftarrow$ some random state end loop

Local Optima (4)

- In planning:
- The solution is not a state but the path to the state
- Random states may not be reachable from the initial state
- So:
- Randomly choose another already visited node/state
- This node is reachable!

Steepest Ascent

Hill-climbing with Restarts (2)
$n \leftarrow$ initial state
loop
if n is a solution then return n expand children of n calculate h for children
if (some child decreases $h(n)$): $n \leftarrow$ child with minimal $\mathrm{h}(n)$ else $n \leftarrow$ some rnd. visited state end loop

Hill Climbing with $h_{\text {adtid }}$ Plateaus

No successor improves the heuristic value; some are equal!

We have a plateau...

Jump to a random state immediately?
No: the heuristic is not so accurate maybe some child is closer to the goal even though $h(n)$ isn't lower!
\rightarrow Let's keep exploring:
Allow a small number of consecutive moves across plateaus

- A plateau...

Hill Climbing with $h_{\text {axdit }}$: Local Optima

If we continue, all successors have higher heuristic values!

We have a local optimum...
Impasse = optimum or plateau
Some impasses allowed

Local Optima

- Local optimum:You can't improve the heuristic function in one step
- But maybe you can still get closer to the goal: The heuristic only approximates our real objectives

Impasses and Restarts

- What if there are many impasses?
- Maybe we are in the wrong part of the search space after all...
- Misguided by $h_{\text {add }}$ at some earlier step
- \rightarrow Select another promising expanded node where search continues

HSP Example

Its children seem to be worse. If we have reached the impasse threshold:

HSP 1:Heuristic Search Planner

- HSP 1.x: $\mathrm{h}_{\text {add }}$ heuristic + hill climbing + modifications
- Works approximately like this (some intricacies omitted):
- impasses = 0; unexpanded $=\{ \}$; current = initialNode; while (not yet reached the goal) \{
children = expand(current); // Apply all applicable actions
if (children $==\varnothing$) \{
current = pop(unexpanded);
\} else \{
bestChild = best(children); // Child with the lowest heuristic value

Essentially hill-climbing, but not all steps have to move "up"

Too many downhill/plateau moves \rightarrow escape add other children to unexpanded in order of $\mathrm{h}(\mathrm{n})$; // Keep for restarts! if (h(bestChild) $\geq \mathrm{h}$ (current)) \{
impasses++;
if (impasses $==$ threshold) \{
current = pop(unexpanded); // Restart from another node impasses = 0;

Heuristics part III

Pattern Database Heuristics

Admissible, but useful for both optimal and satisficing planning

PDB 1:Introduction

- Main idea behind pattern databases:
- Let's ignore some facts - everywhere
- In goals
- In preconditions or effects
- Compute costs as if those facts didn't matter

PDB 2: Dock Worker Robots

- Example: Dock Worker Robots
- Care about facts related to container locations
- in(container, pile), top(container,pile), on(cl,c2), ...
- Ignore robot locations, crane locations, ...
- Original states are grouped together

Abstract state in P', represents many states in P where c 3 is on c1 in p1,
...

Ordinary state in P, all facts included

PDB 3: Planning in Patterns

- In P' we (pretend that we) can use the crane at p1 to:
- pick up c3 (as we should)
- place something on r1 (too far away, but we don't care)
- place five containers on one truck

New paths to the goal!

- But we can't:
- pick up c1 (we do care about pile ordering)
- immediately place c1 below c2, ...
- \rightarrow Still a planning problem P^{\prime} left to solve!

PDB 4: Computing a Heuristic Value

- Solve P'(s) optimally, compute cost $\boldsymbol{\rightarrow}$ admissible heuristic $h(s)$!
- Take c2 with the crane (it's in the way)
- Take c3 with the crane [relaxation - not checking if the crane is busy]
- Place c3 at the bottom
- Place c2 on the top

Abstract current state s

Let's formalize!

Pattern Database Heuristics: Intro

Many heuristics solve subproblems, combine their cost

In each subproblem for the h_{m} heuristics:

Pick m goal literals at a time Ignore the others
Solve a subproblem optimally

In each subproblem for
 Pattern Database (PDB) Heuristics

Pick some ground atoms (facts)
Ignore the others
Solve a subproblem optimally

s_{0} : clear(A), on (A, C), ontable(C), clear((B), ontable(B$)$, clear(D$)$, ontable(D), handempty

BW4: Achievable States

0

- Consider physically achievable states in the blocks world, size 4:

BW4: Ground Atoms

- All ground atoms (facts) in this problem instance:

(on A A)	(on A B)	(on A C)	(on A D)
(on B A)	(on B B)	(on B C)	(on B D)
(on C A)	(on C B)	(on C C)	(on C D)
(on D A)	(on D B)	(on D C)	(on D D)

(ontable A) (ontable B) (ontable C) (ontable D)
(clear A) (clear B) (clear C) (clear D)
(holding A) (holding B) (holding C) (holding D)
(handempty)

BW4:Potential Subproblem

- Example: only consider 5 ground facts related to block A
" "Pattern": $p=\{($ on A B), (on A C), (on A D), (clear A), (ontable A) \}
- Initial state:

A B C D	ontable(A) ontable(B) ontable(C) ontable(D) clear(A) clear(B) clear(C) clear(D) handempty

- Goal:

| \mathbf{A} |
| :--- | :--- | :--- |
| \mathbf{B} |
| \mathbf{C} |
| \mathbf{D} | \left\lvert\, | $\operatorname{clear(A)}$ |
| :--- |
| on(A,B) |
| on(B,C) |
| on(C,D) |
| ontable(D) |
| handempty |$\quad \longrightarrow$| $\operatorname{clear(A)}$ |
| :--- |
| on(A,B) |
| on(B,C) |
| on(C,D) |
| ontable(D) |
| handempty |$\quad\right.$ An "abstract

BW4:Potential Subproblem (2)

- Pattern $p=\{($ on A B), (on A C), (on A D), (clear A), (ontable A) $\}$
- Example action: (unstack A B)
- Before transformation:
:precondition (and (handempty) (clear A) (on A B))
:effect (and (not (handempty)) (holding A) (not (clear A)) (clear B) ($\operatorname{not}(\boldsymbol{o n A B})$))
- After transformation: :precondition (and (clear A) (on A B)) :effect (and (not (clear A)) (not (on A B)))

Loses some preconditions and effects

Let's call this action transform (a, p)

- Example action: (unstack C D)
- Before transformation:
:precondition (and (handempty) (clear C) (on C D))
:effect (and (not (handempty)) (holding C) (not (clear C)) (clear D) (not (on CD)))
- After transformation: :precondition (and) :effect (and)

Loses all preconditions and effects $\boldsymbol{>}$ never used!

PDB Heuristics: Patterns

- The set of ground facts is called a pattern p
- A state s is represented by the abstract state $s \cap p$
- If $s \cap p=s^{\prime} \cap p$, the two states are considered equivalent

A pattern generally contains few facts!

Relaxation?

- Is this a relaxation?
- Yes
- Facts disappear from states...
- $S^{\prime}=\{\mathrm{s} \cap \mathrm{p} \mid s \in S\}$
- But also from precond/goal requirements!
ontable(A)
ontable(B)
ontable(C)
ontable(D)
clear(A)
clear(B)
clear(C)
clear(D)
handempty
- If a_{i} could be executed in s, transform $\left(a_{i}\right)$ can be executed in $s \cap p$
- If γ^{\prime} is the state transition function given transformed actions, then

$$
\gamma^{\prime}\left(\operatorname{transform}\left(a_{i}\right), s \cap \mathrm{p}\right)=\gamma\left(a_{i}, s\right) \cap \mathrm{p}
$$

- $\boldsymbol{\rightarrow}$ executable action sequences are preserved
- If $g \subseteq s$, then $g \cap p \subseteq s \cap p$
- So: Solutions are preserved (but new solutions may arise)

BW4:State Transition Graph

- New reachable state transition graph:
- Current state: Everything on the table, hand empty, all blocks clear
- Abstract state: $\mathrm{sO}=\{$ (ontable A), (clear A) \}
- Goal state: A on B on C on D - Abstract goal: s64 = \{ (on A B), (clear A) \}
- Sufficiently few states to quickly compute optimal costs
- Cost is at least 2: Shortest path $\mathrm{sO} \rightarrow$ s64

Optimal cost of a relaxation \rightarrow
admissible heuristic

BW4: Subproblem 2

As in h_{m}, use multiple subproblems!

- Subproblem 2: Some facts related to B
- Current state: Everything on the table, hand empty, all blocks clear
- Abstract state: $\{$ (ontable B), (clear B) \}
- Goal state:
A on B on C on D
- Abstract goal: \{(on BC) \}
- Find a path, compute its cost

BW4: Subproblem 3

- Subproblem 3: Only consider (holding ?x) facts...
- Also yields a cost

As in h_{m}, take the maximum of these costs \Rightarrow admissible heuristic

Pattern Database Heuristics:

State Representation

- For PDB heuristics, a state variable representation is useful
- Typically:
- Reduces the number of facts
- Provides more information about which states are actually reachable!
- Model problems using the state variable representation, or let planners convert automatically from predicate representation

PDB Heuristic: State Variables (2)

- Example: Blocks world with 4 blocks
- 536,870,912 states (reachable and unreachable) in the standard predicate representation
" But in all states reachable from "all-on-table" (all "normal" states):
- Block A is:
- Held in the gripper
" Clear - at the top of a tower (possibly a tower of one block)
- Below B
- Below C, or
- Below D
- Equivalently: Exactly one of these facts is true in every reachable state (mutex!)
" (holding A), (clear A), (on B A), (on C A), (on D A)
- \rightarrow Remove those facts,
introduce state variable above $A \in\{$ clear, B, C, D, gripper $\}$

PDB Heuristic: State Variables (3)

- Example, continued
- 536,870,912 states (reachable and unreachable) in predicate representation
- 20,000 states (reachable and unreachable) in state variable representation:
- aboveA $\in\{$ clear, B, C, D, gripper $\}$
- aboveB $\in\{$ clear, A, C, D, gripper $\}$
- aboveC $\in\{$ clear, A, B, D, gripper $\}$
- aboveD $\in\{$ clear, A, B, C, gripper $\}$
- posA $\in\{$ on-table, other $\}$
- posB $\in\{$ on-table, other $\}$
- posC $\in\{$ on-table, other $\}$
- posD $\in\{$ on-table, other $\}$
- hand $\in\{$ empty, full $\}$

The state variable translation is not part of the PDB heuristic!

Using state variables is useful because PDBs work better with fewer "irrelevant states" in the state space...
...so we can model using state variables, or let the planner rewrite the problem from PDDL predicates/atoms.

Provides more structure: Obvious that \mathbf{A} can't be under \mathbf{B} and under \mathbf{C}
Useful when ignoring facts: Ignore where \mathbf{A} is, care about where \mathbf{B} is

PDB Heuristics: Rewriting the Problem

- Rewriting works as before
- Suppose the pattern is \{ aboveB, aboveD, posB, posD \}
- Rewrite the goal
- Suppose that the original goal is expressed as

Original: $\quad\{$ above $B=A$, above $A=C$, aboveC $=D$, aboveD $=c l e a r, ~ h a n d=e m p t y ~\} ~$

- Abstract: \{ aboveB = A,

$$
\text { aboveD = clear }\}
$$


```
aboveA \in{ clear, B, C, D, gripper }
aboveB \in{ clear,A, C, D, gripper }
aboveC \in{clear,A, B, D, gripper }
aboveD \in{clear,A, B, C, gripper }
posA \in{ on-table, other }
posB \in{ on-table, other }
posC \in{ on-table, other }
posD \in{ on-table, other }
hand }\in{\mathrm{ empty, full }
```


PDB Heuristics: State Space Size

- Abstract states reachable from "all on table", by pattern...

Blocks	All variables	Pattern=\{aboveA\}	\{aboveA,aboveB\}
4	125	10	96
5	866	12	140
6	7057	14	192
7	65990	16	
8	695417	18	252
9	8145730	20	320

Pattern Database Heuristics:

Computation

PDB Computation: Main Idea

- To calculate $h(s)$ for a newly encountered state s :
- Convert to abstract state

$$
\begin{gathered}
\text { aboveA=B, } \\
\text { aboveB=clear, } \\
\text { aboveC=D, }
\end{gathered}
$$

```
aboveA=B
```

- Find optimal path to abstract goal state - in a much smaller search space!
- Fast, using (for example) Dijkstra
- Relaxation \rightarrow path cost is an admissible heuristic

PDB Heuristics: Databases!

- Because we keep few state variables:
- Many real states map to the same abstract state
- \rightarrow Every abstract state may be encountered many times during search
- $\boldsymbol{\rightarrow}$ Cache calculated costs

- Dijkstra efficiently finds optimal paths from all abstract states
- \rightarrow Precalculate all heuristic values for each pattern
- Store in a look-up table - a database

PDB Heuristic: Calculating (1)

- Preprocessing step I:

Find all abstract states reachable from the abstract initial state

- Exhaustive search - small, therefore fast

```
aboveA=clear,
aboveB=clear,
aboveC=clear,
aboveD=clear,
posA=on-table,
posB=on-table,
posC=on-table,
posD=on-table,
```


PDB Heuristic: Calculating (2)

- Preprocessing step $2:$ Which states satisfy the abstract goal?
- Real goal $=\{$ above $B=A$, aboveA $=C$, aboveC $=\mathrm{D}$, above $\mathrm{D}=$ clear, hand = empty $\}$
- Abs.goal $=\{$ above $B=A$, aboveD = clear $\}$
- Abs. goal states $=\{$ above $B=A$, aboveD $=$ clear, $\operatorname{pos} B=$ on-table, $\operatorname{pos} D=$ on-table $\}$, $\{$ above $B=A$, aboveD = clear, posB = on-table, posD = other \}, $\{$ above $\mathrm{B}=\mathrm{A}$, above $\mathrm{D}=$ clear, pos $\mathrm{B}=$ other, posD = on-table \}, \{ above $\mathrm{B}=\mathrm{A}$, above $\mathrm{D}=$ clear, $\operatorname{pos} \mathrm{B}=$ other, $\operatorname{pos} \mathrm{D}=$ other $\}$
- Maybe only a subset of these are reachable!

PDB Heuristic: Calculating (3)

- Preprocessing step 3: Compute the database
- For every abstract state reachable from the abstract initial state,
- find a cheapest path to any abstract goal state

- Can be done with backward search from the set of reachable abstract goal states, using Dijkstra's algorithm

PDB Heuristics: Calculating (4)

Reachable abstract goal states

> aboveB = A, aboveD = clear, posB $=$ on-table, $\operatorname{pos} D=$ on-table

$$
\begin{gathered}
\text { aboveB = A, } \\
\text { aboveD = clear, } \\
\text { posB }=\text { on-table, } \\
\operatorname{posD}=\text { other }
\end{gathered}
$$

aboveB = A, aboveD = clear, posB $=$ other, posD = on-table
aboveB = A, aboveD = clear, posB = other, posD = other

above $\mathrm{B}=$ clear, aboveD = clear, posB $=$ on-table, posD = on-table

PDB Heuristics: Databases

Abstract goal states

aboveB = A, aboveD = clear, $\operatorname{pos} B=$ on-table, posD = on-table cost 0

$$
\begin{gathered}
\text { aboveB = A, } \\
\text { above } \mathrm{D}=\text { clear, } \\
\text { pos } \mathrm{B}=\text { on-table, } \\
\text { posD }=\text { other } \\
\text { cost } \mathbf{0}
\end{gathered}
$$

$$
\begin{gathered}
\text { above } \mathrm{B}=\mathrm{A}, \\
\text { above } \mathrm{D}=\text { clear, } \\
\text { pos } \mathrm{B}=\text { other, } \\
\text { pos } \mathrm{D}=\text { on-table } \\
\text { cost } 0
\end{gathered}
$$

aboveB = A, aboveD = clear, pos $B=$ other, posD = other cost 0 aboveD = clear, posB $=$ on-table, posD = on-table cost 2

Assuming cost(stack/unstack) $=2$, cost(pickup/putdown)=1

This database represents an admissible heuristic! Given a real state:
Find the unique abstract state that matches; return its precomputed cost

PDB Heuristics: Complexity

- Database:
- Stores one cost for every abstract state s
- Cost is optimal within the relaxed problem
" Cost is admissible for the "real" problem
- For the database to be computable in polynomial time:
- As problem instances grow, the pattern can (only) grow to include a logarithmic number of variables
- Problem size n, maximum number of values for a state variable $d \rightarrow$ number of pattern variables: $O(\log n)$, number of abstract states for the pattern: $O\left(d^{\log n}\right)=O\left(n^{\log d}\right)$
- Dijkstra is polynomial in the number of states

PDB Heuristics: Gripper Example

- A common restricted gripper domain:
- One robot with two grippers
- Two rooms
- All n balls originally in the first room
- Objective:All balls in the second room

Some possible patterns for $n \geq 1$ balls:

$\left\{\operatorname{loc}\left(\right.\right.$ ball $\left.\left._{1}\right)\right\}$	$\boldsymbol{\rightarrow} 4$ abstract states
$\left\{\operatorname{loc}\left(\right.\right.$ ball $\left._{1}\right), \operatorname{loc}$-robot $\}$	$\boldsymbol{\rightarrow 8}$ abstract states
$\left\{\operatorname{loc}\left(\operatorname{ball}_{k}\right) \mid k \leq n\right\}$	$\rightarrow 4^{n}$ abstract states
$\left\{\operatorname{loc}\left(\operatorname{ball}_{k}\right) \mid k \leq \log (n)\right\}$	$\rightarrow 4^{\log (n)}$ abstract states

How are PDBs used when solving the original planning problem?

Step l:Using a single pattern

PDB Heuristics in Forward Search (1)

- Step I: Automatically generate a pattern
- A selection of state variables to consider
- Choosing a good pattern is a difficult problem!
- Different approaches exist...
- Step 2: Calculate the pattern database
- As already discussed

PDB Heuristics in Forward Search (2)

- Step 3: Forward search in the original problem
- For each new successor state s_{1}, calculate heuristic value $h_{p d b}\left(s_{1}\right)$
- Example: $s_{1}=\{\quad$ aboveD $=\mathrm{A}$, aboveA $=\mathrm{C}$, aboveC $=$ clear, aboveB = gripper, $\operatorname{pos} \mathrm{A}=$ other, $\operatorname{pos} \mathrm{B}=$ other, $\operatorname{pos} C=$ other, $\operatorname{pos} D=$ on-table, hand $=$ full $\}$
- Convert this to an abstract state
- Example: $s_{1}^{\prime}=\{$ aboveB = gripper, aboveD = A, posB = other, posD = on-table $\}$
- Use the database to quickly look up $h_{p d b}\left(s_{1}\right)=$ the cost of reaching the nearest abstract goal from s_{1}^{\prime}

$$
\begin{aligned}
& \text { above } B=\text { gripper, above } D=A, \operatorname{pos} B=\text { other, pos } D=\text { on-table } \rightarrow \text { cost } n l \\
& \text { above } B=\text { gripper, above } D=A, \operatorname{pos} B=\text { other, pos } D=\text { other } \rightarrow \text { cost } n 2
\end{aligned}
$$

How can PDB heuristics become more informative?

Accuracy for a Single PDB Heuristic

- How close to $h^{*}(n)$ can an admissible PDB-based heuristic be?
- Assuming we require polynomial computation:
- Problem size n grows \rightarrow number of variables in a pattern can grow as $O(\log n)$
- $h(n) \leq$ cost of reaching the most expensive subgoal of size $O(\log n)$

Significant differences compared to h_{m} heuristics!

Subgoal size is not constant but grows with problem size

On the other hand, does not consider all subgoals of a particular size

Decides state variables in advance - for h_{m}, facts are chosen on each level

- But still, log(n) grows much slower than n
- \rightarrow For any given pattern, asymptotic accuracy is (often) 0
- As before, practical results can be better!

Improving PDBs

jonkv@ida

- How to increase information?
- Can't increase the size of a pattern beyond logarithmic growth...
- Can use multiple patterns!
- For each pattern, compute a separate pattern database
- Each such cost is an admissible heuristic
- So the maximum over many different patterns
is also an admissible heuristic
- What is the new level of accuracy?
- Still O... asymptotically
- But this can still help in practice!

Additive PDB Heuristics (1)

- To improve further:
- Define multiple patterns
- Sum the heuristic values given by each pattern
- As in $h_{\text {add }}$, this could lead to overestimation problems
- Some of the effort necessary to reach the goal is counted twice
- To avoid this and create an admissible heuristic:
- Each fact should be in at most one pattern
- Each action should affect facts in at most one pattern
- $\boldsymbol{\rightarrow}$ Additive pattern database heuristics

Additive PDB Heuristics (2)

- BW: Is p1=\{facts in even rows\}, p2=\{facts in odd rows\} additive?
- No: pickup(B) affects \{aboveB,posB\} in p1, \{hand\} in p2

One potential problem:
Both patterns could use pickup(B) in their optimal solutions
\Rightarrow sum counts this twice! This is what we're trying to avoid...

Additive PDB Heuristics (3)

- BW: Is $\mathrm{p} 1=\{$ above A$\}, \mathrm{p} 2=\{$ above B$\}$ additive?
- No: unstack(A,B) affects \{aboveB\} in p1, \{aboveA\} in p2
- True for all combinations of aboveX

- An additive PDB heur. could use one of these:
- $\mathrm{p} 1=\{$ aboveA $\}$
- p1 = \{aboveA, aboveC, aboveD \}
" ...
- Can't have two separate patterns p1,p2 both of which include an above X

This formulation of the Blocks World is
"connected in the wrong way" for this approach to work well

- Those aboveX will be directly connected by some unstack action

Additive PDB Heuristics (4)

- "Separating" patterns in the Gripper domain:

Additive PDB Heuristics (5)

- No problem:We don't have to use all variables in patterns!

For each pattern we chose one variable Then we have to include all actions affecting it The other variables those actions affect [used()] don't have to be part of any pattern!

Additive PDB Heuristic (6)

- Notice the difference in structure!

BW: Every pair of above X facts has a direct connection through an action

Gripper: No pair of loc() facts has a direct connection through an action

Additive PDB Heuristic (7)

- When every action affects facts in at most one pattern:
- The subproblems we generated are completely disjoint
- They achieve different aspects of the goal
- Optimal solutions must use different actions

The heuristic never tries to generate optimal plans for used(gripper1) -
we have not included it in any pattern
The heuristic's optimal plans for $\{\operatorname{loc}($ ball1) $\}$ can only use these actions

The heuristic's optimal plans for $\{\operatorname{loc}($ ball2 $)\}$ can only use these actions

Additive PDB Heuristics (8)

- Avoids the overestimation problem we had with $h_{\text {add }}$

```
Problem earlier:
Goal: p and q
A1: effect p
A2: effect q
AB: effect p and q
```

To achieve p: Heuristic uses AI
To achieve q: Heuristic uses A2
Sum of costs is $2-$ optimal cost is I, using A3

This cannot happen

when every action affects facts in at most one pattern
\Rightarrow The costs are additive for multiple patterns
\Rightarrow Adding costs from multiple heuristics yields an admissible heuristic!

Additive PDB Heuristics (9)

- Can be taken one step further...
- Suppose we have several sets of additive patterns:
- Can calculate an admissible heuristic from each additive set, then take the maximum of the results as a stronger admissible heuristic

$$
\text { Max } \rightarrow
$$

$$
\text { admissible heuristic } h_{p d b}^{3}(s)=\max \left(h_{p d b}^{1}(s), h_{p d b}^{2}(s)\right)
$$

Sum \rightarrow

admissible heuristic $h_{p d b}^{2}(s)$

4 patterns satisfying additive constraints

5 patterns satisfying additive constraints

Additive PDB Heuristics (10)

- How close to $h^{*}(n)$ can an additive PDB-based heuristic be?
- For additive PDB heuristics with a single sum, asymptotic accuracy as problem size approaches infinity...
- In Gripper:
- In state s_{n} there are n balls in room I, and no balls are carried
- Additive PDB heuristic $h_{a d d}^{P D B}\left(s_{n}\right)$:
- One singleton pattern for each ball location variable loc(ball ${ }_{k}$)
- For each pattern, the optimal cost is 2
" pick(ball,rooml,gripperl): loc(ball)=rooml \rightarrow loc(ball)=gripperl
" drop(ball,room2,gripperl): loc(ball)=gripperl \rightarrow loc(ball)=room2
- $h_{\text {add }}^{P D B}\left(s_{n}\right)=$ sum for n balls $=2 n$
- Real cost:
- Use both grippers: pick, pick, move(room I,room2), drop, drop, move(room2,rooml)
- Repeat $n / 2$ times, total cost $\approx 6 n / 2=3 n$
- \rightarrow Asymptotic accuracy $2 n / 3 n=2 / 3$

Additive PDB Heuristics (11)

- How close to $h^{*}(n)$ can an additive PDB-based heuristic be?
- For additive PDB heuristics with a single sum, asymptotic accuracy as problem size approaches infinity:

	h+ (too slow!)	h2	Additive PDB
Gripper	$2 / 3$	0	$2 / 3$
Logistics	$3 / 4$	0	$1 / 2$
Blocks world	$1 / 4$	0	0
Miconic-STRIPS	$6 / 7$	0	$1 / 2$
Miconic-Simple-ADL	$3 / 4$	0	0
Schedule	$1 / 4$	0	$1 / 2$
Satellite	$1 / 2$	0	$1 / 6$

- Only guaranteed if the planner finds the best combination of patterns!
- This is a very difficult problem in itself!
- But as usual, this is a worst-case analysis...

- Blind A^{*} :
- $A^{*}+$ goal count:
- $A^{*}+\mathrm{iPDB}$:

43150 states calculated, 33436 visited
6463 states calculated, 3222 visited
132| states calculated, 375 visited

No heuristic is perfect - visiting some additional states is fine!

Heuristics part IV

An Overview of Landmark Heuristics

Landmark Heuristics (1)

Landmark:

"a geographic feature used by explorers and others to find their way back or through an area"

Landmark Heuristics (2)

Landmarks in planning:

Something you must pass by/through in every solution to a specific planning problem

Assume we are currently in state s...

Fact Landmark for s:

A fact that is not true in s, but must be true at some point in every solution starting in s

clear(A)
holding(C)

Formula Landmark for s:

A formula that is not true in s, but must be true at some point in every solution starting in s

clear(A) \wedge handempty

Landmark Heuristics (3)

Facts and formulas, not states! Why?

- Usually many paths lead from s to a goal state
- Few states are shared among all paths
- Many facts occur along all paths

Not "we must reach the landmark state"!

Instead "we must reach some state that satisfies the fact/formula landmark"

Landmark Heuristic (4)

Landmarks in planning:

Something you must pass by/through in every solution to a specific planning problem

Assume we are currently in state s...

Fact Landmark for s:

A fact that is not true in s, but must be true at some point in every solution starting in s

clear(A)
holding(C)

Action Landmark for s:

An action that must be used in every solution starting in s

B D	...so the effec
C	
A $\longrightarrow \mathrm{A}$	d so
D B	preconds
unstack(B,C)	(except those facts
putdown(B)	that are already true
stack(D, C)	in s)

...but not putdown(C)! (Why?)

Landmark Heuristics (5)

- Generalization:
- Disjunctive action landmark $\left\{a_{1}, a_{2}, a_{3}\right\}$ for state s
- Every solution starting in state s and reaching a goal must use at least one of these actions

Finding Landmarks: A (Too) General Technique

Finding Landmarks: General Technique

- One general technique for discovering landmarks:

Current planning problem, P
Initial state does not include atom A
...then every solution to P must use one of the removed actions
\rightarrow Action set is a disj. act. landmark \rightarrow Atom A is a fact landmark

Modified planning problem, \mathbf{P}^{\prime}

Removed all actions that add atom A

If this problem (P^{\prime}) is unsolvable...

Test:

Delete relaxation of P^{\prime} is unsolvable, or $h_{m}\left(s_{0}\right)=\infty$, or ...
$\Rightarrow P^{\prime}$ is unsolvable

Unsolvable when removing a set of actions
\Rightarrow some action in the set must be used \Rightarrow disjunctive action landmark!

Finding Landmarks: General Technique (2)

- This technique is very general
- Applicable to any planning problem, any atom
- General techniques tend to be widely applicable but slow...

Verifying Landmarks (1)

- How difficult is it to verify that an action is an action landmark, in the general case?
- Suppose we can verify this
- Then given any STRIPS problem P, we can determine if it has a solution:
- Add a new action:
- cheat
:precond true
:effects goal-formula
- If cheat is an action landmark, then it is needed in order to solve the problem \rightarrow the original problem was unsolvable
- \rightarrow As difficult as solving the planning problem (PSPACE-complete)

Verifying Landmarks (2)

- How difficult is it to verify that a fact is a fact landmark, in the general case?
- Suppose we can verify this
- Then given any STRIPS problem P, we can determine if it has a solution:
- Add a new fact:
" cheated (false in the initial state)
- Add new action:
" cheat
:precond true :effects
(and cheated goal-formula)
- If cheated is a fact landmark, then cheat was necessary \rightarrow the original problem was unsolvable
$-\quad \rightarrow$ Again , as difficult as solving the planning problem

But of course there are special cases...

Finding Landmarks: Efficiently

Means-Ends Analysis

- Discover landmarks using means-ends analysis

Unachieved goals are (obviously) fact landmarks:
clear(D), on(D,C), on(A,B), ontable(B)

fact-landmarks $\leftarrow \mathrm{g}-\mathrm{s}$

do \{
for each p in fact-landmarks \{
// Create disjunctive action landmark achievers $\leftarrow\{a \in A \mid p \in \operatorname{eff}(a)\}$

All achievers require candidates $=$ \{ holding(D), handempty, clear(C), ... \}
handempty is already true, but new $=\{$ holding(D), clear(C) $\}$ are not

Maybe we can find more landmarks related to achiving those!
on (D, C) is a landmark, on (D, C) is not true in the current state (s) \rightarrow we must cause on(D,C) with an action \rightarrow compute achievers $=\{\operatorname{stack}(\mathbf{D}, \mathbf{C})\}$
candidates $\leftarrow \bigcap_{a \in \text { achievers }} \operatorname{pre}(a)$
new \leftarrow candidates - s
fact-landmarks \leftarrow fact-landmarks U new
\} until no more fact-landmarks found

Actions, Forward

- Extensions to backwards means-ends analysis:
- Effects of disjunctive action landmarks:
" All shared effects must also take place regardless of the "chosen" action, similarly to shared preconditions on the previous page
- Given a disjunctive action landmark, every fact in $(\cap\{\operatorname{eff}(a) \mid a \in$ landmark $\}-s)$ is a fact landmark for s

Domain Transition Graphs (1)

- General concept: domain transition graphs
- Assume a state variable representation
- Each variable has a domain, a set of possible values
- For each state variable:
- Add a node for each value
- Add an edge for each action changing the value
above $A \in\{$ clear, B, C, D, gripper $\}$ above $B \in\{$ clear, A, C, D, gripper $\}$ aboveC $\in\{$ clear, A, B, D, gripper \} above $D \in\{$ clear, A, B, C, gripper \} posA $\in\{$ on-table, other \} posB $\in\{$ on-table, other \} posC $\in\{$ on-table, other \} posD $\in\{$ on-table, other \} hand $\in\{$ empty, full \}

Landmarks from DTGs

- Suppose:
- In the current state, aboveA = clear
- In the goal,
- Then aboveA=gripper is a fact landmark
- (And pickup(A) + stack(B,A) are action landmarks)

Landmarks and Relaxation

- Assume a problem P, and a relaxed problem P'
- Suppose f is a fact landmark for P^{\prime}

```
Solutions for relaxed problem \(\mathrm{P}^{\prime}\)
```

All these solutions pass through states satisfying f

Solutions for original problem P

All these solutions must also pass through states satisfying f

- Then f is a fact landmark for the original problem as well!
- Similarly for action landmarks, etc.

Landmarks

Many other techniques exist...

- Beyond the scope of the course

Landmark Ordering

Landmark Ordering (1)

Sometimes we can find or approximate necessary orderings

- We must achieve holding(A), then holding(B)

Landmark Ordering (2): Example Problem

- Example Problem:
- Truck t transports object o within road network $A / B / C / D$
- Airplane p transports object between airports C/E
- Goal: Object at E
- Domain transition graph (DTG) for location-of-object:

Note: Every edge in the road network corresponds to a path through \mathbf{t} in the DTG!

Karpas \& Richter: Landmarks - Definitions, Discovery Methods and Uses

Landmark Ordering (3): Inference

- One way of inferring the order of landmarks:
- Directly from the DTG!

Karpas \& Richter: Landmarks - Definitions, Discovery Methods and Uses

Using Ordered Landmarks as Subgoals

Landmarks as Sulbgoals (1)

- One use of ordered landmarks:
- As subgoals:Try to plan for each landmark separately in the inferred order

Two landmarks could be "first" (all predecessors achieved) Current goal: t-at-B V p-at-C (disjunctive!)

Landmarks as Subgoals (2)

Suppose we begin by achieving t-at-B: Simple planning problem, results in a single action -- drive (t, B)

Current goal: o-in-T or p-at-C

Landmarks as Subgoals (3)

Suppose we continue by achieving o-in-T:
Simple planning problem,
results in a single action -- load-truck(o,t,B)

Landmarks as Subgoals (4)

- Sometimes very helpful, but:
- There are still choices to be made - backtrack points!
- Optimizing for one part of the overall goal at a time:
- Can't see the whole picture
- Can miss opportunities:

Cheapest solution here \rightarrow more expensive solution later

- Can be incomplete:

Cheapest solution here \rightarrow impossible to solve later

Sussman Anomaly

- The Sussman Anomaly (Gerald Sussman)
- Goal is on(A,B), on(B,C)
- Now:

- Separate into subgoals:
- First achieve on(A,B)
- Then achieve on (B, C)
- Achieve first subgoal, on(A,B):
- unstack(C,A); putdown(C); pickup(A); stack(A,B)

- Achieve second subgoal, on(B,C):
- unstack(A,B); putdown(A); pickup $(B) ; \operatorname{stack}(B, C) \rightarrow$ original goal destroyed!

Landmark Counts and Costs

Landmarks for Heuristic: Intro

- Use of landmarks:
- As a basis for non-admissible heuristic estimates in standard forward state space search
- Pioneered by LAMA
- The winner of the sequential satisficing track of the 2008/20 I I competitions
- If LAMA-20II had participated in IPC-2014 (the latest competition):
- Would have been 12th of 21 planners
- But LAMA is part of the following planners from the 2014 competition:
- IBaCoP2, Ist place in the sequential satisficing track
- IBaCoP, 2nd place in the sequential satisficing track
- ArvandHerd, Ist place in the sequential multi-core track
- IBaCoP, 2nd place in the sequential multi-core track

Results from 2018 will be
presented in June, analyzed in July!

Landmark Counts and Costs (1)

- LAMA counts landmarks:
- Identifies a set of landmarks that still need to be achieved after reaching state s through path (action sequence) Π

(L \Accepted(s,r))

All discovered landmarks, minus those that are accepted as achieved (has become true after predecessors are achieved!)
$\cup \quad$ ReqAgain(s,r)

Plus those we can show will have to be re-achieved

Not admissible: One action may achieve multiple landmarks!

Landmark Counts and Costs (2)

The LAMA heuristic combines:

- The number of landmarks still to be achieved in a state
- FF heuristics (relaxed planning graph)
- Searches for low-cost plans
- But we also want to find plans quickly!
" Search strategy:
- First, greedy best-first (create a solution as quickly as possible)
- Only care about h(n)
- Ignore $g(n)=$ cost of reaching n
- Then, repeated weighted A^{*} search with decreasing weights
" A* with $f(n)=g(n)+$ weight * $h(n)$, where weight > I
- Iteratively improve the plan - anytime planning!

Landmark Counts and Costs (3)

- Other uses of landmarks:
- As a basis for admissible heuristic estimates
- Idea:The cost of each action is divided across the landmarks it achieves
- Simplified example:
- Suppose there is a goto-and-pickup action of cost 10, that achieves both t -at-B and o-in-t
- Suppose no other action can achieve these landmarks
- One can then let (for example)

$$
\operatorname{cost}(\underline{t}-\mathrm{at}-\mathrm{B})=3 \text { and } \operatorname{cost}(\mathrm{o}-\mathrm{in}-\mathrm{t})=7
$$

- The sum of the cost of remaining landmarks is then an admissible heuristic
- Must decide how to split costs across landmarks
- Optimal split can be computed polynomially, but is still expensive

Landmarks: Modfified Problem

- Landmarks as a basis for a modified planning problem
- Add new facts "achieved-landmark-n"
- Concretely: object-has-been-in-plane
- An action achieving a landmark makes the corresponding facts true
- (load object plane) $\boldsymbol{\rightarrow}$ object-has-been-in-plane := true

- The goal requires all such facts to be true
" (:goal object-has-been-in-plane ...)
- \rightarrow Any other heuristic can be applied to the modified problem!
- $h_{1}(s)$: What is the cost of achieving object-has-been-in-plane?

Search Techniques

Dual Qqueue Techniques

Helpfiul Actions and Completeness

- Recall FF's helpful actions
- \approx Actions chosen in the first level of the relaxed planning graph when computing the heuristic
- FF uses these to prune the tree in Enforced Hill Climbing
- Leads to incompleteness
- May search for a long time,
state-level 0
action-level 1
state-level 1
.more levels
 exhaust the search space, then start over using complete search
- "Helpful actions" are more likely to be helpful
- But skipping the other actions completely is too strict!
- Fast Downward: Prioritize helpful actions ("preferred successors")

Dual Queues (1)

- When we expand a state:
- Successors created by helpful actions are preferred successors
- Successors created by non-helpful actions are ordinary successors

Generally much fewer!

Dual Queues (2)

- Fast Downward introduced dual queues (two "open lists")
- One for states generated as preferred successors
- One for the ordinary states

Preferred

"Ordinary"

Priority queues!

Dual Queues (3)

- To expand a state:
- Pick the best state from the preferred queue, and expand it
- Pick the best state from the ordinary queue, and expand it

Preferred
"Ordinary"

Dual Queues (4)

- After expansion:
- Place all new states where they belong

Dual Queues (5)

- Fewer states are preferred
- Reached more quickly in the queue
- If we "misclassified" an action as non-helpful:
- Don't have to exhaust the "preferred part" of the search space before we can "recover"
- Search is complete

"Ordinary"

Boosted Dual Queues

Boosted Dual Queues:

- Used in later versions of Fast Downward and LAMA
- Whenever progress is made (better h-value reached):
- Expand $\mathbf{I 0 0 0}$ preferred states

"Ordinary"

- If progress is made again within these 1000 successors:
- Add another 1000 , accumulating
- (Progress made after $300 \rightarrow$ keep expanding 1700 more)

Boosted Dual Queues

- Boosted Dual Queues:
- After reaching the preferred successor limit:
- Expand a single node from the non-preferred queue
- Still complete
- More aggressive than ordinary dual queues
- Less aggressive than pure pruning

Deferred Evaluation / Lazy Search

Deferired Evaluation

- Standard best-first search:
" Remove the "best" (most promising) state from the priority queue
- Check whether it satisfies the goal
- Generate all successors
- Calculate their heuristic values
- Place in priority queue(s)

Deferired Evaluation (2)

- Potentially faster: Deferred Evaluation (Fast Downward, ...)
- Remove the "best" state from the priority queue
- Check whether it satisfies the goal
- Calculate its heuristic value (only one!)
- Generate all successors
- Place in priority queue using the parent's heuristic value

Parameter Optimization and Portfolio Planners

A general technique - not limited to state-space search!

Parameter Optimization (1)

- Some planners have many parameters to tweak
- In early planning competitions, domains were known in advance
- Participants could manually adapt their "domain-independent" planners...
- Somewhat exaggerated quote from IPC-2008 results:
" if domain name begins with "PS" and part after first letter is "SR":
use algorithm 100
- else if there are 5 actions, all with 3 args, and 12 non-ground facts:
use algorithm - 1000
" else if all facts ground and IOth/IIth domain name letters "PA":
use algorithm - I004
- else if there are II actions and action name lengths range from 5 to 28:
use algorithm I07
- From 2008, this was no longer allowed
- Planners were handed in
- Then the organizers ran the planners

Parameter Optimization (2)

- How about automatically learning parameters?
- One specific form of learning in planning - others exist
- Experimental application to Fast Downward
- Optimization for speed:

45 params, $2.99 * 10^{13}$ possible configurations

- Optimization for quality: 77 params, I. $94 * 10^{26}$ possible configurations
- Example parameters:
- Heuristics used: $h_{\max }=h_{0}, h_{m}, h_{\text {add }}, h_{F F}, h_{L M}$ (landmarks), $h_{L A}$ (admissible landmarks), goal count, ...
- Method used to combine heuristics: Max, sum, selective max (learns which heuristic to use per state), tie-breaking, Pareto-optimal, alternation
- Preferred operators used or not, for each heuristic

Like FF's helpful actions, but used for prioritization, not pruning

- Search strategy combinations: Eager best-first, lazy best-first, EHC
- ...
- Parameter learning framework ParamILS used

Parameter Optimization (3): Results

- Under the diagonal = $\underline{\text { faster }}$ than default configuration
- For 540 small training instances:
- Very good results
- To be expected - parameters tuned for these specific instances!

- For 270 larger test instances:
- From the same domains
- Performance still improves

Unsolvable in 900 seconds by the default configuration

Parameter Optimization (4): Results

- Results from the satisficing track of IPC-201I
- Two versions of FD-autotune competed, adapted to older domains
- Some were reused in this competition, most were new

Sequential Satisficing track: Results

Darker $=$ better!

 \square

lama-2011
fdss-1
fdss-2
fd-autotune-1
roamer
fd-autotune-2
forkuniform
probe
arvand
lama-2008
lamar
randward
brt
cbp2
daeyahsp
yahsp2
yahsp2-mt
cbp
Iprpgp
madagascar-p
popf2
madagascar
cpt4
satplanlm-c
sharaabi
acoplan
acoplan2

Portfolio Planning (1)

- Observation:

- Different planners seem good in different domains!

Sequential Satisficing track: Results

Darker $=$ better!

lama-2011
fdss-1
fdss-2
fd-autotune-1
roamer
fd-autotune-2
forkuniform
probe
arvand
lama-2008
lamar
randward
brt
cbp2
daeyahsp
yahsp2
yahsp2-mt
cbp
Iprpgp
madagascar-p
popf2
madagascar
cpt4
satplanlm-c
sharaabi
acoplan
acoplan2

Portfolio Planning (2)

- Further analysis would show:
- Even if two planners solve equally many problems in one domain, they may solve different problems
- Also, planners often return plans quickly or not at all

All problems

Solved in 900s by A
Solved in 450s by planner A

All problems

In 900s by B
Solved in 450s
by planner B

All problems

Solved by running A for 450 s, then running B for 450s

Portfolio Planning (3)

- The competition has a fixed time limit
- Can benefit from splitting this across multiple algorithms!
- \rightarrow Portfolio planning

All problems

Solved in 900s by A
Solved in 450s by planner A

Portfolio Planning (4)

- Fast Downward Stone Soup: Learning
- Which configurations to use
- How much time to assign to each one
- Given test examples from older domains

Algorithm	Score	Time	Marginal	
BJOLP	605	455	46	Configurations
RHW landmarks	597	0	-	learned for LM-cut
h^{1} landmarks	593	569	26	sequential optimal
M\&S-bisim 1	588	0	-	planning
$h^{\text {max }}$	447	175	8	
M\&S-bisim 2	427	0	-	
blind	426	432	20	
M\&S-LFPA 10000	393	0	-	
M\&S-LFPA 50000	316	0	-	
M\&S-LFPA 100000	299	0	-	
Portfolio	286	0	-	
"Holy Grail"	654	1631		

Portfolio Planning (5)

- Results from IPC-201I:

Sequential Optimization track: Results

Portfolio Planning (6)

- Results from IPC-2014:
- Sequential Satisficing Track
- \#I:IBaCoP -- portfolio planner
- \#2: IBaCoP2 -- portfolio planner
- (Instance-Based Configured Portfolios)

