Automated Planning

Planning under Uncertainty

Jonas Kvarnstrom

Automated Planning Group

Department of Computer and Information Science

Linkoping University

=
2 JE
2,

Restricted State Transition System

Recall the restricted state transition system 2 = (S,A,y)

S={sy s ... J: Finite set of world states
A={ayay, ..} Finite set of actions
y: S x A > 25 State transition function, where |y(s,a)| <1

" Ify(s,a) = {5},
then whenever you are in state s,

you can execute action a S=1{sp Sy, ... }

and you end up in state s’ A = { takel, putl, ... }
= If y(s,a) = @ (the empty set), v:Sx A 28

then a cannot be executed in s Y(so take2) = { s, }

Y(s,, take2) = @

Often we also add a cost function:

c:SxA> R
S0 take2 | S1 put3 | 52
— —
— —

Classical Planning Problem

9
jonkv@ida

Recall the classical planning problem

Let X = (S,A4,y) be a state transition system
satisfying the assumptions AO to A7
(called a restricted state transition system in the book)

Lets, €S be the initial state

Let S, S S be the set of goal states

Then, find a sequence of transitions
labeled with actions [a;, a,, ..., a_]

that can be applied starting at s,
resulting in a sequence of states [s,, s,, ..., s_]

start >
such that s, € S, Cj”%

goal

> goal

goal

Planning with Complete Information

3
jonkv@ida

This assumes we know in advance:

The state of the world when plan execution starts

The outcome of any action, given the state where it is executed

= State + action =» unique resulting state

Solution exists = Unconditional solution exists

Planning Execution

Model says: we end up No new information can be relevant
in this specific state! (at least in theory!)
Start -
H Just follow the unconditional plan...
ere...

Al

b4

Multiple Outcomes

jonkv@ida

In reality, actions may have multiple outcomes

Some outcomes can indicate faulty / imperfect execution
= pick-up(object)
Intended outcome: carrying(object) is true
Unintended outcome: carrying(object) is false

= move(100,100)
Intended outcome: xpos(robot)=100
Unintended outcome: xpos(robot) != 100

= jump-with-parachute
Intended outcome: alive is true To a planner,
Unintended outcome: alive is false there is generally

no difference between
these cases!

Some outcomes are more random,
but clearly desirable / undesirable

= Pick a present at random — do | get the one | longed for?

= Toss a coin — do | win?

Sometimes we have no clear idea what is desirable

= Qutcome will affect how we can continue,
but in less predictable ways

Non-Deterministic Planning

\ ©
)%
2,

Nondeterministic Planning

Nondeterministic planning:

S={sy g ... J: Finite set of world states
A={ayay, ..} Finite set of actions
v: S XA - 25 State transition function, where |y(s, a)| is finite

Model says: we end u .
. 4 P Will we find out more
in one of these states

when we execute?

Start

here...
Al

jonkv@ida

FOND Planning

FOND: Fully Observable Non-Deterministic

After executing an action, sensors determine exactly which state we are in

Model says: we end up Sensors say: we are
in one of these states in this state!

Start
here...

Start

here...

Al Al

a
jonkv@ida

FOND Planning: Plan Structure (1)

Example state transition system:

wait O wait C\

Initial state sO: stand-up
at pos|, standing

sl:at posl, fallen

—

Multiple outcomes: May or may not fall

move-to(pos2)
wait wait C\

Goal state s2: stand-up
at pos2, standing

s3:at pos2, fallen

Intuitive strategy: FOND =>» The action to execute
while (not in 52) { should depend on the current state,

which depends on previous outcomes
move-to(pos2);

if (fallen) stand-up; There may be no upper bound on how
} many actions we may have to execute!

FOND Planning: Plan Structure (2)

Examples of formal plan structures:

Conditional plans (with if/then/else statements)

i 10 JE

Policiest: S > A

= Defining, for each state, which action to execute whenever we end up there

= 1(s0) = move-to(pos2)
= m(s1) = stand-up Or at least, for every state

= m(s2) = wait that is reachable from the possible initial states
(=» A policy can be a partial function)

= m(s3) = stand-up

wait< y wait< '
Initial state sO: stand-up |

at pos|, standing

sl:at posl, fallen

| =" 4
1

move-to(pos2)
wait wait< '
[Goal state s2: } |

stand-up s3: at pos2, fallen

at pos2, standing

jonkv@ida

Solution Types 1

Assume our objective is still to reach a state in S,

And then remain there (executing "wait" actions forever)

= A policy never terminates...

A weak solution:
For some outcomes, the goal is reached in a finite number of steps

= 1(s0) = move-to(pos2)
= (sl) = wait

= (s2) = wait

= 1(s3) = stand-up

wait< J wait
Initial state sO: stand-u ‘
—E e Sl posl, fallen

at pos|, standing

¥

-

1

move-to(pos2)
wait wait< J
[Goal state s2: }

stand-up s3:at pos2, fallen

at pos2, standing

Solution Types 2

jonkv@ida

Assume our objective is still to reach a state in S,

A strong solution:
For every outcome, the goal is reached in a finite number of steps

= Not possible for this example problem

= Could fall every time

wait< J wait< J
Initial state sO: stand-u
—E e Sl posl, fallen

at pos|, standing

move-to(pos2)
wait } wait<

—

Goal state s2: stand-up
at pos2, standing

s3:at pos2, fallen

jonkv@ida

Solution Types 3

Assume our objective is still to reach a state in S,

A strong cyclic solution will reach a goal state in a finite number of steps
given a fairness assumption:
Informally, ”if we can exit a loop, we eventually will”

= 1(s0) = move-to(pos2)
= m(s1) = stand-up

= (s2) = wait

= 1(s3) = stand-up

wait< J wait< J

Initial state sO: stand-up
. sl:at posl, fallen
at pos|, standing

¥

-

1

move-to(pos2)
wait wait< J
[Goal state s2: }

stand-up s3:at pos2, fallen

at pos2, standing

Solutions and Costs

3
jonkv@ida

The cost of a FOND policy is undefined

We don't know in advance which actions we must execute

And we have no estimate of how likely different outcomes are

NOND Planning

NOND: Non-Observable Non-Deterministic

Also called conformant non-deterministic

Only predictions can guide us — no sensors to use during execution

May still give sufficient information for solving a problem

Model says: we end up We still only know that
in one of these states we're in one of these states

Start
here...

Start

here...

Al Al

POND Planning

POND: Partially Observable Non-Deterministic

Model says: we end up We know we ended up
in one of these states in one of these states

Start
here...

Start

here...

Al Al

Overview

jonkv@ida

Non-Observable: Fully Observable: Partially Observable:

No information Exact outcome Some information
gained after action known after action gained after action

Deterministic: Classical planning (possibly with extensions)
Exact outcome

known in
advance

Non- NOND: FOND: POND:
deterministic: Conformant Planning Conditional Partially Observable,

Muitiple (Contingent) Planning Non-Deterministic
outcomes, nho

probabilities

Information dimension is meaningless!

We will not discuss non-deterministic planning algorithms!

Probabilistic Plannina:

Defining the World as a Stochastic System

3
jonkv@ida

Stochastic Systems

Probabilistic planning uses a stochastic system > = (S, A, P)

P(s, a,s"): Given that we are in s and execute q, _
. . o Replaces y
the probability of ending up in s
For every state s and action a,we have > _ P(s,a,5") = 1:
The world gives us 100% probability of ending up in some state

Model says: we end up
in one of these states

Start

here...
Al

...with this probability

NY
9
jonkv@ida

Stochastic Systems (2)

Example with "desirable outcome™

Arc indicates Action: drive-uphill
S125,204 P(S125203, drive-uphill,

outcomes of a
single action \ 9 At location 6 S125204) = 0.98
09
$125,203 ‘
At location 5 0.02

Model says: 2% risk

S125,222
Intermediate
location

P(S125203, drive-uphill,
S$125222) = 0.02

of slipping, ending up
somewhere else

Stochastic Systems (3)

B

jonkv@ida

May have very unlikely outcomes...

S$125,204
At location 6

S125,203
At location 5

Intermediate
location

S$247,129
Broken

Probability sum =1

Very unlikely, but may
still be important to

consider, if it has great
impact on goal
achievement!

Stochastic Systems (4)

9
NY
jonkv@ida

And very many outcomes... 5125,104
At location 6
Fuel level 650
: Uncertain how much
' fuel will be consumed
S125,204
S125,203 At location 6
At location 5 Fuel level 750
Fuel level 980
S125,222
Intermediate
location
As always, one state
for every combination
of properties
S247,129

Broken

Stochastic Systems (5)

Like before, often many executable actions in every state

3 possible actions .
Probability sum = |
(red, blue, green))
(certain outcome)

Probability sum = |
(three possible Nature chooses
outcomes of A2) the outcome, so we
must be prepared for
all of them!

Ny
\:J)
jonkv@ida

We choose
the action...

Arcs connect
edges
belonging to
the same
action

Searching
the state space
Probability sum = | yields
(three possible an AND/OR tree
outcomes of A3)

jonkv@ida

Stochastic System Example

Example:A single robot et e
Moving between 5 locations

For simplicity, move(12,13)

states correspond ~ Walt C s2
directly to
locations
= sl:at(rl, 11)
= s2:at(rl, 12)
= s3:at(rl, 13) -
= s4:at(rl, 14) s'p\0.£=0,5 . s4
" sbrat(rl, 15) move(I1,14) wait

P=0.8

|

(LZ1)3row

move(I3,12)

move(14,I1)

Some transitions are deterministic, some are stochastic
= Trying to move from 12 to 13:You may end up at 15 instead (20% risk)

= Trying to move from 11 to 14:You may stay where you are instead (50% risk)

Overview

jonkv@ida

Non-Observable:
No information
gained after action

Fully Observable:
Exact outcome

known after action

Partially Observable:
Some information

gained after action

Deterministic: Classical planning (possibly with extensions)

Exact outcome
known in advance

Non-deterministic: NOND:

Multiple outcomes, Conformant Planning
no probabilities

Probabilistic: Probabilistic

Multiple outcomes
with probabilities

Conformant Planning

(Non-observable MDPs:
Special case of POMDPs)

FOND:
Conditional
(Contingent) Planning

Probabilistic
Conditional Planning

Stochastic Shortest Path
Problems

Markov Decision
Processes (MDPs)

To be discussed now!

Information dimension is meaningless!

POND:
Partially Observable,
Non-Deterministic

Partially Observable MDPs
(POMDPs)

Fully Observable Probabilistic Planning:

Policies and Histories

Important concepts,
before we define the planning problem itself!

o
®
—
-
=
o
o —

Policy Example |

Example 1

nl ={ (s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)),

(s4, wait),
(s5, wait)} — wait
wCaf Tg)
move(I3,12)

~ 3)

=] ~ =

= = =

move(14,11)

wait C& @ pey

sl |
05
N b
Start move(l1,14) wait

Reaches s4 or s5, waits there infinitely many times

Policy Example 2

o
=
®

—
e

=

(=]
o —

Example 2

n2 ={ (s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)),

(s4, wait),
(s5, move(15,14))} — wait
) -)
move(13,12)

S = o)

=] = =

S = £

move(14,11)

wait C& @ Pt

sl |
0.5
% &
Start move(l1,14) wait

Always reaches state s4, waits there infinitely many times

Policy Example 3

o
—
®
—
e
=
(=]
o —

Example 3

n3 = { (s1, move(11,14)),

(s2, move(12,11))
(s3, move(13,14)),
(s4, wait),

(s5, move(l5,14)}

)

a 5 ,\'L\

wait C

move(I3,12)

(vI'Sl)anow

(LZ1)3row

move(14,11)

wait C“

sl |
0
05 :
Start move(l1,14)

Reaches state s4 with 100% probability ”’in the limit”’

(it could happen that you never reach s4, but the probability is 0)

Policies and Histories

3
o
jonkv@ida

The outcome of sequentially executing a policy:
A state sequence, called a history

Infinite, since policies do not terminate
h =(Sg, S1, S, S35 Sgp -+) s, (index zero): Variable used in histories, etc

sO: concrete state name used in diagrams

We may have s, = s27

For classical planning;
A plan yields a single history (last state repeated infinitely), known in advance

For probabilistic planning;
We may not know the initial state with certainty
= For every state s, there will be a probability P(s) that we begin in the state s
Actions can have multiple outcomes

=> A policy can yield many different histories

= Which one?! Gradually discovered at execution time!

o
=
®

—
-

=

o
o —

History Example |

Example 1
nl ={ (s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)), wait

(s4, wait), move(13,12)
(s5, wait)} 3
move(14,11)
wait C ‘| i
05\
move(l1,4)

Even if we only consider starting in s1:Two possible histories

h,=(sl,s2,s3,s4,s4,..) —Reached s4, waits indefinitely
h,=(sl,s2,s5,s5...) — Reached s5, waits indefinitely

How probable are these histories?

jonkv@ida

Each policy has a probability distribution over histories/outcomes

With unknown initial state:
= P((Sy, 51,59 Sz, ...) |) = qoes)

P(so)- | [PCsim(si.sivn)

i=0

Probabilities
for each
required

state transition

move(I3,12)

Probability

(vr'sl)anow

of starting in
this specific s,

(LI'Z1)anow

move(14,11)

The book:

= Assumes you start Start
in a known state s,

= So all histories start
with the same state

= P({Sq S15 Sy S35 ---) | M) =11, o P(s; 7M(s;), s;,7) if 5, is the known initial state
P({(Sgyy S1 Sy Szy -.-) | M) =0 if 5, is any other state

History Example |

\1)
Example 1 qovel® @ wait
nl ={ (s1, move(11,12)),
(s2, move(12,13)), = wait
(s3, move(13,14)), wait @0 3
(s4, wait), move(I3,12) 3,
g
=

(s5, wait)}

move(14,I1)

(LI'Z1)anow
move(14,13)

Start move(l1,4) wait

Two possible histories, if P(s1) = 1:
h,=(sl,s2,s3,s4,84,...) —-P(hy|m)=1x1%x08x1x..=0.8
h,=(sl,s2,85,85...) —P(hy, | m)=1x1%x02x%x1x..=0.2

—P(h | m;) =1 x0=0 forall other h

o
=
®

—
-

=

o
o —

History Example 2

Example 2

n2 = { (s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)), Wwait
(s4, wait),
(s5, move(15,14))}

move(I3,12)

(LIZ1)3now

move(l4,11)

h,=(sl,s2,s3,s4,s4,...) P(hy|m)=1x1x08x1x..=0.8
hy=(sl,s2,s5,s4,84,...) P(hy|m)=1x1x02x1x..=0.2
P(h | m,) =1 x 0 for all other h

jonkv@ida

o
=
®

—
-

=

o
o —

History Example 3

Example 3

n3 = { (s1, move(11,14)),
(s2, move(12,11)),
(s3, move(13,14)), Wwait
(s4, wait),
(s5, move(15,14)}

move(13,12)

(vI'sl)anow

(LI'Z1)anow

move(14,I1)

wait C | .

0% 2
Start move(l1,4)

h,=(sl,s4, s4,...) P(h,|m)=05x1x1x1x1x..=05
he =(sl, s1;s4, 54, ...) P(hs | m3) =0.5x0.5x1 x 1 x 1 x...=0.25
hg =(sl,sl, s1;s4,s4,..) P(hg | m3)=0.5%x0.5x0.5x1x 1 x...=0.125

wait

h_= (sl, s1,s1,s1,s1,s1,...) P(hy, | m3) =0.5%x0.5x0.5%x0.5x0.5%...=0

Costs and Expected Costs

jonkv@ida

Cost of an Action

Part of the specification: A cost function c(s,a)

Representing the known cost of executing a in state s

c(s,a) =1 for each “horizontal” action

c(s,a) = 100 for each “vertical” action: Far away, difficult, ...
c(s,wait) =1

w
9
jonkv@ida

Cost of a History

Assume as given:
A policy
An outcome, an infinite history h = (s, s|, ...) resulting from executing 1

We can then calculate the cost of execution
for the given history / outcome:

C(h|m) = z c(s;,m(s0))

120

Given what happened,
this is how much it cost us!

”’Cost of history given policy”’:
Using the same actions in different states = different cost!
Using other actions to reach the same states = different cost!

Expected Cost of a Policy

w
9
jonkv@ida

We want to choose a good = "cheap” policy

Actual cost depends on outcome, which we can’t choose

For each possible history (outcome), we can calculate:
= The probability that the history will occur
= The resulting cost

So: calculate the statistically expected cost (~"average" cost)
for the entire policy:

E.(n) = Z P(h|m)C (h|m)

he{all possible histories for }

Later, we will calculate costs
without the need to explicitly find all histories — examples then!

Stochastic Shortest Path Problems

[41 JE

Stochastic Shortest Path Problem

Closest to classical planning: Stochastic Shortest Path Problem
Let 2 = (5,4, P) be astochastic system
Let c: (S,A) > R be a cost function
Lets, €S be an initial state
LetS, S S be a set of goal states

Then, find a policy of minimal expected cost
that can be applied starting at s,
and that reaches a state in S, with probability 1

Stochastic outcomes = Probability 1: "Infinitely unlikely"

only expected costs can be calculated that we don't reach a goal state

SSPP: Termination ?

3
NY
jonkv@ida

But policies never terminate!

Even in a goal state, (s) specifies an action to execute
Histories are infinitely long

=» Cost calculations include infinitely many actions!

Why define policies this way, when we do want to stop at the goal?

We are using more general "machinery"
that is also used for non-terminating execution!

SSPP: Absorbing Goal State

How to solve the problem!?

jonkv@ida

Make every goal state g absorbing — state s4 below

= For every action a,
P(g,a,g) = 1 => returns to the same goal state (we'll stop anyway)
c(g,a) =0 =» no more cost accumulates

Solve the problem using general methods,

generate a policy &\ D
55 ol
- /
How to execute’ g — \
=1 C 52 \/
Follow the policy

001=2

=1

When you reach a
goal state, stop!

=100

Utility Functions and SSPP

The SSPP:

Strictly positive action cost (>0) except in goal states (=0)

S
S
jonkv@ida

If infinite history h visits a goal state, it consists of:

= Finitely many actions of finite positive cost

= Followed by infinitely many actions of cost 0 Policy
= => Finite total cost has finite expected cost
>4
o TC visits a goal state
If infinite history h does not visit a goal state: with probability 1
= Infinitely many actions of strictly positive cost >
= =>» Infinite total cost 7 solves the SSPP

If any history that does not visit a goal state has non-zero probability:

Ec(m) = z P(h|m)C(h|m) = o

he{all possible histories for }

Beyond SSPP:

Rewards for Indefinite Execution

3
an
jonkv@ida

Generalizating from the SSPP

We have defined the Stochastic Shortest Path Problem

Similar to the classical planning problem,
but adapted to probabilistic outcomes

But policies allow indefinite execution
No predetermined termination criterion — go on "forever"

Can we exploit this fact to generalize from SSPPs!?

Yes - remove the goal states, assume no termination

But without goal states, what is the objective?

Goals =» Rewards

3
~
jonkv@ida

How to determine what's a good policy?

Introduce rewards that can be accumulated during execution!

Reward function R(s,a,s’)

= Reward gained for being in s, executing action a and ending up in s’

= Can be negative!

jonkv@ida

Rewards: Robot Navigation

Example:
The robot does not "want to reach s4"
It wants to execute actions to gain rewards

Every time step it is in s5:

= Negative reward — maybe the robot is in our way

: o r=-100
Every time step it is in s4:
= Positive reward —
maybe it helps us =0 |
and "gets a salary” =1 C s2
S
|

c=1 r=+100

jonkv@ida

Rewards: Grid World

Example: Grid World

Actions: North, South,West, East, NorthWest, ...
= Associated with a cost
= 90% probability of doing what you want

= 0% probability of moving to another cell

Rewards in some cells

= R(s,a,s') = +100 -100 -200 +100
for transitions where you A A
end up in the top right cell

\
Danger in some cells e
= R(s,a,s') = —-200
for transitions where you
end up in the neighbor cell

+50

The same action may give +100,
may give —200!

g

-l
2

s SN

\Egi:)
o
jonkv@ida

States, not Locations

Important: States != |locations

Reward given:
A person who wants to move
is allowed to board

elevator-at(floor3) pickup(p1, floor3) elevator-at(floor3)
person-at(pl, floor3) » person-onboard(pl)
wants-to-move(pl) wants-to-move(pl)

Can't "cycle" to receive
the same award again:
No path leads back to this
state

Can't stay in the same state
and "accumulate rewards'":
Must execute an action,
which always leads to a new state

jonkv@ida

Simplification

To simplify formulas, include the cost in the reward!

Decrease each R(s;, m(s;), Si+1) by C(s;, m(s;))

C(s0, takeoff) = 80
R(s0, takeoff, s1) = 200
R(s0, takeoff, s2) = -100

!

R(s0, takeoff, s1) =120
R(s0, takeoff, s2) = =180

=0

Utility Functions and Discount Factors

D
w
jonkv@ida

Utility Functions

Cost—>reward, cost function = utility function

Suppose a policy has one particular outcome
=> results in one particular history (state sequence)

How useful / valuable" is this outcome to us? What is our reward?

First: Un-discounted utility
h={(spsp,...)P V(h|T) = X0 R(S;, T(S;), Si+1)

— |

Un-discounted utility
of history h

given policy T

The reward
for step i

jonkv@ida

Utility in a Context

Policy = solution for infinite horizon

Considers all possible infinite histories
(as defined earlier)

(Infinite execution) Now: Indefinite execution

Never ends — unrealistic; No predefined stop criterion
we don't have to care about this!

We will stop at some point
(the universe will end),
but we can't predict when

"Goal-based" execution (SSPP)

A history can have infinitely many actions
of reward > 0,
and there is no clear cut-off point!

Execute until we achieve a goal state
Solution guarantees:
History has finitely many actions of cost>0

jonkv@ida

Infinite Undiscounted Utility

Leads to problems:
1, could result in h; = (s1, s2,s3,s4, s4, ...)

Using undiscounted utility:
V(h, | m) = (-100) + (-1) + (-100) + 100 + 100 + 100 + 100 + 100 + ...

Stays at s4 forever, executing “wait”
=» infinite amount of rewards! =0

jonkv@ida

Infinite Undiscounted Utility (2)

What’s the problem, given that we "like" being in state s4?

We can’t distinguish between different ways of getting there!
= s12s22>s32>s4: -201 + 0 =0
* §12s22s12s22s32s4: 401 + 0 =©

= Both appear equally good...

Discounted Utility

Solution: Use a discount factor, »,with0 <y <1

jonkv@ida

To avoid infinite utilities V (...)

To model "impatience":
rewards and costs far in the future are less important to us

Discounted utility of a history:

V(h|m) = Xis0 Vi R(s;, m(s;), Si+1)

Distant rewards/costs
have less influence

Convergence (finite results)
is guaranteed if 0 <y < 1

Examples will use y = 0.9

Only to simplify formulas!
Should choose carefully...

Example

jonkv@ida

m, = {(s1, move(11,12)),
(s2, move(l2,13)),
(s3, move(l3,14)),
(s4, wait),
(s5, wait)}

Given that we start in sl,
1, can lead to only two histories:

80% chance of history hl,
20% chance of history h2

y=0.9

Factors 1, 0.9, 0.81, 0.729, 0.6561...
h,=(sl,s2,s3,s4,54,...)

V(h, | my) =.9%(-100) + .91(-1) + .9%(-100) + .9°100 + .94100 + ... = 547.9
h,=(s1,s2,s5,s5...)

V(h, | my) =.99(-100) + .91(- 1) +.9%2(-100) + .93(-100) + ... =-910.1

E(my) =0.8%547.9 + 0.2 (-910.1) = 256.3 We expect a reward of 256.3 on average

Example

jonkv@ida

m, = {(s1, move(11,12)),
(s2, move(l2,13)),
(s3, move(l3,14)),
(s4, wait), = C !
(s5, move(15,14)}

Given that we start in s, =
also two different histories... B

80% chance of history hl,

20% chance of history h2 =l C

y=0.9

Factors 1, 0.9, 0.81, 0.729, 0.6561...
h,=(sl,s2,s3,s4,54,...)

V(h, | my) =.9%(100) + .9%(-1) + .92(-100) +.93100 + .9%100 + ... = 547.9

h,=(s1,s2,s5,s5...)
V(h, | my) =.9%(-100) + .91(-1) + .9%(-200) + .93100 + ... = 466.9

E(mm,) = 0.8 %547.9 + 0.2 (466.9) |= 531,7 RRSESEEEVEC] WA IF-TWPLTK)

Fully Observable Probabilistic Plannina:

Markov Decision Processes

@
jonkv@ida

Overview

Markov Decision Processes

Underlying world model: Stochastic system

Plan representation: Policy — which action to perform in any state
Goal representation: Utility function defining “solution quality”
Planning problem: Optimization: Maximize expected utility

Why "Markov'?

Markov Property (1)

jonkv@ida

If a stochastic process has the Markov Property:

It is memoryless

The future of the process
can be predicted equally well
if we use only its current state
or if we use its entire history

This is part of the definition!
P(s,a,s’) is the probability
of ending up in §’
when we are in s and execute a

Nothing else matters!

P

A. A. Mapron (1886).

Markov Property (2)

jonkv@ida

] $125,204
8122,281 At location 6
At location 3
S125,203
At location 5 0'01.9 99 S125 227
Intermediate
5121,284 location
At location 4 J
S247,129
Broken
We don’t need to ... To find out where
Only the and the .
know the states we . we may end up, with
- current state action... :
visited before... which prob.

Remembering the Past

an
S
jonkv@ida

Essential distinction:

Previous states in the history sequence: What happened at earlier timepoints:

Can partly be encoded into the current state
Can affect the transition function

Cannot affect the transition function

Example:

If you have visited the lectures, you are more likely to pass the exam

= Add a visitedL ectures predicate / variable,
representing in this state what you did in the past

This information is encoded and stored in the current state

= State space doubles in size
(and here we often treat every state separately!)

= We only have a finite number of states
=>» can't encode an unbounded history

Policies and Expected Utilities:

Expectations Revisited

Expected Utility

Expected utility — similar to expected cost:

an
3
jonkv@ida

We know the utility of each history, of each outcome

= But we can only decide a policy

Each outcome has a probability

= So we can calculate an expected ("average") utility for the policy: E (1)

Expected Utility 2

A policy selects actions; the world chooses the outcome

jonkv@ida

Action blue § Action red
> 4 ->
world one
selects possible
outcome outcome

If the policy chooses
the green action,
the world selects one
of these outcomes

jonkv@ida

Expected Utility 3

We must consider all possible outcomes / histories
but not all possible choices

Suppose the policy

A chooses green action

These outcomes Irrelevant to us
must be handled!

jonkv@ida

Expected Utility 4

In the next step the policy again makes a choice

Use m(s21), m(s22) or m(s23) depending on where you are

Expected Utility 4

Calculating expected utility E (7)), method |: "History-based"

Find all possible infinite histories

Calculate probabilities, rewards
over each entire history

Multiply and sum

E(m) = 2, P(h | m)

where

=207

jonkv@ida

» <ABE,...>
<ABF...>
<AB,G,...>
<A,CH,...>

Simple conceptually
Less useful for calculations

Expected Utility 5

Calculating expected rewards, method 2: Recursive
What's the probability
of the outcomes B, C, or D!?

What's the reward for
each transition?

What's the reward of
continuing from

o
)
E)

—
e

o
o —

E(m) = E(m,s0) E(M) = expected reward "from the start”
E(,s) = 2. . P(s,11(s),s") * E(TT,s) = "continuing after having reached s"
(R(s,T1(s), s') + v E(TT,s"))

Expected Utility 6: " Step-Based”

q
NY
jonkv@ida

(R(s, T1(s), s’

= The expected utility of continuing to execute T after having reached s

Is the sum, for all possible states s’ € S that you might end up in,

* the reward you get for this transition

times the expected utility E (7, s") of continuing T from the new state s’

* plus the discount factor

b

jonkv@ida

Example |

E(m,,s1) =The expected reward of executing 1, starting in s1:

Ending up in s2: 100% probability times
= Reward —100
= Discount factor y times E(1T,, s2)

m, = {(s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)),
(s4, wait),
(s5, move(15,14)}

jonkv@ida

Example 2

E(m,,s2) = the expected utility of executing 1, starting in s2:
Ending up in s3: 80% probability times
= Reward —1
= Discount factor y times E(1,, s3)
Ending up in s5: 20% probability times
= Reward —1 =0
= Discount factor y times E (1,, s5)

1]
1M, = {(s1, move(11,12)),
(s2, move(12,13)), =] C |
(s3, move(13,14)), ! 05 .
(s4, wait), s r=-1

(s5, move(l5,14)} r=100

Recursive ?

jonkv@ida

Seems like we could easily calculate this recursively!
E(m,, s1)
= defined in terms of E(m,,s2)
defined in terms of E(m,,s3) and E(T1,,s5)

Just continue until you reach the end!
Why doesn't this work?

m, = {(s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)),
(s4, wait),
(s5, move(15,14)}

Not Recursive!

jonkv@ida

There isn’t always an ”’end”’!

Modified example below is a valid policy 1T (different action in s5)
E(m,s1) defined in terms of E(71,s2)

E(m,s2) defined in terms of E(71,s3) and E(71,s5)

E(m1,s3) defined in terms of E(71,s4)
E(m1,s5) defined in terms of E(7,s2)...

3
~
jonkv@ida

Equation System

If 1T is a policy, then
E(TT,s) = 2o s P‘SI 1'[‘5'I s'i = (R(s, 11(s), s') + v E(11,5")

The expected utility of continuing to execute 1T after having reached s

Is the sum, for all possible states s’ € S that you might end up in,

of the probability P(s, T1(s), s') of actually ending up in that state

the reward you get for this transition

plus the discount factor
times the expected utility E(11,s") of continuing 1T from the new state s’

This is an equation system: |S| equations, |S]| variables!

Requires different solution methods...

MDPs part 2:

Finding Solutions

Optimality and

Bellman’s Principle of Optimality

jonkv@ida

Repetition:; Utility

Let us first revisit the definition of utility

We can define the actual utility given an outcome, a history

= Given any history (sg, 51, ...):

V(('SOJSlJ)lﬂ) — yi R(Si'n(si)lsi+1)

. 120 . .
Value of a history Discounted rewards claimed

We can define the expected utility using the given probability distribution:

= Given that we start in state s:

E(T[S) = z (P«SOtSli .) |SO = S) Z yi R(Sirﬂ(si) Si+1)>

(50,51, i=0

P(that entire history, Discounted reward
All possible histories
when starting in s) for that entire history

= As we saw, we can also rewrite this recursively!
Given that we start in state s:

E(m,s) = 2 P(s,m(s),s’) - (R(S n(s),s") + yE(m,s")

MY P(first step Immediate reward + discounted
All possible next states s’ leads to s°) reward of continuing from s’

jonkv@ida

Maximizing Expected Utility

Suppose that:

We know the initial state s,

We want a policy 7* that maximizes expected utility: E(7", s
policy |) 0

How do we find one!?

Bellman’s Principle of Optimality:

An optimal policy has the property that

whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision!

Richard Ernest Bellman, 1920-1984

Principle of Optimality: Example

a
NY
jonkv@ida

Suppose we start in s1

Suppose m* is optimal starting in s1

= It maximizes E(t¥, s1): Expected utility starting in s1

Suppose that 7*(s1) = move(l1,12), so that the next state must be s2

Then ™ must also be optimal starting in s2!

= Must maximize E (¥, s2): Expected utility starting in s2
=0

: s5 r=-100
Pl o
m— m

o
=
®

—
-

=

o
o —

Principle of Optimality (2)

Sounds obvious? Depends on the Markov Property!
Suppose rewards depended on which states you had visited before

To go s5 2 s4 - s1:
= Use move(l5,14) and move(14,11)
= Reward —200 + —400 = -600

To go s4 = sl without having visited s5:
= Use move(14,11), same as above
= Reward for this step: 99, not —400

r=-1 C 52 _/

=>» Optimal action would
have to take history
into account

I

r=99 usvally
r=-400 ifwe visited s5

This can’t happen 0E
in an MDP: Markovian! Q ' r=-1 =100

[84 JF

Consequences (1)

To find an optimal policy 7™:
No need to know the initial state s, in advance:
We can find a policy that is optimal for all initial states

Definition:
An optimal policy 7* maximizes expected utility for all states:

For all states s and alternative policies 7,
E(n*,s) = E(m,s)

Definition:
A solution to an MDP is an optimal policy!

jonkv@ida

Consequences (2)

Suppose | have a non-optimal policy

| select an arbitrary state s

| make a local improvement:
Change 1 (s), selecting another action that [increases, decreases] E(r, s)

This cannot make anything worse:
Cannot [decrease, increase] E(m, s’) for any s'!

Also:

Every global improvement can be reached through such local improvements
(no need to first make the policy worse, then better)

=>» We can find optimal solutions through local improvements
No need to “think globally”

Finding a Solution (Optimal Policy):

Algorithm 1, Policy Iteration

3
~
jonkv@ida

Simplification

We defined the expected utility given that we start in state s:

E(m,s) = Z - (R(S,n(s),s’) + yE(n,S’))

s'es

In our current example,
rewards do not depend on the outcome s'!

E(m,s) = R(s,n(s)) + z - yE(m,s")

s'es

Policy Iteration

First algorithm: Policy iteration

General idea:

= Start out with an initial policy, maybe randomly chosen

= Calculate the expected utility of executing that policy
from each state

= Update the policy by making a local decision for each state :
"Which action should my improved policy choose in this state,
given the expected utility of the current policy?”

= |terate until convergence (until the policy no longer changes)

=

jonkv@ida

jonkv@ida

Preliminaries 1: Single-step policy changes

Preliminaries:

Suppose | have a policy 7, with an expected utility:

-
Cons) = R(s, () +) Pls,(s),5) - YE(m,s")

s'es

Suppose | change the decision in the first step, \
and keep the policy for everything else!

New expected utility:

Q(m,s,a) = R(s,a) + Z P(s,a,s") - yE(m,s
s’'es
= Q(m,s,a) is the expected utility of i in a state s
if we start by executing the given action a,
but we use the policy from then onward

h

Why!
This tells us if we have a

potential improvement,
without solving a full equation
system!

jonkv@ida

Preliminaries 2: Example

Example: E (1T, s1)

= The expected utility of following the current policy
= Starting in s1, beginning with move(11,12)

Q(m,s1, move(l1,14))

= The expected utility of first trying to move from 11 to 14,
then following the current policy

Does not correspond to
any possible policy!

* If move(11,14) returns = C $2
you to state s1, then the

next action is
move(s]1,s2)!

=-100

I

Preliminaries 3

9
jonkv@ida

Suppose you have an optimal policy TT*

Then, because of the principle of optimality:
= |n every state, the local choice made by the policy is locally optimal

= For all states s,

E(m*,s) =maxQ(r", s, a)
a€A

This yields the modification step of policy iteration!
We have a possibly non-optimal policy 7,
want to create an improved policy 7’

For every state s, set

m'(s) = arg max Q(m, s, a)
aeA

But what if there was an even better choice,

which we don’t see now because of our single step lookahead (Q)?

That’s OK: We still have an improvement,
which cannot prevent future improvements

jonkv@ida

Preliminaries 4

Example: E (1T, s1)

= The expected utility of following the current policy
= Starting in s1, beginning with move(11,12)

Q(m,s1, move(ll,14))

= The expected utility of first trying to move from 11 to 14,

then following the current policy

=0

If doing move(11,14) first
has a greater expected utility, | r=-1 C 52
we should modify
the current policy:

(=)
(=]
i
Il

m'(sl) := move(11,14) =

=1C s

First Iteration

Policy iteration requires an initial policy
Let’s start by choosing “wait” in every state
Let’s set a discount factor:y = 0.9

= Easy to use in calculations on these slides,
but in reality we might use a larger factor
(we’re not that short-sighted!)

Need to know expected utilities!

= Because we will make changes
according to Q(my, s, a),

r=-1 C s2

which depends on
2¢ cs P(s,a,8") E(,S)

m, = {(s1, wait),

r=-100

(s2, wait),
(s3, wait),
(s4, wait),
(s5, wait)}

jonkv@ida

jonkv@ida

Policy lteration 2: Expected Utility for 77,

Calculate expected utilities for the current policy 7,

Simple: Chosen transitions are deterministic and return to the same state!
E(ms)= R(s,m(s)) +y 25 P(s,ms),s) E(T,s)

= E(nl,s1) = R(sl, wait) + y E(nl,s1) =-1 + 0.9E(n1,s1)
= E(ml,s2) = R(s2, wait) + y E(ml,s2) =-1 + 0.9 E(nl,s2)
= E(ml1,s3) = R(s3, wait) + y E(m1,s3) =-1 + 0.9 E(n1,s3)
= E(ml,s4) = R(s4, wait) + y E(ml,s4) =+100 + 0.9 E(ml,s4)
= E(ml,s5) = R(s5, wait) + y E(m1,s5) =-100 + 0.9 E(ml,s5)

Simple equations to solve:

- 0.1E(ml,s1) = -1 > [E(ml,s1) = -10

- 0.1E(mM,s2) = -1 > E(m1,s2) = -10 . .

- 0.1E(m1,s3) = -1 > E(m1,s3) = -10 Given this policy ;:

* 0.1E(ml,s4) = +100 EQUIUERORRRVUN ioh rewards if we start in s4,

0.1E(m1,s5) = -100 = E(m1,s5) = -1000 high costs if we start in s5

What is the best

local modification

according to the
expected utilities
of the current policy?

° r=
For every state s: _ ¢ | p

) 0 S
Let 1m,(s) = argmax, _ , Q(77,5s,a) W =100

That is, find the action a that maximizes R(s, a) + 2. ¢ P(s, a, s’) E(m1,s")

s'eS
= sl: wait -1+0.9*-10 =-10
move(11,12) -100+0.9%-10 =-109
move(l1,14) -1+0.9*(0.5-10 + 0.5*1000) = +444,5

Best improvement

These are not the true expected utilities for starting in state s1!

= They are only correct if we locally change the first action to execute
and then go on to use the previous policy (in this case, always waiting)!

= But they can be proven to yield good guidance,
as long as you apply the improvements repeatedly (as policy iteration does)

What is the best

local modification
according to the
expected utilities
of the current policy?

For every state s: . ¢ s1 7 -
Let 1,(s) = argmax, _ , Q(111,s,a) a5 r=-1 =100
That is, find the action a that maximizes R(s, a) + 2. .c P(s,a,s’) E(r7l,s")
= s2:|\wait -1+0.9%-10 =-10
move(l2,11) —100 + 0.97-10 =-109

move(12,13) -1 +0.9*(0.8*-10+ 0.2*-1000) =-188,2

What is the best

local modification
according to the
expected utilities
of the current policy?

For every state s: r= ¢)
Let m1,(s) = argmax,_ _ , Q(771,s,a) W =100

That is, find the action a that maximizes R(s, a) + y 2. _c P(s, a,5") E(rl,s")

S

= s3: wait -1 +0.9%-10 =-10
move(13,12) -1 +0.9%-10 =-10
move(13,14) —100 + 0.9 ¥ +1000 = +800

= s4: wait +100+ 0.9 T +1000 = +1000
move(l4,11) +99 + 0.9 =10 =+90

= s5: wait —100 + 0.9 ¥=1000 =-1000
move(l5,12) -101+0.9*-10 =-110

move(l5,14) —200 + 0.9* +1000 =+700

Second Iteration

jonkv@ida

Policy Iteration 6: Second Policy

This results in a new policy

m, = {(s1, wait), m, ={ (s1, move(l1,14), Utilities based
(s2, wait), (s2, wait), on one modified
(s3, wait), $3)=—10 (s3, move(13,14)), = +80(action, then
(s4, wait), E(m1,s4)=+1000 (s4, wait), >=+1000 following m;

(s5, wait)} E(tls5)=-1000 (s5, move(15,14))} =il (can’t decrease!)

=0 s5 Dr=-100

Now we have made use of
earlier indications that
s4 seems to be a good state

=> Try to go there
from sl / s3 / s5!

No change in s2 yet...

kv(@ida

Policy Iteration /: Expected Utilities for 7z,

jon

Calculate true expected utilities for the new policy 1T,

= E(m2,s1) = R(s1, move(l1,14)) + y... =—1 +0.9(0.5E(n2,s1) + 0.5E(112,s54))
= E(n2,s2) = R(s2, wait) + yE(m2,s2) ==1 |+ 0.9 E(12,s2)
= E(n2,s3) = R(s3, move(13,14)) + yE(n2,s4) =-100+ 0.9 E(n12,s54)
= E(n2,s4) = R(s4, wait) + yE(m2,s4) = +100+ 0.9 E(m2,s4)

= E(n2,s5) = R(s5, move(l5,14)) + yE(n2,s4) =-200+ 0.9 E(n12,54)

Equations to solve:

= 0.1E(m2,s2) =-1 = E(n2,s2) =-10
0.1E(n2,s4) = +100 = E(n12,s4) = +1000
E(n2,s3) =—100 + 0.9E(n2,s4) = —100 + 0.9*1000 = +800 =» E(n2,s3) = +800
E(n2,s5) =—-200 + 0.9E(n12,s4) = =200 + 0.9*1000 = +700 =» E(n2,s5) = +700

« E(m2,s1) =—1 + 0.45 * E(12,s1) + 0.45 * E(112,54) => => E(112,s1) = +816,36
0.55E(m2,s1) =—1 + 0.45 *E(n2,s4) =»
0.55 E(112,s1) = —1 + 450 = 1, = {(s1, move(11,14),
0.55 E(n2,s1) = +449 = (s2, wait),

E(n2,s1) = +816,3636... (s3, move(13,14)),
(s4, wait),

(s5, move(15,14))}

Policy Iteration 8: Second Policy

jonkv@ida

Now we have the true expected utilities of the second policy...

m, = {(s1, wait), m, ={ (s1, move(11,14), >=+4445
(s2, wait), (s2, wait), =10
(s3, wait), 53)=—1((s3, move(13,14)), | >=+800 $3)=+800
(s4, wait), E(m]s4)=+1000 (s4, wait), >=+1000 QG AYSEERIY

(s5, wait)} E(1c1s5)=-1000 (s5, move(15,14))} | >=+700 HEGPAE)E Al

=0\
S5 wasn’t so bad after all, ' s5 Dr= -100
since you can reach s4
in a single step!

S| / s3 are even better.

S2 seems much worse
in comparison,
since the benefits of s4
haven’t "propagated” that far.

Policy Iteration 9: Update 2a

What is the best m2,s1)=+816,36

E(
local modification E(tt2,s2)=-10
according to the E(tt2,s3)=+800
E(m2s4)
E(12,55)

expected utilities m2,54)=+1000
of the current policy? 12,55)=+700

For every state s:

Let m15(s) = argmax, _ , Q(7,,s,a)
That is, find the action a that maximizes R(s,a) + y 2. . P(s,a,s’) E(1.,,s')

= sl: wait -1+ 0.9 *816,36 =+733,72
move(l1,12) —-100 + 0.9 *-10 =-109
move(l11,14) -1+ 0.9 */(.5*1000+.5*816.36) = +816,36
Seems best — chosen!
= s2: wait -1+0.9*-10 =-10
move(12,11) —100 + 0.9 *816,36 = +634,72
move(12,13) -1 + 0.9 *(0.8*800 + 0.2*700) =+701

Now we will change the action taken at s2,

since we have the expected utilities for reachable states sl, s3, s5... have increased

What is the best
local modification
according to the
expected utilities
of the current policy?

For every state s:

E(m2,s1)=+816,36
E(mt252)=-10
E(mt2,53)=+800
E(rt2,54)=+1000
E(1t2,s5)=+700

Let m15(s) = argmax, _ , Q(7,,s,a) a 4@}& —m b r=100

That is, find the action a that maximizes R(s, a)_+ 72 s P(s,a,8) E(,s")

= s3: wait
move(13,12)
move(13,14)

= s4:|wait
move(l4,11)

= §5: wait
move(15,12)
move(l5,14)

—1 +0.9%800 = +719

~1+0.9%-10 =-10
~100 + 0.9 ¥ 1000 = +800
+100+ 0.9 * 1000 = +1000

+99 + 0.9 * 816,36 - +833,72

~100 + 0.9 ¥ 700 = +530
~101 +0.9*-10 =110
~200 + 0.9 *—1000 = +700

Policy Iteration 11: Third Policy

jonkv@ida

This results in a new policy m, M, = {(s1, move(l1,14),
True expected utilities are updated (s2, move(12,13)),
by solving an equation system (s3, move(13,14)),
The algorithm will iterate once more (s4, wait),

No changes will be made to the policy (s5, move(15,14))}

=» Termination with optimal policy!

Policy Iteration Algorithm

Policy Iteration 12: Algorithm

jonkv@ida

Policy iteration is a way to find an optimal policy

Start with an arbitrary initial policy ;. Then,fori= 1,2, ...
= Compute expected utilities E(1T,,s) for every s by solving a system of equations
Find utilities System: For all s, E(11,,s) = R(s, 11,(s)) + 2. . s P (s, T1(s), 8") E(11,,8")

according to Result: The expected utilities of the “current” policy in every state s

s'eS

current policy

Not a simple recursive calculation — the state graph is generally cyclic!
= Compute an improved policy 1., , “locally” for every s
Find best m..,(s) := argmax, _, R(s, a) + y2. . s P(s, a, s') E(m,,;s")

local
Tl - Best action in any given state s given expected utilities of old policy m,

= If m,,; = 1, then exit
No local improvement possible,
so the solution is optimal
= Otherwise
This is a new policy 1,,; — with new expected utilities!

Iterate, calculate those utilities, ...

jonkv@ida

Convergence

Converges in a finite number of iterations!

We change which action to execute
if this improves expected (pseudo-)utility for this state

= This can sometimes increase,
and never decrease, the utility of the policy in other states!

= So utilities are monotonically improving
and we only have to consider a finite number of policies

In general:
May take many iterations
Each iteration involved can be slow

Mainly because of the need to solve a large equation system!

Avoiding Equation Systems

Avoiding Equation Systems

jonkv@ida

Plain policy iteration:

In every iteration i we have a policy m;, want its expected utilities E (1;, 5)

Can use an equation system or iterate until convergence:

= E; o(my,s) = 0foralls Finite horizon:
Exact expected utility for O steps

= Then iterate for j=0, I, 2, ... and for all states s:
Exact exp. utility
Ei,j+1(7Ti,S) = R(S, ﬂi(S)) +vy Z P(s,m;(s),s") E;; (mr;,s") for | step,

7 2 steps,
Definite s €3 Prob. of Reward from P

reward outcome prev. iteration

3 steps, ...

Will converge in the limit (j — o)
= ¥y < 1 => steps sufficiently far into the future are almost irrelevant

= Stop when E; ;.4 is very close to E; ; — then we're close to E(m;, s)

Avoiding Equation Systems (2)

jonkv@ida

Finally, the approximated utility function E; ,,
determines the best actions to use

True expected cost

Previously:

Z P(s, a,s’)E(ni,S)>

s'es

;41 (S) = arg max <R (s,a) +y
acA

Approximated:

mi41(s) = arg max <R(S, a)+y Z P(s, a,s’)Ei,n(ni,S)>
a

s'es

Approximate

expected cost

Finding a Solution (Optimal Policy):

Algorithm 2, Value lteration

Value Iteration (1)

jonkv@ida

Another algorithm: Value iteration — no policy used!

What's the max expected utility of executing 0 steps starting in any state?
= No rewards, no costs
= For all states s € S,set Vy(s) =0

What's the max expected utility of executing 1 step starting in any state?

= Choose one action; max utility of executing 0 actions in resulting state is known

Vi(s) = max (R(S, a)+y z P(s,a,s") VO(S)>

s'es

What's the max expected utility of executing j + 1 steps?

= Choose one action; max utility of executing j actions in resulting state is known

Viea(s) = max | R(s,@) +7) P(s,a,5) V; (s)

s'es

Maximizes finite-horizon utility

jonkv@ida

Value Iteration (2)

Notice: In essence, we find actions in inverse order

Best utility in zero steps!

One step!? Maximize V;: Choose an action

based on the next utility being 1/,
Vi Vo

Two steps!?

jonkv@ida

Value Iteration (3)

Notice: V;(s) is not the expected value of a policy

For a given state s, a policy i always uses the same action 7(s)

Value iteration chooses an action separately for every step

= Based on different information each time:

Vit1(s) = max| R(s,a) +y Z P(s,a,s") V; (s)

s’'es

Iterations j and k could use different actions for state s

s this a problem?

Value Iteration (4)

Finite-horizon utility:

jonkv@ida

Vi1 (s) = max (R(s,@) +¥ SoresP(s,a,5) V) (5))

Will eventually converge towards an optimal value function

= Will converge faster if V(s) is close to the true value function

= Will actually converge regardless of the initial value of V(s),
despite not corresponding to a policy

Intuition:As j — oo, the discount factor ensures...

= Unconsidered actions in the distant future become irrelevant

= As the value function converges, the implicit action choices will converge
Call the final approximation V,,,,,, then:

n(s) = argmax| R(s,a) +y P(s,a,s") Vo qx (S)

a€A -
S'€S

Value Iteration (5)

Main difference:

With policy iteration

Find a policy
Find exact expected utilities for infinite steps using this policy
(expensive, but gives the best possible basis for improvement)

Use these to generate a new policy

Throw away the old utilities,
find exact expected utilities for infinite steps using the new policy

Use these to generate a new policy

With value iteration

Find best utilities considering O steps; implicitly defines a policy
Find best utilities considering | step; implicitly defines a policy

Find best utilities considering 2 steps; implicitly defines a policy

jonkv@ida

Value lteration Example

VI Example I: Initial Guess V

Value iteration requires an initial approximation

Let’s start withV,(s) = O for each s

Does not correspond to any actual policy,
but to the expected utility of executing zero steps...

I\

r=-lC 52 - s3

r=-1

100
=l

|’=_
0or-

7

VO(s1) =0
V0(s2) =0
V0(s3) =0
VO0(s4) =0
VO(s5) =0

1

jonkv@ida

s5 Dr=-]ﬂﬂ

jonk\;@ida

VI Example 2: Update la

=
What is the best Vo(s1) =0 “1 s5 Qr=_mg
local modification Vo(s2)=0 = :

according to the Vy(s3)=0 = C sl 7 =53 Qr
current Vy(s4) =0 r=-1

approximation? Vy(s5) =0

For every state s: =-C @5\%
' r=-1
r=100

Pl: find the action a that maximizes R(s,a) + y 2.« _c P(s, a,5’) E(rl,s")
VI: find the action a that maximizes R(s, a) + 7 2. . < P(s, a,5") V,(s')

r=-100

00L-=!

= s1: wait -1+0.9*0 =-1
move(11,12) -100+0.9%0 =-100
move(l1,14) -1+0.9*(0.5*0 + 0.5*0) =-1

= g2:|wait -1+0.9%0 =-1
move(12,11) -100+0.9%0 =-100

move(12,13) -1 +0.9%(0.8*0 + 0.2*0) =-1

VI Example 3: Update 1b

What is the best

local modification
according to the
current

approximation!

For every state s: i @5\]%
- r=100

VI: find the action a that maximizes R(s, a) + 72 . < P(s,a,s") V,(s')

= s3: wait -1+0.9*0 =-1
move(13,12) -1+0.9*0 =-1
move(13,14) -100 +0.9*0 =-100

= s4: 'wait +100 + 0.9 *|0 =+100
move(l4,11) +99+0.9*%0 = +99

= s5: wait -100+0.9*0 =-100
move(15,12) -101 +0.9*0 =-101

move(15,14) -200+0.9*0 =-200

VI Example 4:V 4

jonkv@ida

Vi(s2)=-1
V1(s3)=-1
V1(s4)=+100
V1(s5)=-100

VI Example 5: Policy

jonk\;@ida

If we stopped value iteration here, we would get policy 4

m =1{ (s1, wait), For infinite execution,
(s2, wait), E(nl,s1) =10,
(s3, move(13,12)), NS but this is not calculated...
(s4, wait), V1(s4)=+100
(s5, wait)} V1(s5)=-100

V; corresponds to one step of
many polices, including

We don’t actually calculate 7: r=-1 C 2
It is implicit in

Vit1(s) = max (R(s, a) + S
1l

1

r
ooL-=
r=0

VI Example 6: Update 2a

What is the best

local modification

according to the
current

approximation!

For every state s:

r=100
P(s,a,s’) E(my,s")
P(s,a,s) V;_4(s")

Pl: find the action a that maximizes R(s, a) + 2.

s'eS

VI: find the action a that maximizes R(s, a) + 2.

s'eS
= s1: wait -1+0.9*-1 =-1.9
move(11,12) —-100 + 0.9 *-1 =-100.9
move(11,14) -1 +0.9* (0.5*-1 + 0.5*100) = +43,55
= s2: \wait -1 +0.9%-1 =-1.9
move(12,11) -100+0.9*-1 =-100.9

move(12,13) -1+0.9*(0.8-1 + 0.2*-1) =-1.9

VI Example /7: Update 2b

What is the best

local modification
according to the
current

approximation!

For every state s:] @5\]%
~
r=100

VI: find the action a that maximizes R(s,a) + 2. . < P(s,a,s) V,_(s)

sseS

= s3: \wait -1+0.9*-1 =-1.9
move(13,12) -1+0.9*-1 =-1.9
move(l3,14) —100 + 0.9* +100 =-10

= s4: wait +100 + 0.9/* +100 =+190
move(l4,11) +99 + 0.9*-1 = +98.1

= s5: |wait -100 + 0.9 -1 =-100.9
move(l5,12) -101 +0.9*-1 =-101.9

move(l5,14) —200 + 0.9* +100 =-110

VI Example 8:V,

This results in another new approximation

Vi(s1)=-1 V2(s1)=+43.55
Vi(s2)=-1 V2(s2)=-19
V1(s3)=-1 V2(s3)=-19
V1(s4)=+100 V2(s4)=+190
V1(s5)=-100 V2(s5)=-1009

jonkv@ida

VI Example 9: Policy

jonkv@ida

Now we have two implicit policies

m, = { (s1, wait),

(s2, wait), Vi(s2)=-1
(s3, move(13,12)), NAE)
(s4, wait), Vi(s4)=+100
(s5, wait)} V1(s5)=-100

Again, V, doesn’t represent the
true expected utility of m,

Nor is it the true exp. utility of
executing two steps of 1,

It is the true expected utility of
one step of 1, then one of m,!

(But it will converge towards 05
true utility...)

1, = { (s1, move(11,14)),
(s2, wait),
(s3, wait),
(s4, wait),
(s5, wait)}

=0

V2(s2)=-19
V2(s3)=-19
V2(s4)=+190
V2(s5)=-100.9

Analysis

Differences

jonkv@ida

Significant differences from policy iteration

Less accurate basis for action selection

= Based on approximate utility, not true expected utility

Policy does not necessarily change in each iteration
= May first have to iterate n times, incrementally improving approximations

= Then another action suddenly seems better in some state

=>» Requires a larger number of iterations

= But each iteration is cheaper

=>» Can’t terminate just because the policy does not change

= Need another termination condition...

[llustration

jonkv@ida

lllustration below

Notice that we already calculated rows | and 2

= sl: wait -1+0.9*-1 =-1.9
move(l1,12) -100 + 0.9* -1 =-100.9
move(l1,14) -1 +0.9*(0.5*-1 + 0.5*+100) | = +43,55
sl s2 s3 s4 s5
Action wait move-s2 move-sd |wait move-s1 move-s3 |wait move-s2 move-s4 |wait wait move-s2 move-sd
0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 -100 -1 -1 -100 -1 -1 -1 -100 100 -100 -101 -200
2: -1,9 -100,9 43,55: -1,9 -100,9 -1,9 -1,9 -1,9 -10 190 -190 -101,9 -110
3] 38,195 -101,71 104,098 -2,71 -60,805 -2,71 -2,71 -2,71 71 271} -191,71 -102,71 -29
4| 92,6878 -102,439 167,794 -3,439 -6,31225 62,9 62,9 -3,439 143,9 343,9 -126,1 -103,439 43,9
5| 150,014 -43,39 229,262 55,61 51,0145 128,51 128,51 55,61 209,51 409,51 -60,49 -44,39 109,51
5| 205,336 15,659 286,448 114,659 106,336 187,559| 187,559 114,659 268,559| 468,559 -1,441 14,659 168,559
6| 256,803 68,8031 338,753| 167,803 157,803 240,703| 240,703 167,803 321,703, 521,703| 51,7031 67,8031 221,703
7| 303,878 116,633 386,205 215,633 204,878 288,533| 288,533 215,633 369,533] 569,533| 99,5328 115,633 269,533
8| 346,585 159,68 429,082 25868 247,585 331,58 331,58 258,68 412,58 612,58 142,58 158,68 312,58
9| 385,174 198,422 467,748| 297,422 286,174 370,322| 370,322 297,422 451,322 651,322| 181,322 197,422 351,322
10| 419,973 233,289 502,581] 332,289 320,973 405,189 405,189 332,289 486,189 686,189| 216,189 232,289 386,189
11| 451,323 264,67 533,947 363,67 352,323 436,57, 436,57 363,67 517,57, 717,57 247,57 263,67 417,57
12| 479,552 292,913 562,183] 391,913 380,552 464,813 464,813 391,913 545,813 745,813| 275,813 291,913 445,813
13| 504,964 318,332 587,598 417,332 405,964 490,232 490,232 417,332 571,232 771,232| 301,232 317,332 471,232

=
.

527,838 341,209 610,474| 440,209 428,838 513,109| 513,109 440,209 594,109, 794,109 324,109 340,209 494,109

[llustration

jonkv@ida

Remember, these are “pseudo-rewards’!
sl s2 s3 s4 s5

Action wait move-s2 move-sd |wait move-s1 move-s3 |wait move-s2 move-s4 |wait wait move-s2 move-sd
0 0 0 0 0 0 0 0 0 0 0 0 0

-1 -100 -1 -1 -100 -1 -1 -1 -100 100 -100 -101 -200

-1,9 -100,9 43,55 -1,9 -100,9 -1,9 -1,9 -1,9 -10 190 -190 -101,9 -110
38,195 -101,71 104,098 -2,71 -60,805 -2,71 -2,71 -2,71 71 271} -191,71 -102,71 -29
92,6878 -102,439 167,794 -3,439 -6,31225 62,9 62,9 -3,439 143,9 343,9 -126,1 -103,439 43,9
150,014 -43,39 229,262 55,61 51,0145 128,51 128,51 55,61 209,51 409,51 -60,49 -44,39 109,51
205,336 15,659 286,448| 114,659 106,336 187,559| 187,559 114,659 268,559| 468,559 -1,441 14,659 168,559
256,803 68,8031 338,753| 167,803 157,803 240,703| 240,703 167,803 321,703 521,703| 51,7031 67,8031 221,703
303,878 116,633 386,205| 215,633 204,878 288,533| 288,533 215,633 369,533] 569,533| 99,5328 115,633 269,533
346,585 159,68 429,082 258,68 247,585 331,58 331,58 258,68 412,58 612,58, 142,58 158,68 312,58
385,174 198,422 467,748| 297,422 286,174 370,322| 370,322 297,422 451,322 651,322| 181,322 197,422 351,322
419,973 233,289 502,581| 332,289 320,973 405,189| 405,189 332,289 486,189, 686,189 216,189 232,289 386,189
451,323 264,67 533,947 363,67 352,323 436,57 436,57 363,67 517,57, 717,57, 247,57 263,67 417,57
479,552 292,913 562,183| 391,913 380,552 464,813| 464,813 391,913 545,813} 745,813 275,813 291,913 445,813
504,964 318,332 587,598, 417,332 405,964 490,232| 490,232 417,332 571,232] 771,232 301,232 317,332 471,232
527,838 341,209 610,474, 440,209 428,838 513,109| 513,109 440,209 594,109| 794,109 324,109 340,209 494,109

/1

324.109 = reward of waiting once in s5,
then continuing according to the previous |4 policies for 14 steps,
then doing nothing (which is impossible according to the model)

W o ~J O 1 U B~ W Mo

[O o
B W N R O

[llustration

jonkv@ida

The policy implicit in the value function changes incrementally...

sl

s2

s3

s4

sb

Action wait

move-s2 move-s4

wait

move-s1 move-s3

wait

move-s2 move-s4

wait

wait

move-s2 move-s4

0

=l

-1,9
38,185
92,68775
150,0145
205,336
256,8028
303,8776
346,5847
385,1739
419,973
451,3231
479,5521
504,9645
527,8384

W o~ v i1l B~ W N =

B R R R
B W N B O

0

-100
-100,9
-101,71
-102,439
-43,39
15,659
68,8031
116,6328
159,6795
198,4216
233,2894
264,6705
292,9134
318,3321
341,2089

0

=l

43,55
104,0975
167,7939
229,2622
286,4475
338,7529
386,2052
429,0821
467,7477
502,5812
533,9468
562,1828
587,5983
610,4737

0

=l

=L2

-2,71
-3,439
55,61
114,659
167,8031
215,6328
258,6795
297,4216
332,2894
363,6705
391,9134
417,3321
440,2089

0

-100
-100,9
-60,805
-6,31225
51,01449
106,336
157,8028
204,8776
247,5847
286,1739
320,973
352,3231
380,5521
405,9645
428,8384

0

=l

=L

-2,71
62,9
128,51
187,559
240,7031
288,5328
331,5795
370,3216
405,18%4
436,5705
464,8134
490,2321
513,1089

0

=l

=L

-2,71
62,9
128,51
187,559
240,7031
288,5328
331,5795
370,3216
405,1894
436,5705
464,8134
490,2321
513,1089

0

=l

=L

-2,71
-3,439
55,61
114,659
167,8031
215,6328
258,6795
297,4216
332,2894
363,6705
391,9134
417,3321
440,2089

0

-100

-10

71

143,9
209,51
268,559
321,7031
369,5328
412,5795
451,3216
486,18%4
517,5705
545,8134
571,2321
594,1089

0

100

190

271
343,9
409,51
468,559
521,7031
569,5328
612,5795
651,3216
686,1894
717,5705
745,8134
771,2321
794,1089

0

-100
-190
-191,71
-126,1
-60,49
-1,441
51,7031
99,53279
142,5795
181,3216
216,1894
247,5705
275,8134
301,2321
324,1089

0

-101
-101,9
-102,71
-103,439
-44,39
14,659
67,8031
115,6328
158,6795
197,4216
232,2894
263,6705
291,9134
317,3321
340,2089

0

-200

-110

-29

43,9
109,51
168,559
221,7031
269,5328
312,5795
351,3216
386,1894
417,5705
445,8134
471,2321
494,1089

[llustration

jonkv@ida

At some point we reach the final recommendation/policy:

sl s2 s3
Action wait move-s2 move-sd |wait move-s1 move-s3 |wait move-s2 move-s4
0 0 0 0 0 0 0 0 0

1 -1 -100 -1 -1 -100 -1 -1 -1 -100
2 -1,9 -100,9 43,55 -1,9 -100,9 -1,9 -1,9 -1,9 -10
3 5 -2,71 -60,805 -2,71
4 Max value for 9] -3439 -6,31225 62,9 Max value for
- action move-s4 & Max value for | action move-s4
6 9 . L
= . 5| action move-s3 _
4 Will never X 5 Will never
3 change ’ Will never B
o 2 H svo, 1004 ooz, z0o4 ~wov;roo=s
11] 451,3231 264,6705 533,9468 change 3] 436,5705 363,6705 517,5705
12| 479,5521 292,9134 562,1828| cca)ecorr owwyomee =t 464,8134 391,9134 545,8134
13| 504,9645 318,3321 587,5983| 417,3321 405,9645| 490,2321{ 490,2321 417,3321 571,2321
14] 527,8384 341,2089 610,4737| 440,2089 428,8384| 513,1089(513,1089 440,2089 594,1089

s4

wait

wait

s5

move-s2 move-s4

Only
wait

651,3216
686,1894
717,5705
745,8134
771,2321
794,1089

0
-100
-190

0
-101
-101,9

0
-200
-110

Max value for
action move-s4

Will never
change 5

sou,roud
417,5705
445,8134
471,2321
494,1089

AMAY W Y A

LV, LO0J% LI, a0 %

247,5705 263,6705
275,8134 291,9134
301,2321 317,3321
324,1089 340,2089

Optimal policy found in iteration 4

Can’t

know this:

These are not true rewards; maybe one action will soon “overtake” another!

Different Discount Factors

Suppose discount
factor is 0.99 instead

lllustration, only showing
best pseudo-utility at each step

Much slower convergence

= Change at step 20:
2% =¥ 5%

= Change at step 50:
0.07% =>» 1.63%

Care more about the future
=» need to consider
many more steps!

Iteration

W 00~ h s W N e O

e T S R R
O W0 R W= O

48,005
121,267
206,047
296,043
388,141
480,803
573,274
665,184
756,356
846,705
936,195
1024,81
1112,55
1199,42
1285,42
1370,57
1454,86
1538,31
1620,93

1

1,99
1,99
95,0399
191,1
286,199
380,347
473,553
565,828
657,179
747,617
837,151
925,79
1013,54
1100,42
1186,42
1271,57
1355,86
1439,31
1521,93

1

1

97,01
194,04
290,1
385,199
479,347
572,553
664,828
756,179
846,617
936,151
1024,79
1112,54
1199,42
1285,42
1370,57
145486
153831
1620,93

sd

DF

100

199
297,01
394,04
490,1
585,199
679,347
772,553
864,828
956,179
1046,62
1136,15
1224,79
1312,54
1399,42
1485,42
1570,57
1654,86
1738,31
1820,93

s5

0

-100
-101
-2,99
94,0399
190,1
285,199
379,347
472,553
564,828
656,179
746,617
836,151
924,79
1012,54
1099,42
1185,42
1270,57
1354,86
1438,31
1520,93

jonkv@ida

How Many lterations?

jonkv@ida

We can find bounds!

Let € be the greatest change in pseudo-utility between two iterations:
€= r?EaSX [View () — Vora (s)|

Then if we create a policy according to V;,,,,, we have a bound:
max |E(m,s) — E(n",s)| < 2ey/(1 —y)

SES
= For every state, the reward of 7
is at most 2¢y /(1 — y) from the reward of an optimal policy

Discount factor y

0oo2 0018 0038 0198 1998
0,02 0,18 0,38 198 1998
0,2 18 3,8 198 1998

2 18 38 198 1998

10 90 190 990 9990

20 180 380 1980 19980
200 1800 3800 19800 199800

Maximum absolute
difference € between
two iterations

How Many lterations 2 Discount 0.90

Guarantee: Corresponding policy gives >= 43 - 1620.

Quit after 2 iterations =» V,(s1)=43.

Iteration

W 0o =] o on s o Pa = D

Bow pa e
(o T = T = T =

20
60
70
80
50
100

A |

0

-1

43,55
104,0975
167,7939
229,2622
286,4475
338,7529
386,2052
429,0821
a67,7477
694,787
73,9725
801.5828
811,2099
814,5666
815,7371
816,1452
816,2875
816,3371

52

0

-1

-1,9
-2,71
62,9
128,51
187,559
240,7031
288,5328
331,5795
370,3216
2974233
676,6088
704,2191
/13,8462
717,203
718,3734
718,7815
718,9238
718,9734

53

0

-1

-1,9

71

143.9
209,51
268,559
321,7021
369,5328
412,5795
451,3216
678,4233
757,6088
785,2191
794,8462
798,203
799,3734
799,7815
799,9238
799,9734

i

0

100

190

271
343.9
409,51
468,559
221,7031
569,5328
612,5795
651,3216
878,4233
957,6088
985,2191
994,8462
998,203
999,3734
999,7815
999,9238
999,9734

5

0

-100
-110

-29

43,9
109,51
168,559
221,7021
269,5328
312,5795
351,3216
2784233
657,6088
685,2191
694,8462
698,203
699,3734
699,7815
699,9238
699,9734

Greatest
change

100

Q0

81

72,9
63,61
59,049
33,1441
47,52969
43,04672
38,7420z
13,50852
4,710129
1,64232
0,572641
0,199668
0,06962
0,024275
0,005464
0,002951

Possible
diff from
optimal

policy

1500

1620 !

1458
1312,2
1180,98
1062882
956,3938
500,9344
774,841

697,3569 |

243,1533
84,78232
29,56177
10,30755
3,3594021
1,253157
0,4365949
0,152355
0,053123

Bounds are
incrementally
tightened!

Quit after 10
iterations =2 we
know V y(s1)=467.
Guarantee: New

corresponding
policy gives

>= 467 — 697 if

we start in sl.

Quit after 50
iterations =» we

" know Vi, (s1)=811.
' New guarantee:

The same policy
actually gives
>= 811 — 10 if we
start in s|.

jonkv@ida

How Many Iterations ? Discount 0.99

Iteration sl

10
20
30
50
100
150
200
250
300
400
500
60C
700
800
900
1000

0
1
756,356
1620,93
2403
3749,94
6139,68
7585,48
8460,2
8989,41
9309,59
9620,49
9734,3
9775,95
9791,2
9796,78
9798,82
9799,57

52

1
657,179
1521,93

2304
3650,94
6040,68
7486,48

8361,2
2890,41
9210,59
9521,49

9635,3
©676,95

9692,2
9697,78
9699,82
9700,57

53

1
756,179
1620,93

2403
3749,94
6139,68
7585,48

8460,2
8989,41
9309,59
9620,49

9734,3
9775,95

9791,2
9796,78
9798,82
9799,57

s4
0
100
956,179
1820,93
2603
3949,94
6339,68
7785,48
8660,2
9189,41
9509,59
9820,49
9934,3
9975,95
9991,2
9996,78
9998,82
9999,57

55

0

-100
656,179
1520,93
2303
3649,94
6039,68
7485,48
8360,2
8889,41
9209,59
9520,49
9634,3
9675,95

9691,2!

9696,78
9698,82
9699,57

Greatest
change

100
91,3517
82,6169
74,7172
61,1117

36,973
22,3689
13,5333
8,18772
4,95363
1,81319
0,66369
0,24293
0,08892
0,03255
0,01191
0,00436

Possible
diff from
optimal
policy

19800
18087,6
16358,1

14794
12100,1
7320,65
4429,04
2679,59
1621,17
980,818
359,011

131,41
48,1002
17,6062
6,44445
2,35888
0,86342

jonkv@ida

Bounds are
incrementally

Quit after 250
iterations =»
we know
V,e0(s1)=8989.
Guarantee:
Corresponding
policy gives
>= 8989 - 1621.

Quit after 600
iterations =»
we know
V¢oo(s1)=9775.

Guarantee:
>= 9775 - 48.

jonkv@ida

Value lteration

Value iteration to find T":

Start with an arbitrary reward V| (s) for each s and an arbitrary ¢ > 0

= Vo(s) = 0 corresponds directly to finite horizon reward
= Values closer to real rewards ensure faster convergence
fork=1,2, ...

« for eachsin S do Not the original definition of Q(s,a):

Here we use the previous V()

for eachainAdo Q(s,a):=R(s,a) + y2, . s P, (s' | s) Vi 1(s)
Vi (s) = max, _ ,Q(s,a)
n(s) = argmax, _ , Q(s,a) // Only needed in final iteration

= if max__; |Vi(s) -V, ;(s)| < ¢ then exit // Almost no change!

sesS
On an acyclic graph, the values converge in finitely many iterations

On a cyclic graph, value convergence can take infinitely many iterations
That’s why € > 0 is needed

jonkv@ida

Discussion

Both algorithms converge in a polynomial number of iterations

But the variable in the polynomial is the number of states

= The number of states is usually huge

Need to examine the entire state space in each iteration

=>» These algorithms take huge amounts of time and space

Probabilistic set-theoretic planning is EXPTIME-complete

= Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete

Methods exist for reducing the search space,
and for approximating optimal solutions

Value lteration

jonkv@ida

Value iteration to find T":

Start with an arbitrary reward V| (s) for each s and an arbitrary ¢ > 0

= Vo(s) = 0 corresponds directly to finite horizon reward
= Values closer to real rewards ensure faster convergence
fork=1,2, ...

_ Prioritize some states, visit them more often!
= for eachsin Sdo

For example, states "’close to” significant changes inV

for eachainAdo Q(s,a):=R(s,a) + y2, s P, (s' | s) V,_1(s)
Vi (s) = max, _ ,Q(s,a)
n(s) = argmax, _ , Q(s,a) // Only needed in final iteration

= if max__; |Vi(s) -V, ;(s)| < ¢ then exit // Almost no change!

sesS
On an acyclic graph, the values converge in finitely many iterations

On a cyclic graph, value convergence can take infinitely many iterations
That’s why € > 0 is needed

Partial Observability

Overview

jonkv@ida

Non-Observable: Fully Observable: Partially Observable:
No information Exact outcome Some information
gained after action known after action gained after action

Deterministic: Classical planning (possibly with extensions)
Exact outcome

R Information dimension is meaningless!

Non-deterministic: NOND: FOND: POND:
Multiple outcomes, Conformant Planning Conditional Partially Observable,
no probabilities (Contingent) Planning Non-Deterministic
Probabilistic: Probabilistic Probabilistic Partially Observable MDPs
Multiple outcomes Conformant Planning Conditional Planning (POMDPs)

with probabilities

(Non-observable MDPs: Stochastic Shortest Path
Special case of POMDPs) Problems

Markov Decision
Processes (MDPs)

In general:

Full information is the easiest

Partial information is the hardest!

Action Representations

jonkv@ida

Action Representations

Action representations:

The book only deals with the underlying semantics:
“Unstructured” probability distribution P(s, a, s")

Several “convenient” representations possible,
such as Bayes networks, probabilistic operators

jonkv@ida

Representation Example: PPDDL

Probabilistic PDDL.: new constructs for effects, initial state
(probabilistic p, e; ... p, €,)

= Effect e, takes place with probability p,, etc.
= Sum of probabilities <=1 (can be strictly less =» implicit empty effect)

= (define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package

:parameters (?pkg)
-effect (and First, a "standard" effect

(when (bomb-in-package ?pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))

= (define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects package1 package2)
(:init (probabilistic 0.5 (bomb-in-package package1)
0.5 (bomb-in-package package2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

/o chance of tollet-clogged,

95% chance of no effect

Ladder |

jonkv@ida

= ;; Authors: Sylvie Thiébaux and Iain Little
You are stuck on a roof because the ladder you climbed up on fell down.
There are plenty of people around;
if you call out for help someone will certaintly lift the ladder up again.
Or you can try the climb down without it.
You aren't a very good climber though,
so there is a 50-50 chance that you will fall and break your neck if you go it alone.

What do you do?

= (define (problem climber-problem)
(:domain climber)
(:init (on-roof) (alive) (ladder-on-ground))

(:goal (and (on-ground) (alive))))

Ladder 2

jonkv@ida

(define (domain climber)
(:requirements :typing :strips :probabilistic-effects)
(:predicates (on-roof) (on-ground)

(ladder-raised) (ladder-on-ground) (alive))

(:action climb-without-ladder :parameters ()
:;precondition (and (on-roof) (alive))
.effect (and (not (on-roof))
(on-ground)
(probabilistic 0.4 (not (alive)))))

(:action climb-with-ladder :parameters ()
:precondition (and (on-roof) (alive) (ladder-raised))
.effect (and (not (on-roof)) (on-ground)))

(:action call-for-help :parameters ()
:precondition (and (on-roof) (alive) (ladder-on-ground))
-effect (and (not (ladder-on-ground))
(ladder-raised))))

jonkv@ida

Exploding Blocks World

When putting down a block:
30% risk that it explodes
Destroys what you placed the block on

Use additional blocks as potential “sacrifices”

= (:action put-down-block-on-table
:;parameters (?b - block)
:;precondition (and (holding ?b)
(not (destroyed-table))

)
-effect (and (not (holding ?b))

(ontable ?b)

(when (not (detonated ?b))

(probabilistic .3 (and (detonated ?b)
(destroyed-table))

)

jonkv@ida

Tire World

Reward/cost-based

Tire may go flat — tow trucks are expensive — good idea to load a spare

(:action mov-car :parameters (?from - location ?to - location)
:precondition (and (vehicle-at ?from) (road ?from ?to) (not (flattire)))
:effect (and (vehicle-at ?to) (not (vehicle-at ?from))

(decrease reward 1)
(probabilistic .15 (flattire))))

(:action loadspare :parameters (?loc - location)
:;precondition (and (vehicle-at ?loc) (spare-at ?loc)
(not (vehicle-has-spare)))
:effect (and (vehicle-has-spare) (not (spare-at ?loc))
(decrease reward 1)))

(:action changetire
:precondition (and (vehicle-has-spare) (flattire))
:effect (and (decrease (reward) 1)
(not (vehicle-has-spare)) (not (flattire))))

(:action callAAA
:precondition (flattire)
:effect (and (decrease (reward) 100) (not (flattire))))

Representation Example: RDDL

Relational Dynamic Influence Diagram Language

= Based on Dynamic Bayesian Networks
= domain prop_dbn {

requirements = { reward - deterministic };
// Define the state and action variables (not parameterized here)
pvariables {
p: { state - fluent , bool, default = false };
q : { state - fluent, bool , default = false };
r : { state - fluent, bool , default = false };
a: { action - fluent, bool , default = false };
b
// Define the conditional probability function for each next
// state variable in terms of previous state and action

cpfs {

p’ =if (p * r) then Bernoulli (.9) else Bernoulli (.3);

q =if (q * r) then Bernoulli (.9)

else if (a) then Bernoulli (.3) else Bernoulli (.8);

r’ = if (~q) then KronDelta (r) else KronDelta (r <=> q);
b

// Define the reward function ; note that boolean functions are
// treated as 0/1 integers in arithmetic expressions
reward=p +q-r1;

jonkv@ida

