‘4% Linkdping University g
(&%s wﬁ“‘@

Automated Planning

The State Space
and Forward-Chaining State Space Search

Jonas Kvarnstrom

Automated Planning Group

Department of Computer and Information Science

Linkoping University

Exploring the State Space

jonkv@ida

About Examples

Exploring the state space... of what!

1
As usual: toy examples in very simple domains ~—~

= To learn fundamental principles
= To focus on algorithms and concepts, not domain details
= To create readable, comprehensible examples ;‘*

Always remember:

= Real-world problems are larger, more complex

\-;)
jonkv@ida

ToH 0: Towers of Hanoi

Domain 1: Towers of Hanoi
A modeling trick:

“ Pegs are the largest disks,
so they cannot be moved

Disks and pegs are "equivalent”

A8

ToH 1: Towers of Hanoi

Domain 1: Towers of Hanoi

(define (domain hanoi)
(:xrequirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

clear: "nothing on top of x"

on: "x on top of y"
smaller: "y is smaller than x"

(:action move
:;parameters (?disc ?from ?to)

:precondition (and (smaller ?to ?disc) (on ?disc ?from) (clear ?disc) (clear ?to))
:effect (and (clear ?from) (on ?disc ?to) (not (on ?disc ?from)) (not (clear ?to))))

)

(define (problem hanoi3) (:domain hanoi)
(:objects pegl peg2 peg3 d1 d2 d3)
(:init

(smaller pegl d1) (smaller pegl d2) (smaller pegl d3)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3) di
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)

(clear peg?) (clear peg3) (clear d1)

(on d3 pegl) (on d2 d3) (on d1 d2)) “

jonkv@ida

(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2)))
)

a
jonkv@ida

ToH 2: Number of States

How many states exist for this problem!?

(define (domain hanoi)
(:xrequirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

Answer:
(:action move

:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc

Every assignment of values

-effect (and (clear ?from) (on ?disc ?to) (not (ox to the ground atoms
) is one state
(define (problem hanoi3) (:domain hanoi)
(:objects pegl peg? peg3 d1 d2 d3) 6 objects
(:init 2% combinations of "clear"

(smaller pegl d1) (smaller pegl d2) (smaller pegl 26%6 ~ombinations of "on"
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 26%6
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2) 78 . . . i
(clear peg?) (clear peg3) (clear d1) 2 c,omblnaflons L ’:OtaL

(on d3 pegl) (on d2 d3) (on d1 d2)) 302231'454903°'657293'676544

(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2)))
)

combinations of "smaller"

=

jonkv@ida

ToH 3: Without Rigid Predicates

Suppose we don't include fixed predicates ("smaller") in the state?

(define (domain hanoi)
(:xrequirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc
:effect (and (clear ?from) (on ?disc ?to) (not (ot

6 objects

) 2° combinations of "clear"
(define (problem hanoi3) (:domain hanoi) DEIB (el s s oy o
(:objects pegl peg?2 peg3 d1 d2 d3)
(:init 42 . . .
(smaller pegl d1) (smaller pegl d2) (smaller pegl 2 co’mblnatllons in total:
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 4'398046'511104

(smaller peg3 d1) (smaller peg3 d2) (smaller peg3
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg?) (clear peg3) (clear d1)
(on d3 pegl) (on d2 d3) (on d1 d2))

(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2)))

)

ToH 4: Reachable From...

How many states are reachable from the given initial state,
using the given actions!?

o
)
E)

—
e

o
o —

27 out of 4'398046'511104 11
=l | *| |
The other states
still exist in S =il 41l
I * I J-—|i J'il— Move DiskC
LLL AL N s
dld

S, clear(pegl) is true
clear(peg?) is false

clear(peg3) is false e et | Ll 41+

on(d1,pegl) is false
on(d3,peg2?) is true

Te| 1) L1l 4L] 404 LI 1L 114

ToH 5: Reachable States

a
jonkv@ida

States are not inherently "reachable” or "unreachable”

They can be reachable from a specific starting point!

ToH 6: Reachable from "“Forbidden”

Suppose this was your initial state

9
jonkv@ida

Unreachable from "all disks in the right order"!

2
N

Then other states would be reachable from this state

If the preconditions hold, then move can be applied

3
| 42 |

The states exist in S — they obey no rules

permitted transition according to our operators

ToH 7: Reachable from “Impossible”

jonkv@ida

Suppose this was your initial state:
(and

(on pegl peg?) /

(ondl d2)

(ond2dl)

(on d3 d3) ,
)

Then other states would be reachable

If the preconditions hold, then move can be applied

Can't even be visualized — physically impossible

But the states exist in S — they are just combinations of true/false values

epignyjuol

>
0
o
—
)
o
Q
(o <
T
Y,
on
p S
o
—

ToH 8

7 disks
2187 reachable states

y
AA:}A

A

Towers of Hanoi
AA
A

&Ai}A

A

4

A7A AN

A
AA A
A
AA
iy

A

.y

“x

£
A AAA
£

A2

A

AKL}A AQMA:}A AK;}MA:‘.}.Q AK;}MQA AA:‘}MQA AA:‘}M{L}A AKZ}M&:}A AK:}M&:‘}A A‘K:}A

Most reachable
state spaces

25
| v
S 2
Woe
S T
a0
9 T
L @
8
L <=
L &

G
8]

A larger (but still tiny)
example

State Space: Blocks World

BW 1. Blocks World

Domain 2: The Blocks World

3
jonkv@ida

Initial State Your greatest desire

\[u[

jonkv@ida

BW 2: Model

We will generate classical sequential plans

One object type: Blocks
A common blocks world version, with 4 operators

» (pickup ?x) — takes ?x from the table dnu
= (putdown ?x) — puts x on the table e i et

(unstack ?x ?y) — takes ?x from on top of %y

= (stack ?x ?y) — puts x on top of 1y

Predicates used:

= (on ?x ?y) — block ?x is on block ?y

= (ontable ?x) — ! is on the table

= (clear ?x) — we can place a block on top of ’x
* (holding ?x) — the robot is holding block ?x

(handempty) — the robot is not holding any block

: 2
With n blocks: 2™ 31+1 states

unstack(A,C) =» putdown(d) =» pickup(B) =»> stack(B,C)

BW 3: Operator Reference

(:action pickup
:;parameters (?x)

:precondition (and (clear ?x) (on-table ?x)

(handempty))
-effect
(and (not (on-table ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(:action unstack
:;parameters (?top ?below)
:precondition (and (on ?top ?below)
(clear ?top) (handempty))
.effect
(and (holding ?top)
(clear ?below)
(not (clear ?top))
(not (handempty))
(not (on ?top ?below))))

(:action putdown
:;parameters (?x)

:precondition (holding ?x)

-effect
(and (on-table ?x)
(clear ?x)

(handempty)
(not (holding ?x))))

(:action stack
:parameters (?top ?below)
:precondition (and (holding ?top)
(clear ?below))
.effect
(and (not (holding ?top))
(not (clear ?below))
(clear ?top)
(handempty)
(on ?top ?below)))

jonkv@ida

BW 4: Reachable State Space, 1 block

3
jonkv@ida

’ We assume we know the initial state Many other states "exist",
Let’s see which states are reachable from there! but are not reachable
Here: Start with sO = all blocks on the table from the current starting state
holding(A) pickup(A) holding(A)
e e e handempty
ontable(A)
R clear(A)
A4 ~r‘°\
7 &
X .
. 7 handempty
pUtd OW”(A) _ ICkUp(,A() clear(A)
L ontable(A)
L on(AA)
JPis unstack(A,A)
Rl
handempty holding(A)
ontable(A) clear(A)
clear(A) ontable(A)

BW 5: Reachable State Space, 2 blocks

9
jonkv@ida

2048 states in total
A onTable Reachable from "all on table":
B on Table 5 states, 8 transitions

A onTable Holding A
Holding B B on Table
stack(A,B) Junstack(A,B)
B on A onTable

A on B on Table

jonkv@ida

BW 6: Reachable State Space, 3 blocks

524'288 states in total

A on Table Reachable from "all on table":
B on Table 22 states, 42 transitions
C on table

putdown(B) pickup(C) putdown(C)
unstack(C A) nstack(C,B)
putdown(C) putdown{A) P putdown(B)

nstack{C,B) stack(A,B) Junstack(A,B) 3 nstack(B,C)

1ack(A‘ B) unstack(A B) stack(B A) Junstack(B,A) unstack(B,C)

p putdown(B) P putdown(C)

stack(B,A) Junstack(B,A) @ nstack(C,A)

Y,

O

putdown(A)

W/
\
&/

nstack(A,C)

W/
./
U/

Looking nice and symmetric...

BW 7: Reachable State Space, 4 blocks

536'870'912 states in total
Reachable from "all on table":

| 25 states, 272 transitions

jonkv@ida

jonkv@ida

BW 8: Reachable State Space, 5 blocks

2'199'023'255'552 states in total
Reachable from "all on table":

866 states, 2090 transitions

BW 9: State Space Size

9
NY
jonkv@ida

Standard PDDL predicates:
(on ?x ?y)
(ontable ?x)
(clear ?x)

(holding ?x)
(handempty)

Number of ground atoms, for n blocks:
n‘+3n+1

Number of states:

2n2+3n+1

BW 10: Reachable State Space, sizes 0-10

jonkv@ida

© 0 N & U1 b W N = O

[
=)

Ground
atoms
1 2

32

2048

524288
536870912
2199023255552

36028797018963968
2361183241434822606848
618970019642690137449562112
64903710731685345356631204115

2512

27222589353675077077069968594

54145691648

States reachable

from "all on table"

22

125

866
7057
65990
695417
8145730

Transitions
(edges) in
reachable part

42

272

2090
18552
186578
2094752
25951122

jonkv@ida

BW 11: Reducing State Space Size, 5 blocks

Reducing the State Space Size:
Standard PDDL model:

. 2n+3n+1 = 9'199'023'255'552 states,
866 reachable

Omit (ontable ?x), (clear ?x)

= In physically achievable states, these
can be deduced from (on ?x ?y), (holding ?x)

- 2NPHN+1 = 911 47'483'648 states, 866 reachable

Also switch to a state variable representation N ;é
= Add type block-or-nothing, size 6 (values A, B, C, D, E, nothmg)
= Use (= (block-below ?x) ?y), where ?y can be "nothing"

(n + 1)" 2™+1 = 497'664 states, 866 reachable

Is planning time reduced with fewer unreachable states?

Depends on the planning algorithm!

State Space: Not Symmetric

jonkv@ida

Example: Unable to return

crack(egg)) &
R _,

ZN ZN

Can never return to the leftmost part of the state space

State Space: Disconnected

NY
a
jonkv@ida

Example: Disconnected parts of the state space

~A/

| don't have a helicopter | do have a helicopter

AN 2

No action for buying a helicopter, no action for losing it

=» Will stay in the partition where you started!

Forward State Space Search

jonkv@ida

The Planning Problem

Find a path in the STS from the initial state to any goal state

Initial (current) state

s0
®

putdown(B} pickup(C) putdown{C)

unstack(AB) nstack(B,A) unstack(B,C)
p putdown(B) P putdown(GC) P putdown(C) putdown(A) D putdown(B) ¢ putdown(A)

) @ nstack(C A) @ nstack{C,B) nstack(A,B)

Goal states

unstack(C A) nstack(C,B)

\

IRY

tack(B A} unstack(B A

S

nstack(B,C) 3 nstack(A,C)

Many graph search methods already exist!

How do we apply them to the state space?

jonkv@ida

The Planning Problem (2)

Can search in either direction

Most straight-forward: Initial =» goal
Later: Goal =¥ initial

Many names:
Forward search Initial (current) state

Forward-chaining search

putdown(C)

Goal states

Forward State Space Search 1

jonkv@ida

Forward search in the state space
Start in the initial state

Apply a search algorithm

= Depth first

= Breadth first

= Uniform-cost search Initial (current) state

Terminate when a ”mwm

goal state is e @ =)

fo U n d w stack(B.C) @ uuuuuu (C.A) \stack(C,B) ‘nstack (C.B)
D utdown{(B) p utdown(C}) @ @ pLtdown(B
. @ ack(G A) @ tack(C,B) @ stack(B,C) @ nstack(A.C)

g e

Goal states

FSSS 2: Don't Precompute

The planner is not given a complete precomputed search graph!

o

PO e

e
7

Sfccor:

Usually too large!

= Generate as we go,
hope we don’t actually need the entire graph

FSSS 3: Initial state

The user (robot?) observes the current state of the world

jonkv@ida

The initial state

A
c[s|D

Must describe this using the specified formal state syntax...

So = { clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }

...and give it to the planner, which creates one search node

{ clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }

FSSS 4: Successors

Given any search node...

jonkv@ida

{ clear(A), on(A,C), ontable(C),
clear(B), ontable(B), clear(D), ontable(D), handempty }

...we can find successors — by appling actions!
action pickup(D)

= Precondition: ontable(D) A clear(D) A handempty
Effects: —ontable(D) A —clear(D) A —handempty A holding(D)

...which can also

This generates new reachable states...

be illustrated

{ clear(A), on(A,C), ontable(C),

clear(B), ontable(B), clear(D), ontable(D), handempty} = unu
{ clear(A), on(A,C), ontable(¢c), u u
clear(B), ontable(B), holding(D) } un

FSSS 5: Step by step

A search strategy (depth first,A*, hill climbing, ...) will:

Choose a node

Expand all possible successors

o

= “What actions are applicable in the current state, and where will they take me?”

= Generates new states by applying effects

Repeat until a goal node is found! This is illustrated —

. the planner works
\g‘a L_J ﬁ with sets of facts
O
/\ c[s|D
3\"? |
5 (D N <

The blocks world is

&
% :
. symmetric: Can
@ plckllp %/' y «
(& ®) ¥ always “return the
g »
< same way

LJBLJL.J Not true for all

domains!

LE

©
o

=

jonkv@ida

jonkv@ida

General Search

General way of formalizing search algorithms:

There are some “open” nodes, that we:
= Know how to reach At first: The
= Haven’t explored yet [RIiI4FEIES€1d}

Pick / remove one of them l

= Using some strategy for picking “good nodes”

Find nodes that can be reached A

in a single step (applying one action)

Put those back in the set of nodes

= New options!

Repeat until a goal node is found

Forward State Space Search (4)

General Forward State Space Search Algorithm

forward-search(A, s, g) {
open € {<s,, &>}
while (open # 0) {
use a strategy to select and remove one n=<s,path> from open
if goal g satisfied in state s then return path

foreach a € A such thaty(s,a) + @ {

1< y(s a) Forward search:

path’ < append(path, a) Reach in one step =

add n’=<s’, path’> to open reach by one action application
) } To simplify extracting a plan,

a state space search node above

return failure; ,
R ’ includes the plan to reach that state!

Technically, we search the space of
<state,path> pairs

Still generally called state space search...

|s always sound
Completeness depends on the strategy.

Forward State Space Search (5): Pruning

[38 JF

clear(A) ‘}/ A RN

on(A,B)
ontable(B) clear(A) clear(A)
handempty on(A,B) on(A,B)
ontable(B) handempty
handempty

Reach a more expensive node
with the same state

If preconditions and goals are positive:

Reach a node with a subset of the facts
=>» can prune

=» can prune
(discard the node, backtrack)

Forward State Space Search:

Search Strategies
and the Difficulty of Planning

jonkv@ida

Forward State Space Search: Dijkstra

First search strategy: Dijkstra’s algorithm

Matches the given forward search "template”

= use a strategy to select and remove <s,path> from open

= Selects from open a node n with minimal g(n):
Cost of reaching n from the starting point

Efficient graph search algorithm: O(|E| + |V| log |V])

E| = the number of edges (transitions), |V| = the number of nodes (states)

Optimal: Returns minimum-cost plans

Dijkstra’s Algorithm

jonkv@ida

Explores states in order of cost

Below, we assume Va € A:c(a) =1

cost 7 | Goal nodes

cost 6

. cost 5

. cost 4
cost 3

cost 2

cost |

jonkv@ida

Dijkstra: ToH

Expands one node at a time,
but we can identify "levels”
of equal distance

Move DiskC
From Pegl
To Peg3

Dijkstra: Blocks Wo

Running Dijkstra, assuming all actions are equally expensive:

rid

putdown{A p

stack(B.A)

Pée

7

!

putdown(B)

pickup{C) putdown(C)

wl

L.

°»

kfack(A,B)

stack(B,C) nstack(C,B)

j

9..

w putdown(
» nstack(A,C)

down(C) utdown(A) putdown(B)

nstack(C,B)

nstack(A,B)

nstack(B,C)

jonkv@ida

No problems ¢

Dijkstra’s Algorithm: Example

9
(& n
jonkv@ida

A simple problem:
m Optimal solution

“ “ on(A,B) unstack(A,B) pickup(D)
putdown(A) stack(D,F)

ol $/C) unstack(B,C) pickup(C)

on(C,D) putdown(B) stack(C,D)
on(D,F) unstack(C,D) pickup(B)

ﬂ E ontable(E) putdown(C) stack(B,C)
ontable(F) unstack(D,E) pickup(A)

stack(D,F) stack(A,B)

bw-tower06-dijkstra: Only 6 blocks, Dijkstra search, no heuristic

[£] jonkva2: bw-tower06-astar-blind

Actions: 14
States: 8706 calculated, 2692 visited

400 blocks

Blocks world, 400 blocks initially on the table, goal is a 400-block tower

jonkv@ida

= Given uniform action costs (same cost for all actions),
Dijkstra will always consider all plans that stack less than 400 blocks!

Stacking 1 block: = 400*399 plans,
Stacking 2 blocks: > 400*399 * 399*398 plans,

= Morethan
163056983907893105864579679373347287756459484163478267225862419762304263994207997664258213955766581163654137118
163119220488226383169161648320459490283410635798745232698971132939284479800304096674354974038722588873480963719
240642724363629154726632939764177236010315694148636819334217252836414001487277618002966608761037018087769490614
847887418744402606226134803936935233568418055950371185351837140548515949431309313875210827888943337113613660928
318086299617953892953722006734158933276576470475640607391701026030959040303548174221274052329579637773658722452
54973845940445258650369316934 0912754853265795909113444084441'755664211796
27432025699299231777374983037 * 173 5 1882657444844563187930907779661572990289194
81058521781914647662930023360 1 6 3 1 0 1372350568748665249021991849760646988031691
39438655119417119333314403154 b 1302649432305620215568850657684229678385177
72535893398611212735245298803 8087201742432360729162527387508073225578630
777685901637435541458440833875 448835191721077333875230695681480990867109
051332104820413607822206465635272711073906611800376194410428900071013695438359094641682253856394743335678545824
320932106973317498515711006719985304982604755110167254854766188619128917053933547098435020659778689499606904157
077005797632287669764145095581565056589811721520434612770594950613701730879307727141093526534328671360002096924
483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572434616042404375
21105232403822580540571315732915984635193126556273109603937188229504400

Dijkstra is efficient in terms of the search space size: O(|E| + |V| log |V])

The search space is exponential in the size of the input description...

Fast Computers, Many Cores

jonkv@ida

But computers are getting very fast!

Suppose we can check 102V states per second

= >10 billion states per clock cycle for today’s computers,
each state involving complex operations

Then it will only take 10173 / 102° = 10171> seconds...

But we have multiple cores!

The universe has at most 1087
particles, including electrons, ...

Let’s suppose every one
is a CPU core

=> only 101628 seconds
> 101620 years

The universe is around 101°
years old

3
(W)
jonkv@ida

Impractical Algorithms

Dijkstra’s algorithm is completely impractical here

Visits all nodes with cost < cost(optimal solution)

Breadth first would not work
Visits all nodes with length < length(optimal solution)

Iterative deepening would not work

Saves space, still takes too much time

Depth first search would normally not work

Always extends the plan if possible, always takes the first applicable action

Could work in some domains and some problems, by pure luck...

Usually either doesn’t find the goal,
or finds very inefficient plans The state space is fine,

but we need some guidance!
But first, another direction...

Backward Search

Forward Search

Initial state, s,
If we are here:

All-on-table What can we do,

m where do we end UP7

eh

putdown(A) utdown(B) pickup{C) putdown(C)
unstack(AB) stack(B.A} Junstack(B,A) unstack(B,C) unslack(CA) :
putdown(C) putdown(A} @ putdown(B) [putdown(A)

nstack(C,B) stack(A,B) Junstack(A,B) % nstack(B,C) 5 nstack(A,C)

Single goal. 5

Blocks World, 3 blocks — searching forward

instack(C,B)

O

P putdown(B) D putdown(C)

nstack(B,A) nstack(C.A)

&/

Y,

jonkv@ida

Forward Search (2)

Blocks World, 3 blocks — searching forward Initial state, s,

All-on-table

| A [Bl€]

putdown(A) w putdown(B}) -‘ putdown(C)

unstack(AB) !

v putdown{B) P putdown(C)

nstack(B,A) nstack(C.A)

Single goal, s,

nstack(B,A) unstack(B,C) 3

putdown(C) putdown(A}

nstack(C,B)

26

&/

» putdown(B) P putdown(A)

nstack(C,B) stack(A,B) Junstack(A,B) 3 nstack(B,C) 5 nstack(A,C)

x

jonkv@ida

Backward Search

jonkv@ida

Must traverse
edges backwards!

|. Execution should pass s|0...

2. Execute pickup(C)...

3.Passsl4...

2. Use stack(C,B),
but traversing the edge backwards!

4. Execute stack(C,B)...

5....andendupinsl5

Backward Search

Searching backward

All-on-table

| A [Bl€]

eh

putdown(A) D putdown(B} pickup{C) putdown(C)

unstack(AB) siack(B.A) Junstack(B,A) unstack(B,C) unsiack(CA :
putdown(C) putdown(A} » putdown(B) D putdown(A}

nstack(C,B) stack(A,B) Junstack(A,B) @ nstack(B,C) 5 nstack(A,C)

Single goal, s,

Initial state, s,

nstack(C,B)

262
(2)

v putdown{B) P putdown(C)

ktack(B,A)unstack(B,A) nstack(C.A)

&

&/

jonkv@ida

o
=
®

—
-

=

o
o —

Backwards Search: Complication |1

Complication I:
o el Oy 5.7 .

The graph isn’t precomputed ¢
= Must be expanded dynamically, T REAEE_F SOl o4,
starting in the goal : ‘ l el {)

W/ Pt o
e &7

= Would require
an inverse of y (s, a):

Yy 1(s, a)

Backwards Search: Complication 2

(& n
3
jonkv@ida

Complication 2:

Determinism is unidirectional, not applicable in backward search

= Compute y~1({at(shop)}, drive—to—shop):
If we want to end up at(shop),
what state must we be in before drive-to-shop!

at(home)

at(work) at(shop)

at(restaurant)

jonkv@ida

Backwards Search: Complication 3

Complication 3:

We generally have multiple goal states — to start in...
= Goal: on(A,B)

w putdown(B} pickup{C) putdown(C)
unstack(f-\ B) stack(B.A) unstack(B C)
putdown(B) utdown(C) putdown(C) w utdown(A)

ktack(B,A)unstack(B,A) @ nstack(C,A) nstack(C,B) nstack(A,B)

unstack(C A) instack(C,B)

putdown(B) utdown(A)
nstack(B,C) w nstack(A,C)

.
W/

%“e

),
o

9

Backward Search:

Many complications - same solution

Repetition: States and goals

(& n
9
jonkv@ida

Recall:
A state is a set containing all atoms that are true
» s={on(A,B),on(C,D) }

No block is clear or ontable:
If they were, that would have been specified

A goal is a set of literals that should hold...
= g={on(AB),-on(C,D) }
A should be on B, and C should not be on D

We don’t care if blocks are clear / ontable or not:
If we cared, that would have been specified

Can correspond to many states

jonkv@ida

(oal Space + State Space

Backward search uses goal space!

putdown(C
* U N

putdown(B)

nstack(B,A)

Will not construct this graph — use y~1(g, a), not y (s, a)

9
jonkv@ida

oal Specifications

Suppose we want exactly this:
N

N—

What is the goal?

Could be a complete goal (= unique state)

= { clear(A), on(A,B), on(B,C), ontable(C),
clear(D), ontable(D), handempty,
—clear(B), =on(AA), ... }

But this may be sufficient:
= { on(A,B), on(B,C), ontable(C), ontable(D) }
= Specifies all positions;
given a physically achievable initial state, other facts follow implicitly

jonkv@ida

Goal Specifications (2)

Usually we don’t care about all facts (directly or indirectly)!

lgnore the location of block D

on(A,B) | | | |
—clear(B)
on(8,C))
ontable(C)
T —

Relevance:
Which actions could achieve part of the goal?

Backward Search: Relevance

an
S
jonkv@ida

g:
Suppose
we want

Later: be ¢ a to achieve

Where would we ¢ € achiays this...
have to start?

on(A,B)

—iclear(B)
on(B,C)

ontable(C)

g specifies some
of the facts we
illustrate below...

Backward Search: Relevance (2)

©

g:
Suppose
we want

o to achieve
. aSt . .
| i this...
No! N aehi

It achieves clear(top) = clear(B)
The goal requires —clear(B)

on(A,B)
—clear(B)
on(B,C)

=» Destroys part of the goal ontable(C)

g specifies some

stack(B,C) is not relevant of the facts we

illustrate below...

(also impossible,
but this is included in relevance)

jonkv@ida

Backward Search: Relevance (2)

an
a
jonkv@ida

g:
Suppose
Yes! Effects: C . we want
—ontable(D) . A to thieve
—clear(D) i an 4 Stact this...
—handempty J
holding(D)

on(A,B)

—iclear(B)
on(B,C)

ontable(C)

Does not contradict the goal

...but also doesn’t help us
achieve any aspect of the goal!

g specifies some
of the facts we
illustrate below...

pickup(D) is not relevant

Backward Search: Relevance (3)

3
~
jonkv@ida

9g:

Suppose
we want

Yes! Effects: to achieve

—holding(A) this.
—iclear(B)
clear(A)
handempty on(A,B)
on(A,B) —iclear(B)
on(B,C)
Does not contradict the goal, ontable(C)

achieves on(A,B)

g specifies some
of the facts we

StaCk(A,B) is relevant illustrate below...

Backward Search: Summary (so far)

an
9
jonkv@ida

Forward search, over states s = {atomq, ..., atom,, }:

a is applicable to current state s iff
precond*(a) C s and Positive conditions are present

s N precond™(a) = @ Negative conditions are not present

Backward search, over sets of literals g = {litq, ..., lit,;}

a is relevant for current goal g iff Contribute to the goal
g N effects(a) = @ and (add positive or negative literal)

g+ N effects—(a) = @ and
g- N effects+(a) = @ Do not destroy any goal literals

Regression:
What must be true before?

~
9
jonkv@ida

Progression and Regression

Forward search, over states s = {atomq, ..., atom,, }:

Progression: y(s,a) = (s — effects™(a) U effects* (a))

. Action a is applicable | would end up in
| am in state s >
y(s,a)

Backward search, over sets of literals g = {lit4, ..., lit,;}

Regression: Y 1(g,a) =777

| would require Action a is relevant for g | | need to achieve
-1
vy~ (9,a) goal g

3
jonkv@ida

Backward Search: Regression

g' =y~ '(g,stack(AB))

What facts g’ g-
‘ We want
would we require .
' to achieve
before executing a, o
so that for every state s IS...
satisfying g":

1) Ais executablein s . on(A,B)

2) g<y(s,a)? on(B,C)
ontable(C)

ontable(D)

Example of subset

g = { on(A,B), on(B,C), ontable(C), ontable(D) }

v(a, s) = { on(A,B), on(B,C), ontable(C), ontable(D), | of the facts we
clear(A), clear(D), handempty } illustrate below...

g specifies some

Backward Search: Regression (2)

¥~ (g, stack(A,B))

3
NY
jonkv@ida

g:
We want
to achieve

this...

Needed by holding(A)
stack(A,B) clear(B)

What the goal on(B,C)

needs, but
"oy ontable(C)
tack(A,B) did
stack(A,B) d ontable(D) ‘act on(A,B)

not achieve c on(B C)
ontable(C)
ontable(D)

g = {on(A,B), on(B,C),
ontable(C), ontable(D) }
n ! g specifies some
V_l(g, StaCk(A;B)) = 1 “Deloy, . of the facts we
{ holding(A), cIear(B), h "tOp illustrate below...
on(B,C), ontable(C), ontable(D) }

Corresponds to
many potential states

Backward Search: Regression (3)

Formally:

3
w
jonkv@ida

All goals except effects(a) precond(a)

must have been true,

must already have been true :
so that a was applicable

yi(g,a) = ((g- effects(a)) U precond(a)),
representing
{ s | aisapplicable to s and Y(s,a) satisfies g }

Backward / regression:

Which states could | start from?

Works for:
Classical goals (already sets of ground literals)

Classical effects (conjunction of literals)
Classical preconditions (conjunction of literals)

What happens

if we allow arbitrary (disjunctive) preconditions?

Backward Search: Reaching the Goal

g2 = v~ (g, stack(A,B))

~
S
jonkv@ida

holding(A) Wer
clear(B) to achieve
this...
on(B,C)
ontable(C St
ot s
ontable(C)
| can reach the goal ontable(D)
| can reach the goal from any state
from any state satisfying these 5
satisfying some g;! literals!

If the literals are

satisfied in s,
| have a solution!

[75 JF

Backward Search: Example

B,C)
oln(,C) If this is true, | Rele,vant' The goal is
clear(B) know how to Achieves ot
reach the goal on(A,B),
clear(A) deletes no already
ontable(A) on(B,C) goal facts achieved...
handempt
2y holding(A)
stronger on(B C) Clear(B)
[} ﬂ1 D11} |'J
" on(AB)
pOals
" clear(A) (g — effects(a)) e 10-W:))
Uit | handempty
precond(a) holding(B) Represents
clear(C) Relevant: man
Initial state: : Y
Achieves ossible
on(A,C) clear(A) If this is true, | on(B,C) P ’
ontable(B) clear(B) know how to deletes no goal states!
ontable(C) clear(D) reach the goal goal facts

ontable(D) handempty

Forward vs. Backward

jonkv@ida

Backward and Forward Search: Expressivity

How about expressivity!

Suppose we have disjunctive preconditions

= (:action travel
:;parameters (?from ?to — location)
:precondition (and (at ?from) (or (have-car) (have-bike)))
.effects (and (at ?to) (not (at ?from))))

How do we apply such actions backwards!?

. M.o.re cor.nplicated (at pos1)
disjunctive . (or (have-car) » (at pos2)
goals to achieve!? Frre ool
= Additional (at posl)
branching!? (have-car) >
(at pos2)
(at posl)
(have-bike)

Similarly for existentials ("exists block [on(block,A)]"): One branch per possible value
Some extensions are less straight-forward in backward search (but possible!)

jonkv@ida

Backward and Forward Search: Unknowns

on(B,0) / \
clear(B)
> on(A,B) <« ?)?1%]2,(]2
clear(A) ’
handempty \)
I I
| can reach this node | can reach the goal
from the initial state... from this node...
But what comes next? But what comes before?
Can | reach the goal? Can | reach it from s0?

Efficiently? Efficiently?

~
9
jonkv@ida

Backward and Forward Search: Pruning

Forward search Backward search

el [/\}

clear(A) clear(A) dlear(A) clear(A) clear(A)

on(A,B) on(A,B) on(A,B) on(A,B)
ontable(B) ontable(B) h;r?cfeAf)t ontable(B) ontable(B)
handempty handempty Pty handempty

Reach a node with the same state Reach a node with the same or stronger goal
=>» can prune =>» can prune

If preconditions and goals are positive:
Reach a node with a subset of the facts
=>» can prune

a
o
jonkv@ida

Backward and Forward Search: Problems

Problematic when: Problematic when:
There are many applicable actions There are many relevant actions
=>» high branching factor =>» high branching factor
=>» need guidance =>» need guidance
Blind search knows Blind search knows
if an action is applicable, if an action contributes to the goal,
but not if it will contribute but not if you can achieve its
to the goal preconditions

Blind backward search
is generally better than blind forward search:
Relevance tends to provide better guidance than applicability

This in itself is not enough to generate plans quickly!

Lifted Search:

A general technique

Lifted Search (1)

Even with conjunctive preconds: (:action pickup
;parameters (?x)

3
NY
jonkv@ida

(clear A) :precondition (and (clear ?x) (on-table ?x)
(On-table A) J'CI(UP(A) (holdmg A) (handempty))
(handempty) (clear B) :effect
(clear C) (and (not (on-table ?x))
(clear A) (not (clear ?x))
(on A B) (not (handempty))
(handempty) (holding ?x)))
(clear A) (:action unstack
h (OIcll AC) :parameters (?top ?below)
andempty) :precondition (and (on ?top ?below)
(clear A) (clear ?top) (handempty))
(on A D) :effect
(handempty) (and (holding ?top)
(clear ?below)
High branching factor (not (clear ?top))
(not (handempty))

No reason to decide now

? ?bel
which block to unstack A from feisErar Az o ou)))

Lifted Search (2)

General idea in lifted search:

Keep some variables uninstantiated (not ground =» "lifted")

(clear A) . .
(on-table A) =PRickup(a) (holding A)
(handempty) (clear B)
Next step: (clear C)
How to check for actions (clear A)
achieving (on A x)? (on A ?x)
S e (handempty)

Requires unification — see
the book, fig 4.3

Applicable to other types of planning — will return later!

But isn't enough to make unguided backward search efficient...

jonkv@ida

Where do we go from here?

{ oo
a
jonkv@ida

Where do we go from here?

Forward and backward search
are useless without guidance!

Add general Provide more specific Use a different
guidance mechanisms information search space
to the planner about each domain and search algorithm

Typically: Heuristics Control formulas Partial Order Causal Link
to avoid blind search, Hierarchical Task Networks Satisfiability-based planning
judge which actions Planning graphs
seem promising

