
jonas.kvarnstrom@liu.se – 2018

Automated Planning

The State Space
and Forward-Chaining State Space Search

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3About Examples
 Exploring the state space… of what?

 As usual: toy examples in very simple domains

▪ To learn fundamental principles

▪ To focus on algorithms and concepts, not domain details

▪ To create readable, comprehensible examples

 Always remember:

▪ Real-world problems are larger, more complex

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4ToH 0: Towers of Hanoi
 Domain : Towers of Hanoi

 A modeling trick:

Disks and pegs are "equivalent"

Pegs are the largest disks,

so they cannot be moved

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5ToH 1: Towers of Hanoi
 Domain : Towers of Hanoi

clear: "nothing on top of x"

on: "x on top of y"

smaller: "y is smaller than x"

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6ToH 2: Number of States
 How many states exist for this problem?

Answer:

Every assignment of values

to the ground atoms

is one state

6 objects

26 combinations of "clear"

26∗6 combinations of "on"

26∗6 combinations of "smaller"

𝟐𝟕𝟖 combinations in total:

302231′454903′657293′676544

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7ToH 3: Without Rigid Predicates
 Suppose we don't include fixed predicates ("smaller") in the state?

6 objects

26 combinations of "clear"

26∗6 combinations of "on"

𝟐𝟒𝟐 combinations in total:

4′398046′511104

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8ToH 4: Reachable From…
 How many states are reachable from the given initial state,

using the given actions?

 27 out of 4′398046′511104

The other states

still exist in 𝑆!

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9ToH 5: Reachable States

States are not inherently "reachable" or "unreachable"

They can be reachable from a specific starting point!

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10ToH 6: Reachable from "Forbidden"
 Suppose this was your initial state

 Unreachable from "all disks in the right order"!

 Then other states would be reachable from this state

 If the preconditions hold, then move can be applied

The states exist in 𝑆 – they obey no rules

permitted transition according to our operators

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11ToH 7: Reachable from "Impossible"
 Suppose this was your initial state:

 Then other states would be reachable

 If the preconditions hold, then move can be applied

Can't even be visualized – physically impossible

But the states exist in 𝑆 – they are just combinations of true/false values

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12ToH 8: Larger Reachable
Towers of Hanoi

Most reachable

state spaces

are far less regular,

can have dead ends, …

A larger (but still tiny)

example…

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14BW 1: Blocks World
 Domain 2: The Blocks World

Your greatest desireInitial StateYou

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15BW 2: Model
 We will generate classical sequential plans

 One object type: Blocks

 A common blocks world version, with operators

▪ – takes ?x from the table

▪ – puts ?x on the table

▪ – takes ?x from on top of ?y

▪ – puts ?x on top of ?y

 Predicates used:

▪ – block ?x is on block ?y

▪ – ?x is on the table

▪ – we can place a block on top of ?x

▪ – the robot is holding block ?x

▪ – the robot is not holding any block

With 𝑛 blocks: 2𝑛
2+3𝑛+1 states

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16BW 3: Operator Reference

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17BW 4: Reachable State Space, 1 block

handempty

ontable(A)

clear(A)

holding(A)

We assume we know the initial state

Let’s see which states are reachable from there!

Here: Start with s0 = all blocks on the table

s2
holding(A)

handempty

ontable(A)

clear(A)

Many other states "exist",

but are not reachable

from the current starting state

s3
handempty

clear(A)

ontable(A)

on(A,A)

pickup(A)

s4
holding(A)

clear(A)

ontable(A)

unstack(A,A)

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18BW 5: Reachable State Space, 2 blocks

A on Table

B on Table

A on Table

Holding B

B on A on Table

Holding A

B on Table

A on B on Table

2048 states in total

Reachable from "all on table":

5 states, 8 transitions

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19BW 6: Reachable State Space, 3 blocks
524'288 states in total

Reachable from "all on table":

22 states, 42 transitions
A on Table

B on Table

C on table

Looking nice and symmetric…

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20BW 7: Reachable State Space, 4 blocks
536'870'912 states in total

Reachable from "all on table":

125 states, 272 transitions

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21BW 8: Reachable State Space, 5 blocks
2'199'023'255'552 states in total

Reachable from "all on table":

866 states, 2090 transitions

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22BW 9: State Space Size
 Standard PDDL predicates:

 Number of ground atoms, for 𝑛 blocks:

 𝑛2 + 3𝑛 + 1

 Number of states:

 2𝑛
2+3𝑛+1

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23BW 10: Reachable State Space, sizes 0–10

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24BW 11: Reducing State Space Size, 5 blocks
 Reducing the State Space Size:

 Standard PDDL model:

▪ 2𝑛
2+3𝑛+1 = 2'199'023'255'552 states,

866 reachable

 Omit

▪ In physically achievable states, these
can be deduced from

▪ 2𝑛
2+𝑛+1 = 2'147'483'648 states, 866 reachable

 Also switch to a state variable representation

▪ Add type , size 6 (values)

▪ Use , where can be " "

▪ (𝑛 + 1)𝑛⋅ 2𝑛+1 = 497'664 states, 866 reachable

Is planning time reduced with fewer unreachable states?

Depends on the planning algorithm!

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25State Space: Not Symmetric
 Example: Unable to return

crack(egg5)

Can never return to the leftmost part of the state space

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26State Space: Disconnected
 Example: Disconnected parts of the state space

No action for buying a helicopter, no action for losing it

Will stay in the partition where you started!

I don't have a helicopter I do have a helicopter

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28The Planning Problem

Initial (current) state

Goal states

Find a path in the STS from the initial state to any goal state

Many graph search methods already exist!

How do we apply them to the state space?

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30The Planning Problem (2)
 Can search in either direction

 Most straight-forward: Initial goal

 Later: Goal initial

 Many names:

 Forward search

 Forward-chaining search

 Forward state space search

 Progression

 …

Initial (current) state

Goal states

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Forward State Space Search 1
 Forward search in the state space

 Start in the initial state

 Apply a search algorithm

▪ Depth first

▪ Breadth first

▪ Uniform-cost search

▪ …

 Terminate when a

goal state is

found

Initial (current) state

Goal states

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32FSSS 2: Don’t Precompute
 The planner is not given a complete precomputed search graph!

Usually too large!

 Generate as we go,

hope we don’t actually need the entire graph

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33FSSS 3: Initial state
 The user (robot?) observes the current state of the world

 The initial state

 Must describe this using the specified formal state syntax…

 𝑠0

 …and give it to the planner, which creates one search node

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34FSSS 4: Successors
 Given any search node…

 …we can find successors – by appling actions!

▪ ∧ ∧
¬ ∧ ¬ ∧ ¬ ∧

 This generates new reachable states…
…which can also

be illustrated

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35FSSS 5: Step by step
 A search strategy (depth first, A*, hill climbing, …) will:

 Choose a node

 Expand all possible successors

▪ “What actions are applicable in the current state, and where will they take me?”

▪ Generates new states by applying effects

 Repeat until a goal node is found!

The blocks world is

symmetric: Can

always “return the

same way”

Not true for all

domains!

This is illustrated –

the planner works

with sets of facts

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36General Search
 General way of formalizing search algorithms:

 There are some ”open” nodes, that we:

▪ Know how to reach

▪ Haven’t explored yet

 Pick / remove one of them

▪ Using some strategy for picking ”good nodes”

 Find nodes that can be reached

in a single step (applying one action)

 Put those back in the set of nodes

▪ New options!

 Repeat until a goal node is found

At first: The

initial state!

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Forward State Space Search (4)
 General Forward State Space Search Algorithm

 ε
≠ ∅

𝑎 ∈ 𝐴 𝛾 𝑠, 𝑎 ≠ ∅ {
 𝛾(𝑠, 𝑎)

Forward search:

Reach in one step =

reach by one action application

Is always sound

Completeness depends on the strategy

To simplify extracting a plan,

a state space search node above

includes the plan to reach that state!

Technically, we search the space of

<state,path> pairs

Still generally called state space search…

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Forward State Space Search (5): Pruning

Reach a more expensive node

with the same state

 can prune

(discard the node, backtrack)

If preconditions and goals are positive:

Reach a node with a subset of the facts

 can prune

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Forward State Space Search: Dijkstra
 First search strategy: Dijkstra’s algorithm

 Matches the given forward search ”template”

▪

▪ Selects from open a node n with minimal g(n):

Cost of reaching n from the starting point

 Efficient graph search algorithm: O(|E| + |V| log |V|)

▪ |E| = the number of edges (transitions), |V| = the number of nodes (states)

 Optimal: Returns minimum-cost plans

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Dijkstra’s Algorithm
 Explores states in order of cost

 Below, we assume ∀𝑎 ∈ 𝐴: 𝑐 𝑎 = 1

cost 7
cost 6
cost 5
cost 4
cost 3
cost 2
cost 1

Goal nodes

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Dijkstra: ToH
 Running Dijkstra, assuming all actions are equally expensive:

Expands one node at a time,

but we can identify ”levels”

of equal distance

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43Dijkstra: Blocks World
 Running Dijkstra, assuming all actions are equally expensive:

No problems?

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45Dijkstra’s Algorithm: Example

 A simple problem:
Goal Optimal solution

bw-tower06-dijkstra: Only 6 blocks, Dijkstra search, no heuristic

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47400 blocks
 Blocks world, blocks initially on the table, goal is a -block tower

▪ Given uniform action costs (same cost for all actions),
Dijkstra will always consider all plans that stack less than blocks!

▪ Stacking block: = plans, …

▪ Stacking blocks: > plans, …
▪

Dijkstra is efficient in terms of the search space size: O(|E| + |V| log |V|)

The search space is exponential in the size of the input description…

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Fast Computers, Many Cores
 But computers are getting very fast!

 Suppose we can check 1020 states per second

▪ > billion states per clock cycle for today’s computers,

each state involving complex operations

 Then it will only take 101735 / 1020 = 101715 seconds…

 But we have multiple cores!

 The universe has at most 1087

particles, including electrons, …

 Let’s suppose every one

is a CPU core

 only 101628 seconds
> 101620 years

 The universe is around 1010

years old

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49Impractical Algorithms
 Dijkstra’s algorithm is completely impractical here

 Visits all nodes with

 Breadth first would not work

 Visits all nodes with

 Iterative deepening would not work

 Saves space, still takes too much time

 Depth first search would normally not work

 Always extends the plan if possible, always takes the first applicable action

 Could work in some domains and some problems, by pure luck…

 Usually either doesn’t find the goal,

or finds very inefficient plans The state space is fine,

but we need some guidance!

But first, another direction…

jonas.kvarnstrom@liu.se – 2018

Backward Search

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51

All-on-table

Forward Search
 Blocks World, 3 blocks – searching forward

A B C

Initial state, 𝑠0
If we are here:

What can we do,

where do we end up?

A B

C

Single goal, 𝑠𝑔

A

B

C

Note: s0 ≠ 𝑠0

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52

All-on-table

Forward Search (2)
 Blocks World, 3 blocks – searching forward

A B C

Initial state, 𝑠0

A B

C

Single goal, 𝑠𝑔

A

B

C

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53

Goal

Backward Search
 Must traverse

edges backwards!

1. Execution should pass s10…

2. Execute pickup(C)…

3. Pass s14…

4. Execute stack(C,B)…

5. …and end up in s15

5. Pass s10…

4. Use pickup(C) backwards…

3. Pass s14…

2. Use stack(C,B),

but traversing the edge backwards!

1. Planning must start in s15…

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54

All-on-table

Backward Search
 Searching backward

A B C

Initial state, 𝑠0

A B

C

Single goal, 𝑠𝑔

A

B

C

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55Backwards Search: Complication 1
 Complication 1:

 The graph isn’t precomputed

▪ Must be expanded dynamically,

starting in the goal

▪ Would require

an inverse of 𝛾 𝑠, 𝑎 :

𝛾−1(𝑠, 𝑎)

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Backwards Search: Complication 2
 Complication 2:

 Determinism is unidirectional, not applicable in backward search

▪ Compute 𝛾−1 𝑎𝑡 𝑠ℎ𝑜𝑝 , drive−to−shop :

If we want to end up at(shop),

what state must we be in before drive-to-shop?

at(home)

at(work)

at(restaurant)

at(shop)
drive-to-shop

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57Backwards Search: Complication 3
 Complication 3:

 We generally have multiple goal states – to start in…

▪ Goal: on(A,B)

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59Repetition: States and goals
 Recall:

 A state is a set containing all atoms that are true

▪ s = { on(A,B), on(C,D) }

▪ No block is clear or ontable:

If they were, that would have been specified

 A goal is a set of literals that should hold…

▪ g = { on(A,B), ¬on(C,D) }

▪ A should be on B, and C should not be on D

▪ We don’t care if blocks are clear / ontable or not:

If we cared, that would have been specified

▪ Can correspond to many states

60

jo
nk

v@
id

a
jo

nk
v@

id
a

60Goal Space ≠ State Space
Backward search uses goal space!

Will not construct this graph – use 𝜸−𝟏 𝒈, 𝒂 , not 𝜸−𝟏 𝒔, 𝒂

61

jo
nk

v@
id

a
jo

nk
v@

id
a

61Goal Specifications
 Suppose we want exactly this:

 What is the goal?

 Could be a complete goal (unique state)

▪ { clear(A), on(A,B), on(B,C), ontable(C),

clear(D), ontable(D), handempty,

¬clear(B), ¬on(A,A), … }

 But this may be sufficient:

▪ { on(A,B), on(B,C), ontable(C), ontable(D) }

▪ Specifies all positions;

given a physically achievable initial state, other facts follow implicitly

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62Goal Specifications (2)
 Usually we don’t care about all facts (directly or indirectly)!

 Ignore the location of block D

 on(A,B)

¬clear(B)

on(B,C)

ontable(C)

Relevance:

Which actions could achieve part of the goal?

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64

on(A,B)

¬clear(B)

on(B,C)

ontable(C)

Backward Search: Relevance

𝑔:

Suppose

we want

to achieve

this…
Later:

Where would we

have to start?

𝑔 specifies some

of the facts we

illustrate below…

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65

on(A,B)

¬clear(B)

on(B,C)

ontable(C)

Backward Search: Relevance (2)

𝑔:

Suppose

we want

to achieve

this…

𝑔 specifies some

of the facts we

illustrate below…

No!

It achieves clear(?top) = clear(B)

The goal requires ¬clear(B)

 Destroys part of the goal

stack(B,C) is not relevant

(also impossible,

but this is included in relevance)

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66

on(A,B)

¬clear(B)

on(B,C)

ontable(C)

Backward Search: Relevance (2)

𝑔:

Suppose

we want

to achieve

this…

𝑔 specifies some

of the facts we

illustrate below…

Yes! Effects:

¬ontable(D)

¬clear(D)

¬handempty

holding(D)

Does not contradict the goal

pickup(D) is not relevant

…but also doesn’t help us

achieve any aspect of the goal!

67

jo
nk

v@
id

a
jo

nk
v@

id
a

67

on(A,B)

¬clear(B)

on(B,C)

ontable(C)

Backward Search: Relevance (3)

𝑔:

Suppose

we want

to achieve

this…

𝑔 specifies some

of the facts we

illustrate below…

Yes! Effects:

¬holding(A)

¬clear(B)

clear(A)

handempty

on(A,B)

Does not contradict the goal,

achieves on(A,B)

stack(A,B) is relevant

68

jo
nk

v@
id

a
jo

nk
v@

id
a

68

𝑎
precond+ 𝑎 ⊆ 𝑠
𝑠 ∩ precond– 𝑎 = ∅

Backward Search: Summary (so far)

𝑎
∩ 𝑎 ∅
∩ 𝑎 ∅
∩ 𝑎 ∅

Forward search, over states 𝑠 = {𝑎𝑡𝑜𝑚1, … , 𝑎𝑡𝑜𝑚𝑛}:

Backward search, over sets of literals 𝑔 = {𝑙𝑖𝑡1, … , 𝑙𝑖𝑡𝑛}

Contribute to the goal

(add positive or negative literal)

Do not destroy any goal literals

Positive conditions are present

Negative conditions are not present

Regression:

What must be true before?

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70

Progression: 𝛾 𝑠, 𝑎 = (𝑠 − effects− 𝑎 ∪ effects+ 𝑎

Progression and Regression

Regression: 𝛾−1 𝑔, 𝑎 = ? ? ?

Forward search, over states 𝑠 = {𝑎𝑡𝑜𝑚1, … , 𝑎𝑡𝑜𝑚𝑛}:

Backward search, over sets of literals 𝑔 = {𝑙𝑖𝑡1, … , 𝑙𝑖𝑡𝑛}

I am in state s
I would end up in

𝛾(𝑠, 𝑎)

Action 𝑎 is applicable

I would require

𝛾−1(𝑔, 𝑎)
I need to achieve

goal 𝑔

Action 𝑎 is relevant for 𝑔

71

jo
nk

v@
id

a
jo

nk
v@

id
a

71

on(A,B)

on(B,C)

ontable(C)

ontable(D)

Backward Search: Regression

𝑔:

We want

to achieve

this…

What facts 𝑔’
would we require

before executing a,

so that for every state 𝑠
satisfying 𝑔′:

1) A is executable in s
2) g ⊆ 𝛾 𝑠, 𝑎 ?

𝑔′ = 𝛾−1(𝑔, stack A,B)

𝑔 specifies some

of the facts we

illustrate below…

Example of subset

𝑔 = { on(A,B), on(B,C), ontable(C), ontable(D) }

𝛾 𝑎, 𝑠 = { on(A,B), on(B,C), ontable(C), ontable(D),

clear(A), clear(D), handempty }

72

jo
nk

v@
id

a
jo

nk
v@

id
a

72

on(A,B)

on(B,C)

ontable(C)

ontable(D)

Backward Search: Regression (2)

𝑔:

We want

to achieve

this…

holding(A)

clear(B)

Needed by

stack(A,B)

𝛾−1(𝑔, stack A,B)

𝑔 specifies some

of the facts we

illustrate below…

on(B,C)

ontable(C)

ontable(D)

What the goal

needs, but

stack(A,B) did

not achieve

𝑔 = {on(A,B), on(B,C),

ontable(C), ontable(D) }

𝛾−1(𝑔, stack A,B) =

{ holding(A), clear(B),

on(B,C), ontable(C), ontable(D) }

Corresponds to

many potential states

73

jo
nk

v@
id

a
jo

nk
v@

id
a

73Backward Search: Regression (3)
 Formally:

γ ∪

γ

precond(a)

must have been true,

so that a was applicable

All goals except effects(a)

must already have been true

Backward / regression:

Which states could I start from?

Works for:

Classical goals (already sets of ground literals)

Classical effects (conjunction of literals)

Classical preconditions (conjunction of literals)

What happens

if we allow arbitrary (disjunctive) preconditions?

74

jo
nk

v@
id

a
jo

nk
v@

id
a

74

on(A,B)

on(B,C)

ontable(C)

ontable(D)

Backward Search: Reaching the Goal

𝑔:

We want

to achieve

this…

holding(A)

clear(B)

𝑔2 = 𝛾−1(𝑔, stack A,B)

on(B,C)

ontable(C)

ontable(D)

I can reach the goal

from any state

satisfying these 5

literals!

𝑔3

𝑔4

𝑔5

I can reach the goal

from any state

satisfying some 𝑔𝑖!

If the literals are

satisfied in 𝒔𝟎,

I have a solution!

75

jo
nk

v@
id

a
jo

nk
v@

id
a

75Backward Search: Example

The goal is

not

already

achieved…

Represents

many

possible

goal states!

Relevant:

Achieves

on(B,C),

deletes no

goal facts

Relevant:

Achieves

on(A,B),

deletes no

goal facts

If this is true, I

know how to

reach the goal

If this is true, I

know how to

reach the goal

Forward vs. Backward

77

jo
nk

v@
id

a
jo

nk
v@

id
a

77Backward and Forward Search: Expressivity
 How about expressivity?

 Suppose we have disjunctive preconditions

▪

 How do we apply such actions backwards?

▪ More complicated

disjunctive

goals to achieve?

▪ Additional

branching?

Similarly for existentials (" "): One branch per possible value

Some extensions are less straight-forward in backward search (but possible!)

78

jo
nk

v@
id

a
jo

nk
v@

id
a

78Backward and Forward Search: Unknowns

Forward search Backward search

I can reach this node

from the initial state…

But what comes next?

Can I reach the goal?

Efficiently?

I can reach the goal

from this node…

But what comes before?
Can I reach it from ?

Efficiently?

79

jo
nk

v@
id

a
jo

nk
v@

id
a

79Backward and Forward Search: Pruning

Forward search Backward search

Reach a node with the same state

 can prune

Reach a node with the same or stronger goal

 can prune

If preconditions and goals are positive:

Reach a node with a subset of the facts

 can prune

80

jo
nk

v@
id

a
jo

nk
v@

id
a

80Backward and Forward Search: Problems

FORWARD SEARCH

 Problematic when:

 There are many applicable actions

 high branching factor

 need guidance

 Blind search knows

if an action is applicable,

but not if it will contribute

to the goal

BACKWARD SEARCH

 Problematic when:

 There are many relevant actions

 high branching factor

 need guidance

 Blind search knows

if an action contributes to the goal,

but not if you can achieve its

preconditions

Blind backward search

is generally better than blind forward search:

Relevance tends to provide better guidance than applicability

This in itself is not enough to generate plans quickly!

82

jo
nk

v@
id

a
jo

nk
v@

id
a

82Lifted Search (1)
 Even with conjunctive preconds:

 High branching factor

 No reason to decide now

which block to unstack A from

83

jo
nk

v@
id

a
jo

nk
v@

id
a

83Lifted Search (2)
 General idea in lifted search:

 Keep some variables uninstantiated (not ground "lifted")

Next step:

How to check for actions

achieving (on A ?x)?

Requires unification – see

the book, fig 4.3

Applicable to other types of planning – will return later!

But isn't enough to make unguided backward search efficient...

85

jo
nk

v@
id

a
jo

nk
v@

id
a

85Where do we go from here?

Forward and backward search

are useless without guidance!

Add general

guidance mechanisms

to the planner

Typically: Heuristics

to avoid blind search,

judge which actions

seem promising

Provide more specific

information

about each domain

Control formulas

Hierarchical Task Networks

Use a different

search space

and search algorithm

Partial Order Causal Link

Satisfiability-based planning

Planning graphs

