Linköping University

Automated Planning

The State Space and Forward-Chaining State Space Search

Jonas Kvarnström
Automated Planning Group

Department of Computer and Information Science Linköping University

Exploring the State Space

About Examples

- Exploring the state space... of what?
- As usual:toy examples in very simple domains
- To learn fundamental principles
- To focus on algorithms and concepts, not domain details
- To create readable, comprehensible examples

- Always remember:
- Real-world problems are larger, more complex

ToH O: Towers of Hanoi

- Domain 1: Towers of Hanoi
- A modeling trick:

Disks and pegs are "equivalent" Pegs are the largest disks, so they cannot be moved

ToH 1: Towers of Hanoi

- Domain 1: Towers of Hanoi
- (define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc ?from) (clear ?disc) (clear ?to)) :effect (and (clear ?from) (on ?disc ?to) (not (on ?disc ?from)) (not (clear ?to)))))
- (define (problem hanoi3) (:domain hanoi)
(:objects peg1 peg2 peg3 d1 d2 d3)
(:init
(smaller peg1 d1) (smaller peg1 d2) (smaller peg1 d3)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3)
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg2) (clear peg3) (clear d1)
(on d3 peg1) (on d2 d3) (on d1 d2))
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))))

ToH 2: Number of States

- How many states exist for this problem?

- (define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))
(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc :effect (and (clear ?from) (on ?disc ?to) (not (or)
- (define (problem hanoi3) (:domain hanoi) (:objects peg1 peg2 peg3 d1 d2 d3)
(:init
(smaller peg1 d1) (smaller peg1 d2) (smaller peg1
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg2) (clear peg3) (clear d1)
(on d3 peg1) (on d2 d3) (on d1 d2))
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))))

Answer:

Every assignment of values to the ground atoms
is one state

6 objects
2^{6} combinations of "clear" $2^{6 * 6}$ combinations of "on"
$2^{6 * 6}$ combinations of "smaller"
2^{78} combinations in total:
302231'454903'657293'676544

ToH 3: Without Rigid Predicates

- Suppose we don't include fixed predicates ("smaller") in the state?
- (define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))
(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc :effect (and (clear ?from) (on ?disc ?to) (not (or)
- (define (problem hanoi3) (:domain hanoi) (:objects peg1 peg2 peg3 d1 d2 d3)
(:init
(smaller peg1 d1) (smaller peg1 d2) (smaller peg1
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg2) (clear peg3) (clear d1)
(on d3 peg1) (on d2 d3) (on d1 d2))
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))))

ToH 4: Reachable From...

- How many states are reachable from the given initial state, using the given actions?
- 27 out of $4^{\prime} 398046^{\prime} 511104$

ToH 5: Reachable States

States are not inherently "reachable" or "unreachable"
They can be reachable from a specific starting point!

ToH 6: Reachable from "Forbidden"

- Suppose this was your initial state
- Unreachable from "all disks in the right order"!

- Then other states would be reachable from this state
- If the preconditions hold, then move can be applied

d2	d3	
peg1	peg2	

The states exist in S - they obey no rules

ToH 7: Reachable from "Impossible"

- Suppose this was your initial state:
- (and
(on peg1 peg2)
(on d1 d2)
(on d2 d1)
(on d3 d3)
)
- Then other states would be reachable
- If the preconditions hold, then move can be applied

Can't even be visualized - physically impossible

ToH 8: Larger Reachable

A larger (but still tiny) example...

Most reachable state spaces are far less regular, can have dead ends, ...

State Space: Blocks World

BW 1: Blocks World

- Domain 2:The Blocks World

BW 2:Model

- We will generate classical sequential plans
- One object type: Blocks
- A common blocks world version, with 4 operators
- (pickup ?x) - takes ?x from the table
- (putdown ?x) - puts ?x on the table
- (unstack ?x ?y) - takes ?x from on top of ?y
" (stack ?x ?y) - puts ?x on top of ?y
- Predicates used:
- (on ?x ? y) - block ? x is on block ? y
- (ontable ?x) - ? x is on the table
- (clear ?x) - we can place a block on top of ?x
- (holding ?x) - the robot is holding block ?x
- (handempty) - the robot is not holding any block With n blocks: $2^{n^{2}+3 n+1}$ states
$\operatorname{unstack}(A, C) \rightarrow \operatorname{putdown}(A) \rightarrow \operatorname{pickup}(B) \rightarrow \operatorname{stack}(B, C)$

BW 3: Operator Reference

(:action pickup :parameters (?x)
:precondition (and (clear ?x) (on-table ?x) (handempty))
:effect
(and (not (on-table ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))
(:action unstack
:parameters (?top ?below)
:precondition (and (on ?top ?below)
(clear ?top) (handempty))
:effect
(and (holding ?top)
(clear ?below)
(not (clear ?top))
(not (handempty)) (not (on ?top ?below))))
(:action putdown
:parameters (?x)
:precondition (holding ?x)
:effect
(and (on-table ?x)
(clear ?x)
(handempty)
(not (holding ?x))))

(:action stack

:parameters (?top ?below)
:precondition (and (holding ?top)
(clear ?below))
:effect
(and (not (holding ?top))
(not (clear ?below))
(clear ?top)
(handempty)
(on ?top ?below)))

BW 4: Reachable State Space, 1block

We assume we know the initial state Let's see which states are reachable from there!

Here: Start with $\mathrm{s} 0=$ all blocks on the table

Many other states "exist", but are not reachable from the current starting state

BW 5: Reachable State Space, 2 blocks

2048 states in total
Reachable from "all on table":
5 states, 8 transitions

BW 6: Reachable State Space, 3 blocks

524'288 states in total
 Reachable from "all on table":
 22 states, 42 transitions

A on Table
B on Table
C on table

Looking nice and symmetric...

BW 7: Reachable State Space, 4 blocks

536'870'912 states in total Reachable from "all on table":

125 states, 272 transitions

BW 8: Reachable State Space, 5 blocks

2' 199 '023'255'552 states in total Reachable from "all on table": 866 states, 2090 transitions

BW 9:State Space Size

- Standard PDDL predicates:
- (on ?x ? y)
- (ontable ?x)
- (clear ?x)
- (holding ?x)
- (handempty)
- Number of ground atoms, for n blocks:
- $n^{2}+3 n+1$
- Number of states:
- $2^{n^{2}+3 n+1}$

BW 10: Reachable State Space, sizes 0-10

Block s	Ground atoms	States	States reachable from "all on table"	Transitions (edges) in reachable part
0	1	2	1	0
1	5	32	2	2
2	11	2048	5	8
3	19	524288	22	42
4	29	536870912	125	272
5	41	2199023255552	866	2090
6	55	36028797018963968	7057	18552
7	71	2361183241434822606848	65990	186578
8	89	618970019642690137449562112	695417	2094752
9	109	$\begin{aligned} & 64903710731685345356631204115 \\ & 2512 \end{aligned}$	8145730	25951122
10	131	27222589353675077077069968594 54145691648

BW 11: Reducing State Space Size, 5 blocks

- Reducing the State Space Size:
- Standard PDDL model:
- $2^{n^{2}+3 n+1}=2^{\prime} 199^{\prime} 023^{\prime} 255^{\prime} 552$ states, 866 reachable
- Omit (ontable ?x), (clear ?x)
- In physically achievable states, these can be deduced from (on ?x ?y), (holding ?x)
- $2^{n^{2}+n+1}=2^{\prime} \mid 47^{\prime} 483^{\prime} 648$ states, 866 reachable
- Also switch to a state variable representation
- Add type block-or-nothing, size 6 (values A, B, C, D, E, nothing)
- Use (= (block-below ?x) ?y), where ?y can be "nothing"
- $(n+1)^{n} \cdot 2^{n+1}=497$ '664 states, 866 reachable

Is planning time reduced with fewer unreachable states?

Depends on the planning algorithm!

State Space: Not Symmetric

- Example: Unable to return

Can never return to the leftmost part of the state space

State Space: Disconnected

- Example: Disconnected parts of the state space

I do have a helicopter

No action for buying a helicopter, no action for losing it \rightarrow Will stay in the partition where you started!

Forward State Space Search

The Planning Problem

Find a path in the STS from the initial state to any goal state

Goal states

Many graph search methods already exist!

How do we apply them to the state space?

The Planning Problem (2)

- Can search in either direction
- Most straight-forward: Initial \rightarrow goal
- Later: Goal \rightarrow initial
- Many names:
- Forward search
- Forward-chaining search
- Forward state space search
- Progression
- ...

Forward State Space Search 1

- Forward search in the state space
- Start in the initial state
- Apply a search algorithm
- Depth first
- Breadth first
- Uniform-cost search

Initial (current) state

- Terminate when a goal state is found

FSSS 2: Don't Precompute

- The planner is not given a complete precomputed search graph!

Usually too large!
\Rightarrow Generate as we go,
hope we don't actually need the entire graph

- The user (robot?) observes the current state of the world
- The initial state

- Must describe this using the specified formal state syntax...
- $s_{0}=\{$ clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty $\}$
...and give it to the planner, which creates one search node

> \{ clear(A), on(A,C), ontable(C),
> clear(B), ontable(B), clear(D), ontable(D), handempty \}

FSSS 4: Successors

- Given any search node...

```
    { clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }
```

- ...we can find successors - by appling actions!
- action pickup(D)
- Precondition: ontable(D) \wedge clear $(\mathrm{D}) \wedge$ handempty Effects: $\quad \neg$ ontable $(D) \wedge \neg$ clear $(D) \wedge \neg$ handempty \wedge holding (D)
- This generates new reachable states...
...which can also be illustrated
\{ clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty \}
 clear(B), ontable(B), holding(D) \}

FSSS 5: Step by step

- A search strategy (depth first, A*, hill climbing, ...) will:
- Choose a node
- Expand all possible successors
" "What actions are applicable in the current state, and where will they take me?"
- Generates new states by applying effects

This is illustrated the planner works with sets of facts

The blocks world is symmetric: Can always "return the same way"
Not true for all domains!

General Search

- General way of formalizing search algorithms:
- There are some "open" nodes, that we:
- Know how to reach
- Haven’t explored yet

At first: The initial state!

- Pick / remove one of them
" Using some strategy for picking "good nodes"
- Find nodes that can be reached in a single step (applying one action)
- Put those back in the set of nodes
- New options!
- Repeat until a goal node is found

Forward State Space Search (4)

- General Forward State Space Search Algorithm

- forward-search $\left(A, s_{0}, g\right)\{$ open $\leftarrow\left\{\left\langle s_{0}, \varepsilon\right\rangle\right\}$
while (open $\neq \emptyset$) $\{$
use a strategy to select and remove one $n=<s$, path $>$ from open
if goal g satisfied in state s then return path
foreach $a \in A$ such that $\gamma(s, a) \neq \emptyset\{$

$$
\begin{array}{lc}
\left\{s^{\prime}\right\} \leftarrow \gamma(s, a) & \text { Forward search: } \\
\text { path' } \leftarrow \text { append(path, a) } & \text { Reach in one step }= \\
\text { add } n^{\prime}=\left\langle\text { s' }^{\prime} \text {, path' }\right\rangle \text { to open } & \text { reach by one action application }
\end{array}
$$ \}

\}
return failure;
\}

To simplify extracting a plan, a state space search node above includes the plan to reach that state!

Technically, we search the space of <state,path> pairs

Still generally called state space search...

Forward State Space Search (5): Pruning

Reach a more expensive node
If preconditions and goals are positive: with the same state
\Rightarrow can prune
(discard the node, backtrack)
Reach a node with a subset of the facts
\Rightarrow can prune

Forward State Space Search: Search Strategies and the Difficulty of Planning

Forward State Space Search: Djikstra

- First search strategy: Dijkstra's algorithm
" Matches the given forward search "template"
- use a strategy to select and remove <s,path> from open
- Selects from open a node n with minimal $g(n)$:

Cost of reaching n from the starting point

- Efficient graph search algorithm: $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}| \log |\mathrm{V}|)$
- $|E|=$ the number of edges (transitions), $|\mathrm{V}|=$ the number of nodes (states)
= Optimal: Returns minimum-cost plans

Dijkstra's Algorithm

- Explores states in order of cost
- Below, we assume $\forall a \in A: c(a)=1$

Djjkstra:ToH

- Running Dijkstra, assuming all actions are equally expensive:

Dijkstra: Blocks World

- Running Dijkstra, assuming all actions are equally expensive:

No problems?

Djkstra's Algorithm: Example

- A simple problem:

Goal
on(A,B)
on(B,C)
on(C,D)
on(D,F)
ontable(E)
ontable(F)

Optimal solution

$$
\begin{array}{cc}
\text { unstack(A,B) } & \text { pickup(D) } \\
\text { putdown(A) } & \text { stack(D,F) } \\
\text { unstack(B,C) } & \text { pickup(C) } \\
\text { putdown(B) } & \boldsymbol{\operatorname { s t a c k } (C , D)} \\
\text { unstack(C,D) } & \text { pickup(B) } \\
\text { putdown(C) } & \text { stack(B,C) } \\
\text { unstack(D,E) } & \text { pickup(A) } \\
\text { stack(D,F) } & \text { stack(A,B) }
\end{array}
$$

Actions: 14
States: 8706 calculated, 2692 visited

400 blocks

- Blocks world, 400 blocks initially on the table, goal is a 400-block tower
- Given uniform action costs (same cost for all actions),

Dijkstra will always consider all plans that stack less than $\mathbf{4 0 0}$ blocks!

- Stacking 1 block:
$=400 * 399$ plans, \ldots
- Stacking 2 blocks:
> 400*399* $399^{*} 398$ plans, ...
- More than

163056983907893105864579679373347287756459484163478267225862419762304263994207997664258213955766581163654137118 163119220488226383169161648320459490283410635798745232698971132939284479800304096674354974038722588873480963719 240642724363629154726632939764177236010315694148636819334217252836414001487277618002966608761037018087769490614 847887418744402606226134803936935233568418055950371185351837140548515949431309313875210827888943337113613660928 318086299617953892953722006734158933276576470475640607391701026030959040303548174221274052329579637773658722452 $54973845940445258650369316934 \quad$ 9127548532657959091134440844417556664211796
 81058521781914647662930023360 39438655119417119333314403154 72535893398611212735245298803

1.63 * 10^{1735}

 48826574448445631879309077796615729902891941372350568748665249021991849760646988031691 1302649432305620215568850657684229678385177 3087201742432360729162527387508073225578630
 051332104820413607822206465635272711073906611800376194410428900071013695438359094641682253856394743335678545824 320932106973317498515711006719985304982604755110167254854766188619128917053933547098435020659778689499606904157 077005797632287669764145095581565056589811721520434612770594950613701730879307727141093526534328671360002096924 483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572434616042404375 21105232403822580540571315732915984635193126556273109603937188229504400

Dijkstra is efficient in terms of the search space size: $O(|E|+|V| \log |V|)$

The search space is exponential in the size of the input description...

Fast Computers, Many Cores

- But computers are getting very fast!
- Suppose we can check 10^{20} states per second
- >10 billion states per clock cycle for today's computers, each state involving complex operations
- Then it will only take $10^{1735} / 10^{20}=10^{1715}$ seconds...
- But we have multiple cores!
- The universe has at most 10^{87} particles, including electrons, ...
- Let's suppose every one is a CPU core
- \rightarrow only 10^{1628} seconds $>10^{1620}$ years
- The universe is around 10^{10} years old

Impratital Algorithms

- Dijkstra's algorithm is completely impractical here
- Visits all nodes with cost < cost(optimal solution)
- Breadth first would not work
- Visits all nodes with length < length(optimal solution)
- Iterative deepening would not work
- Saves space, still takes too much time
- Depth first search would normally not work
- Always extends the plan if possible, always takes the first applicable action
- Could work in some domains and some problems, by pure luck...
- Usually either doesn't find the goal, or finds very inefficient plans

The state space is fine, but we need some guidance! But first, another direction...

Backward Search

Forward Search

- Blocks World, 3 blocks - searching forward

All-on-table

Initial state, s_{0}
If we are here:
What can we do, where do we end up?

Single goal, s_{g}
Note: $\mathrm{s} 0 \neq s_{0}$

Forward Search (2)

- Blocks World, 3 blocks - searching forward

Backward Search

- Must traverse edges backwards!
I. Execution should pass s $10 \ldots$

2. Execute pickup(C)...
3. Pass sl4...
4. Execute stack(C,B)...
5. ...and end up in sI5
putdown (A) pickup (B) putdown
'A,B)

6. Pass sl4...
7. Use stack(C,B),
but traversing the edge backwards!
I. Planning must start in sl5...

Backward Search

- Searching backward

Backwards Search:Complication 1

 (55)- Complication I:
- The graph isn't precomputed
- Must be expanded dynamically, starting in the goal
- Would require an inverse of $\gamma(s, a)$: $\gamma^{-1}(s, a)$

Backwards Search:Complication 2
Complication 2:

- Determinism is unidirectional, not applicable in backward search
- Compute γ^{-1} (\{at(shop)\}, drive-to-shop):

If we want to end up at(shop),
what state must we be in before drive-to-shop?

Backwards Search: Complication 3

- Complication 3:
- We generally have multiple goal states - to start in...
- Goal: on(A,B)

Backward Search:

Many complications - same solution

Repetition: States and goals

- Recall:
- A state is a set containing all atoms that are true
- $s=\{$ on(A,B), on(C,D) \}
- No block is clear or ontable: If they were, that would have been specified
- A goal is a set of literals that should hold...
- $g=\{o n(A, B), \neg o n(C, D)\}$
- A should be on B, and C should not be on D
- We don't care if blocks are clear / ontable or not: If we cared, that would have been specified
- Can correspond to many states

Goal Space = State Space

Backward search uses goal space!

Will not construct this graph - use $\gamma^{-1}(g, a)$, not $\gamma^{-1}(s, a)$

Goal Specifications

- Suppose we want exactly this:

- What is the goal?
- Could be a complete goal (\rightarrow unique state)
- \{ clear(A), on (A,B), on (B,C), ontable(C), clear(D), ontable(D), handempty, \neg clear $(\mathrm{B}), \neg$ on $(\mathrm{A}, \mathrm{A}), \ldots$ \}
- But this may be sufficient:
- \{ on (A, B), on($B, C)$, ontable(C), ontable(D) \}
- Specifies all positions;
given a physically achievable initial state, other facts follow implicitly

Goal Specifications (2)

- Usually we don't care about all facts (directly or indirectly)!
- Ignore the location of block D
- on(A,B) \neg clear(B) on(B,C) ontable(C)

Relevance:

Which actions could achieve part of the goal?

Backward Search: Relevance

Where would we have to start?
g specifies some
of the facts we illustrate below...

Backward Search: Relevance (2)

教

No!
It achieves clear(?top) $=$ clear(B)
The goal requires \neg clear (B)
\rightarrow Destroys part of the goal
stack(B, C) is not relevant (also impossible, but this is included in relevance)

Backward Search: Relevance (2)

Yes! Effects:
ᄀontable(D)
ᄀclear(D)
ᄀhandempty holding(D)

Does not contradict the goal
...but also doesn't help us achieve any aspect of the goal!
pickup(D) is not relevant

Backward Search: Relevance (3)

Backward Search: Summary (so far)

Forward search, over states $s=\left\{\right.$ atom $_{1}, \ldots$, atom $\left._{n}\right\}$:
a is applicable to current state s iff precond $^{+}(a) \subseteq s$ and $s \cap \operatorname{precond}^{-}(a)=\emptyset$

Positive conditions are present
Negative conditions are not present

Backward search, over sets of literals $g=\left\{l i t_{1}, \ldots, l i t_{n}\right\}$
a is relevant for current goal g iff

$$
\begin{aligned}
& \mathrm{g} \cap \operatorname{effects}(a) \neq \emptyset \text { and } \\
& \mathrm{g}+\cap \text { effects }-(a)=\varnothing \text { and } \\
& \mathrm{g}-\cap \text { effects }+(a)=\varnothing
\end{aligned}
$$

Contribute to the goal (add positive or negative literal)

Do not destroy any goal literals

Regression:
What must be true before?

Progression and Regression

Forward search, over states $s=\left\{\right.$ atom $_{1}, \ldots$, atom $\left._{n}\right\}$:
Progression: $\gamma(s, a)=\left(s-\right.$ effects $^{-}(a) \cup$ effects $\left.^{+}(a)\right)$

I am in state s
Action a is applicable
I would end up in $\gamma(s, a)$

Backward search, over sets of literals $g=\left\{l i t_{1}, \ldots, l_{1} t_{n}\right\}$
Regression: $\gamma^{-1}(g, a)=? ?$?

Backward Search: Regression

$g^{\prime}=\gamma^{-1}(g, \operatorname{stack}(\mathbf{A}, \mathrm{~B}))$
What facts g^{\prime} would we require before executing a, so that for every state s satisfying g^{\prime} :

1) A is executable in s 2) $\mathrm{g} \subseteq \gamma(s, a)$?

Example of subset

$g=\{$ on (A, B), on (B, C), ontable(C), ontable(D) $\}$
$\gamma(a, s)=\{$ on (A, B), on (B, C), ontable (C), ontable (D), clear(A), clear(D), handempty \}

$g:$
We want to achieve this...

on (A, B) on(B,C)
 ontable(C) ontable(D)

g specifies some
of the facts we illustrate below...

Backward Search: Regression (2)

Backward Search: Regression (3)

- Formally:

All goals except effects(a) must already have been true
precond(a)
must have been true, so that a was applicable
$\gamma^{-1}(\mathrm{~g}, \mathrm{a})=((\mathrm{g}-\operatorname{effects}(\mathrm{a})) \cup \operatorname{precond}(\mathrm{a}))$, representing
$\{s \mid a$ is applicable to s and $\gamma(s, a)$ satisfies $g\}$

Backward / regression: Which states could I start from?

Works for:

Classical goals (already sets of ground literals)
Classical effects (conjunction of literals)
Classical preconditions (conjunction of literals)

What happens

if we allow arbitrary (disjunctive) preconditions?

Backward Search: Reaching the Goal

$g_{2}=\gamma^{-1}(g, \operatorname{stack}(A, B))$
 this...

$$
\begin{gathered}
\text { on(A,B) } \\
\text { on(B,C) } \\
\text { ontable(C) } \\
\text { ontable(D) }
\end{gathered}
$$

If the literals are satisfied in S_{0},
I have a solution!

Backward Search: Example

Forward vs. Backward

Backward and Forward Search: Expressivity

- How about expressivity?
- Suppose we have disjunctive preconditions
- (:action travel

```
:parameters (?from ?to - location)
:precondition (and (at ?from) (or (have-car) (have-bike)))
:effects (and (at ?to) (not (at ?from))))
```

- How do we apply such actions backwards?
- More complicated disjunctive goals to achieve?

Similarly for existentials ("exists block [on(block,A)]"): One branch per possible value Some extensions are less straight-forward in backward search (but possible!)

Backward and Forward Search:Unknowns

Forward search

I can reach this node from the initial state... But what comes next? Can I reach the goal? Efficiently?

Backward search

Backward and Forward Search: Pruning

Backward search

Reach a node with the same state \Rightarrow can prune

If preconditions and goals are positive: Reach a node with a subset of the facts
\rightarrow can prune

Reach a node with the same or stronger goal
\Rightarrow can prune

Backward and Forward Search: Problems

FORWARD SEARCH

- Problematic when:
" There are many applicable actions
\rightarrow high branching factor
\rightarrow need guidance
- Blind search knows if an action is applicable, but not if it will contribute to the goal

BACKWARD SEARCH

- Problematic when:
- There are many relevant actions
\rightarrow high branching factor
\rightarrow need guidance
- Blind search knows if an action contributes to the goal, but not if you can achieve its preconditions

Blind backward search is generally better than blind forward search: Relevance tends to provide better guidance than applicability

This in itself is not enough to generate plans quickly!

Lifted Search:
 A general technique

Lifted Search (1)

- Even with conjunctive preconds:

- High branching factor
- No reason to decide now which block to unstack A from

(:action pickup

:parameters (? x)

:precondition (and (clear ?x) (on-table ?x) (handempty))
:effect
(and (not (on-table ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))
(:action unstack
:parameters (?top ?below)
:precondition (and (on ?top ?below) (clear ?top) (handempty))
:effect
(and (holding ?top)
(clear ?below)
(not (clear ?top))
(not (handempty))
(not (on ?top ?below))))

Lifted Search (2)

- General idea in lifted search:
- Keep some variables uninstantiated (not ground $\boldsymbol{\rightarrow}$ "lifted")

Next step:

How to check for actions achieving (on A ?x)?

Requires unification - see the book, fig 4.3

Applicable to other types of planning - will return later!
But isn't enough to make unguided backward search efficient...

Where do we go from here?

Where do we go from here?

Forward and backward search are useless without guidance!

Add general guidance mechanisms to the planner

Typically: Heuristics to avoid blind search, judge which actions seem promising

Provide more specific information about each domain

Control formulas
Hierarchical Task Networks

Use a different search space and search algorithm

Partial Order Causal Link Satisfiability-based planning Planning graphs

