
jonas.kvarnstrom@liu.se – 2018

Automated Planning

Introduction to Planning

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

One way of defining planning:

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Towers of Hanoi

 Move topmost disk from x to y,

without placing larger disks

on smaller disks

Possible actions

 All disks on the third peg,

in order of increasing size

Objective

Some applications are simple, well-structured, almost toy problems

Single agent actingSimple structure

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Shakey
 Classical robot example:

Shakey (1969)

 Available actions:

▪ Moving to another location

▪ Turning light switches on and off

▪ Opening and closing doors

▪ Pushing movable objects around

▪ …

 Goals:

▪ Be in room 4 with objects A,B,C

▪

http://www.youtube.com/watch?v=qXdn6ynwpiI

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Miconic 10 Elevators
 Schindler system

 Tall buildings, multiple elevators

 Enter destination before you board

 System creates a plan:

▪ Which elevator goes to which floor

▪ In which order

 Saves time!

▪ 3 elevators could serve as much traffic

as 5 elevators with earlier algorithms

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Earth and Space

On-board planning

to view interesting natural

events:

http://ase.jpl.nasa.gov/

SIADEX –

plan for firefighting

Limited resources

Plan execution is dangerous!

NASA Mapgen / Mars Rovers

Primary platform for creating daily

activity plans for Spirit, Opportunity

Mixed-initiative tool:

Human in the loop

http://ase.jpl.nasa.gov/

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Why should Computers Plan?
 And why should computers create plans?

 Manual planning can be boring and inefficient

 Automated planning may create higher quality plans

▪ Software can systematically optimize

 Automated planning can be applied where the agent is

▪ Satellites cannot always communicate with ground operators

▪ Spacecraft or robots on other planets

may be hours away by radio

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Context: Unmanned Aerial Vehicles

 A modern context for planning:

 Autonomous

Unmanned Aerial Vehicles (UAVs)

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Actions for UAVs
 General knowledge about the world

 of UAVs and objects

 levels, …

 Available actions:



▪ Before: The UAV must be on the ground

▪ Result: The UAV is flying



▪ Before: Must have sufficient fuel

▪ Result: Will end up at the indicated point













Informal!

Incomplete!

More later…

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14UAV Objective 1: Emergency Services Logistics

 Assist in emergency situations

▪ Deliver packages of food, medicine, water

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15UAV Objective 2: Photogrammetry

 A specific photogrammetry problem with a single UAV:

 Photograph buildings – generate realistic 3D models

 Problem: Find best way of taking pictures

▪ From specificed locations

▪ In the specified directions

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Method 0: Reactive + Stupid
 Method 0: Let’s be reactive and stupid

 Reactive: No planning, don’t explicitly consider the future

 Very fast decision + execution algorithm:

←

 Somewhat suboptimal for flight…

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Method 1: Reactive + Greedy
 Method 1: Let’s be reactive and greedy

 Greedy heuristic chooses next location

▪ ”Least expensive extension to the plan”



←

 Seems good for this task; not optimal

▪ Least expensive right now,

more expensive in the long run

 For many other tasks: Still really bad

Often, not thinking ahead means

you can’t even solve the problem!

(Fly too far  run out of fuel;

crack an egg  can’t uncrack it; …)

Start here;

generate actions

incrementally

Run out of fuel here?

Using knowledge about the world,

including possible actions and their results,

to decide what to do and when

in order to achieve an objective,

before you actually start doing it

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Method 2: Think ahead
 Method 2: Let’s think ahead

 First create a complete plan, considering multiple choices

 Keeping track of

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Method 2: Think ahead – planning
 Method 2, first step: Search (for example, depth first)

▪

▪

∅
First choice: As before (greedy heuristic)

If not feasible: Try the next nearest pos

Usually won’t have to try each position

This is (one form of) planning!

Have we already achieved the goal?

Check fuel ”in simulation”, not in reality

Backtrack if there is no

feasible continuation

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Method 2: Think ahead – execution
 Method 2: Let’s think ahead – second step, execute the plan

▪

▪

▪

Execution after verifying the plan!

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Domain-Specific Planning 1
 Our solver is domain-specific – only photogrammetry

 Strong assumptions:

▪ Interesting aspects of the world:

▪ Objective:

Take a single picture at every position (no more, no less)

▪ Available actions:

(executed in that order at each position)

▪ Executability conditions:

(no more, no less)

 Positive: Allows efficient code

▪ Adapted to the exact problem,

“hardcoded”

▪ Can even use Traveling Salesman

algorithms…

∅

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Domain-Specific Planning 2

 But some domains are less straight-forward!

 Writing an efficient solver from scratch is difficult

 Specialization means less flexibility! What if…

 you want to deliver a couple of crates at the same time?

▪ Need to modify

the code of the planner

 you have two UAVs and a UGV (ground vehicle)?

▪ Different

algorithm:

Multiple TSP

 you want to survey an area (send video feed of the ground)?

 you have dynamic no-fly-zones (”don’t fly there at ”)?

PG +

Delivery

Planner

Multi-

TSP

planner

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Generalization
Many hardcoded assumptions Little input

Interesting aspects of the world:

Objective:

Take a single picture at every position (no more, no less)

Available actions:

(executed in that order at each position)

Executability conditions:

(no more, no less)

Initial fuel level

List of positions

As much as possible specified in the inputFew assumptions

?? (should define fuel, taking pictures, …)???

Can we find a single set of common modeling concepts

sufficient for all of these very different domains?

3D Geometry

Timing

Path planning

Interaction

Opportunistic

goals
Multiple agents

”Required

concurrency”

Simple…

Can we – and should we?

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Different Requirements

 Can be necessary

 Can't model fuel usage constraints?

 create non-executable plans!

 Can improve quality

 Want plans that execute quickly

 requires a model of time!

 Can simplify our job

 More expressivity

 easier to express the problem

 Can improve performance

 (By many orders of magnitude)

 We can exploit problem structure

▪ Allows different heuristics

▪ Allows different plan structures

▪ …

 Simplifies development

 …

Increasing model expressivity: Decreasing model expressivity:

Decide what "kind" of domains your planner should be able to accept

Write a planner for this expressivity

Conflicting desires – we need trade-offs!

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Degrees of Expressivity

Domain-specific (photogrammetry)

Can specialize the planner for very high performance

Must write an entire planner

“Truly domain-independent”

Handles everything – does not exist*

Partial order of

expressivity,

"coverage"…
Temporal planning MDP

planning
Classical planning

…

…

…

…

Some classes

subsume others,

some are

simply different

*Except for standard

Turing-complete

programming

languages, which

don't count…

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Classical Planning
 Many early planners made similar tradeoffs

 At the time, simply called "planning" or "problem solving"

▪ Later grouped together, called "classical planning”

 Restricted, but a good place to start

▪ Forms the basis of most non-classical planners as well

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Classical Planning: Disagreements
 So exactly what is classical planning?

 Some disagreements…

▪ Inevitable: Just a group of similar techniques, formalisms

 Where to draw the line?

We'll use the book's definitions

You can go outside those boundaries and still be "kind of classical"!

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34Intro

;; The Towers of Hanoi problem

;; (formalisation by Hector Geffner).

(define (domain hanoi)

(:requirements :strips)

(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

(:action move

:parameters (?disc ?from ?to)

:precondition (and (smaller ?to ?disc)

(on ?disc ?from)

(clear ?disc) (clear ?to))

:effect (and (clear ?from) (on ?disc ?to)

(not (on ?disc ?from))

(not (clear ?to))))

)

Now: Formal classical model
Next time:

Language for describing models

(Σ, 𝑠0, 𝑆𝑔)

where

Σ = (𝑆, 𝐴, 𝛾)

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Classical Planning 1

The world is always in a given

state, which we want to affect

A0: Finite number of states

Can't model continuous positions of disks in ToH

OK – we're only interested in some discrete alternatives:

On peg 1, on peg 2, above disk 3, …

 We need states of the world

▪ 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} is a set of states

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Classical Planning 2

The world is always in a given

state, which we want to affect

A3: The world can only be affected by executing an action

No random changes in the world

No other agents acting in the world

At least not in the part of the world we model!

 We need actions

▪ 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} is a set of actions;

this set is also finite

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Classical Planning 3

The world is always in a given

state, which we want to affect
Another possible state

Many planners do model time in some way  "semi-classical"

A6: Every action results in a discrete state transition

No concept of time

No concept of continuous change (crane swinging from A to B), only:

Before pickup, the container is on truck y;

after, the container is carried by crane z

 We must know when an action is executable and what it achieves

▪ 𝛾: 𝑆 × 𝐴 → 2𝑆 𝛾 𝑠, 𝑎  the set of states you may end up in

if you execute a in state s

▪ 𝛾 𝑠, 𝑎 = ∅ means a cannot be executed in s

▪ 𝛾 𝑠, 𝑎 = {𝑠′} means executing a in s leads to s'

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Non-determinism?

The world is always in a given

state, which we want to affect
Another possible state

 𝛾 𝑠, 𝑎 = {𝑠1, s2, … } is possible in some non-classical planners

Another possible state

Non-deterministic actions

Complicated due to explosion of possibilities!

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Classical Planning 4

The world is always in a given

state, which we want to affect
Another possible state

 We must know when an action is executable and what it achieves

▪ 𝛾: 𝑆 × 𝐴 → 2𝑆 𝛾 𝑠, 𝑎  returns the set of states you may end up in

▪ 𝛾 𝑠, 𝑎 = ∅ means a cannot be executed in s

▪ 𝛾 𝑠, 𝑎 = {𝑠′} means executing a in s leads to s'

▪ 𝛾 𝑠, 𝑎 > 1 impossible in classical planning, due to A2

Some planners support non-determinism

Complicated due to explosion of possibilities!

A2: Deterministic actions

If we know the current state and the action that is executed,

we know in advance exactly which state we will end up in

Together: Σ = (𝑆, 𝐴, 𝛾) is a state transition system (STS)

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Classical Planning 5: STS Example
 Part of an STS for a Hanoi problem, illustrated:

 27 states, 78 transitions

 How many actions?

Can always have one action

per transition: 𝑎1, 𝑎2, … , 𝑎78

Each action only executable

in a single state!

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Classical Planning 6: STS Example, cont.
 Part of an STS for a Hanoi problem, illustrated:

Common meaningful model:

Every orange arrow is the action



Or we could get by

using three actions:

At most three transitions

from any state 
Actions ” ”,

” ”, ” ”

STS: How the world works in general
Now: What’s the (formal) problem to solve?

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43

Goal states

Problem, part 1: Objectives

The world is always in

a given state
Another possible state

Many planners support more complex objectives

A4: Restricted objectives

The objective is always to end up in a goal state s ∈ 𝑆𝑔
(No constraint on cost, time requirements,

states to avoid on the way, …)

Another possible state Another possible state

Another possible state

Another possible stateAnother possible state

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44Problem, part 2: Initial State

The world is always in

a given state

A1: We can always detect the current state

A7: Offline planning

No need to consider changes that may happen

while generating plans.

We know now

what the state of the world will be

when we start executing a plan!

Initial state: 𝑠0

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45

𝑆𝑔 =

{𝑠27}

Problem Definition
 Result: A complete classical planning problem (Σ, 𝑠0, 𝑆𝑔)

𝑠0 =

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46Transition System and Problem

Real World

State Transition System

 = (S,A,)

Abstraction

Approximation

Simplification

Planning Problem
P = (, s0, Sg)

Real World

+ current

problem

Abstraction

Approximation

Simplification

Tells us: How the world works

(Only those aspects

that we need in our model

in order to solve

interesting problems!)

Tells us:

Which specific problem to solve

And what is a solution?

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Action Sequences

 Action sequence:    where 𝑎1, … , 𝑎𝑛 ⊆ 𝐴

▪ Sometimes called "plan"

 An action sequence is executable in state 𝑠 ∈ 𝑆
if ∃ ∈ 𝑆 such that:

▪ 𝛾 𝑠, 𝑎1 = 𝑠1
▪ 𝛾 𝑠1, 𝑎2 = 𝑠2
▪ …

▪ 𝛾 𝑠𝑛−1, 𝑎𝑛 = 𝑠𝑛
▪ Sometimes called "executable action sequence", "plan", "executable plan", …

In the exam questions, the terminology will be unambiguous!

A5: Sequential execution

A solution never executes two actions concurrently

(Many planners do allow concurrency  "semi-classical")

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49

𝑆𝑔 =

{𝑠26}

Solution
 An action sequence is a solution to (Σ, 𝑠0, 𝑆𝑔) if:

▪ It is executable in 𝑠0
▪ It results in a state 𝑠𝑛 ∈ 𝑆𝑔

▪ Sometimes called "plan", "solution plan", …

 A good solution:

▪ Add a cost function 𝑐: 𝐴 → ℝ to the STS

▪ Try to minimize σ 𝑎∈𝜋 𝑐(𝑎)

𝑠0 =

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Plan Generation (2)
 Is classical planning simply graph search?

 Can be, but:

▪ Graphs are enormous

Requires advanced heuristics, adapted to planning

Requires advanced search methods

▪ Alternatives to searching the STS

can be used to "indirectly" find paths!

▪ Many forms of non-classical planning

do not map into searching an STS

𝑆𝑔 =

{𝑠26}

𝑠0 =

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51STS 8: Useful?
 Very useful:

 As a conceptual model, explaining important concepts

 To analyze expressivity, clarify restrictions

 To prove properties

 Very useless:

 As a way of actually writing down realistic planning problems

(enumerate all possible states?)

 As an implementation structure for planners

  Next time!

