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2Restricted State Transition System
 Recall the restricted state transition system  

 Finite set of world states

 Finite set of actions

  ×  State transition function, where 

▪ If 

then whenever you are in state s,

you can execute action a
and you end up in state 

▪ If  ∅ (the empty set),

then a cannot be executed in s
 



 ∅
Often we also add a cost function:

c: ℝ
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3Classical Planning Problem
 Recall the classical planning problem 

 Let   be a state transition system

satisfying the assumptions to 

(called a restricted state transition system in the book)

 Let ∈ be the initial state

 Let ⊆ be the set of goal states

 Then, find a sequence of transitions
labeled with actions 

that can be applied starting at 

resulting in a sequence of states

such that ∈
start

goal

goal

goal
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4Planning with Complete Information
 This assumes we know in advance:

 The state of the world when plan execution starts

 The outcome of any action, given the state where it is executed

▪ State + action  unique resulting state

 Solution exists  Unconditional solution exists

Start

here…

Model says: we end up 

in this specific state!

Planning Execution

No new information can be relevant

(at least in theory!)

Just follow the unconditional plan…



5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Multiple Outcomes
 In reality, actions may have multiple outcomes

 Some outcomes can indicate faulty / imperfect execution

▪

Intended outcome: is true

Unintended outcome: is false

▪

Intended outcome:

Unintended outcome:

▪

Intended outcome: is true

Unintended outcome: is false

 Some outcomes are more random,

but clearly desirable / undesirable

▪ Pick a present at random – do I get the one I longed for?

▪ Toss a coin – do I win?

 Sometimes we have no clear idea what is desirable

▪ Outcome will affect how we can continue,

but in less predictable ways

To a planner,

there is generally

no difference between

these cases!
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7Nondeterministic Planning
 Nondeterministic planning:

 Finite set of world states

 Finite set of actions

 : 𝑆 × 𝐴 → 2𝑆: State transition function, where |(𝑠, 𝑎)| is finite

Start

here…

Model says: we end up

in one of these states

Planning Execution

Will we find out more

when we execute?
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8FOND Planning
 FOND: Fully Observable Non-Deterministic

 After executing an action, sensors determine exactly which state we are in

Start

here…

Model says: we end up

in one of these states

Planning Execution

Start

here…

Sensors say: we are

in this state!
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9FOND Planning: Plan Structure (1)
 Example state transition system:

 Intuitive strategy:

 while (not in s2) {

move-to(pos2);

if (fallen) stand-up;

}

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)

Multiple outcomes: May or may not fall

FOND The action to execute

should depend on the current state,

which depends on previous outcomes

There may be no upper bound on how

many actions we may have to execute!
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10FOND Planning: Plan Structure (2)
 Examples of formal plan structures:

 Conditional plans (with if/then/else statements)

 Policies 𝜋 ∶ 𝑆 → 𝐴

▪ Defining, for each state, which action to execute whenever we end up there

▪ 𝜋(𝑠0) = 

▪ 𝜋(𝑠1) = 

▪ 𝜋(𝑠2) = 

▪ 𝜋(𝑠3) = 

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)

Or at least, for every state

that is reachable from the possible initial states

(A policy can be a partial function)
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11Solution Types 1
 Assume our objective is still to reach a state in 𝑆𝑔
 And then remain there (executing "wait" actions forever)

▪ A policy never terminates… 

 A weak solution:

For some outcomes, the goal is reached in a finite number of steps

▪ 𝜋(𝑠0) = 

▪ 𝜋(𝑠1) = 

▪ 𝜋(𝑠2) = 

▪ 𝜋(𝑠3) = 

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)
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12Solution Types 2
 Assume our objective is still to reach a state in 𝑆𝑔

 A strong solution:

For every outcome, the goal is reached in a finite number of steps

▪ Not possible for this example problem

▪ Could fall every time

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)
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13Solution Types 3
 Assume our objective is still to reach a state in 𝑆𝑔

 A strong cyclic solution will reach a goal state in a finite number of steps

given a fairness assumption:

Informally, ”if we can exit a loop, we eventually will”

▪ 𝜋(𝑠0) = 

▪ 𝜋(𝑠1) = 

▪ 𝜋(𝑠2) = 

▪ 𝜋(𝑠3) = 

Initial state s0:

at pos1, standing
s1: at pos1, fallen

Goal state s2:

at pos2, standing
s3: at pos2, fallen

wait

wait

wait

wait

stand-up

stand-up

move-to(pos2)
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14Solutions and Costs
 The cost of a FOND policy is undefined

 We don't know in advance which actions we must execute

 And we have no estimate of how likely different outcomes are
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15NOND Planning
 NOND: Non-Observable Non-Deterministic

 Also called conformant non-deterministic

 Only predictions can guide us – no sensors to use during execution

 May still give sufficient information for solving a problem

Start

here…

Model says: we end up

in one of these states

Planning Execution

Start

here…

We still only know that

we're in one of these states
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16POND Planning
 POND: Partially Observable Non-Deterministic

Start

here…

Model says: we end up

in one of these states

Planning Execution

Start

here…

We know we ended up

in one of these states
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17Overview
Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information 

gained after action

Deterministic:

Exact outcome

known in 

advance

Classical planning (possibly with extensions)

Information dimension is meaningless!

Non-

deterministic:

Multiple

outcomes, no 

probabilities

NOND:

Conformant Planning

FOND:

Conditional 

(Contingent) Planning

POND:

Partially Observable,

Non-Deterministic

We will not discuss non-deterministic planning algorithms!
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19Stochastic Systems
 Probabilistic planning uses a stochastic system 

 Finite set of world states

 Finite set of actions

 Given that we are in s and execute a,

the probability of ending up in s’

 For every state 𝑠 and action 𝑎, we have 𝑠′  𝑆 𝑃(𝑠, 𝑎, 𝑠’) = 1:

The world gives us 100% probability of ending up in some state

Start

here… 0.1
0.2

.07

0.1

.03

Model says: we end up 

in one of these states

Planning

…with this probability

Replaces 



20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Stochastic Systems (2)

At location 5

At location 6

Intermediate 

location

Action: drive-uphill

Model says: 2% risk

of slipping, ending up

somewhere else

Arc indicates 

outcomes of a 

single action

Example with "desirable outcome"
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21Stochastic Systems (3)
 May have very unlikely outcomes…

At location 5

At location 6

Intermediate

location

Broken

Very unlikely, but may

still be important to 

consider, if it has great

impact on goal

achievement!

Probability sum = 
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22Stochastic Systems (4)
 And very many outcomes…

At location 5
Fuel level 

At location 6
Fuel level 

Intermediate

location

Broken

At location 6
Fuel level 

Uncertain how much

fuel will be consumed

As always, one state

for every combination

of properties
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23Stochastic Systems (5)
 Like before, often many executable actions in every state

Probability sum = 1

(certain outcome)

Probability sum = 1

(three possible

outcomes of A2)

Probability sum = 1

(three possible

outcomes of A3)

We choose

the action…

Nature chooses

the outcome, so we

must be prepared for 

all of them!

Searching

the state space

yields

an AND/OR tree

3 possible actions

(red, blue, green)

Arcs connect

edges

belonging to 

the same 

action
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24Stochastic System Example
 Example: A single robot

 Moving between locations

 For simplicity,

states correspond

directly to

locations

▪

▪

▪

▪

▪

 Some transitions are deterministic, some are stochastic

▪ Trying to move from to : You may end up at instead ( % risk)

▪ Trying to move from to : You may stay where you are instead ( % risk)

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait
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25Overview
Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information 

gained after action

Deterministic:

Exact outcome

known in advance

Classical planning (possibly with extensions)

Information dimension is meaningless!

Non-deterministic:

Multiple outcomes, 

no probabilities

NOND:

Conformant Planning

FOND:

Conditional 

(Contingent) Planning

POND:

Partially Observable,

Non-Deterministic

Probabilistic:

Multiple outcomes

with probabilities

Probabilistic

Conformant Planning

(Non-observable MDPs: 

Special case of POMDPs)

Probabilistic

Conditional Planning

Stochastic Shortest Path 

Problems

Markov Decision 

Processes (MDPs)

Partially Observable MDPs 

(POMDPs)

To be discussed now!



Important concepts,

before we define the planning problem itself!
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27Policy Example 1
 Example 



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Reaches or , waits there infinitely many times
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28Policy Example 2
 Example 



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Always reaches state , waits there infinitely many times
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29Policy Example 3
 Example 



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Reaches state with % probability ”in the limit”

(it could happen that you never reach s4, but the probability is 0)
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30Policies and Histories
 The outcome of sequentially executing a policy:
 A state sequence, called a history

 Infinite, since policies do not terminate

  

 For classical planning:
 A plan yields a single history (last state repeated infinitely), known in advance

 For probabilistic planning:
 We may not know the initial state with certainty

▪ For every state s, there will be a probability 𝑃(𝑠) that we begin in the state s

 Actions can have multiple outcomes

 A policy can yield many different histories

▪ Which one? Gradually discovered at execution time!

(index zero): Variable used in histories, etc

: concrete state name used in diagrams

We may have = 
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31History Example 1
 Example 1



 Even if we only consider starting in : Two possible histories

   – Reached , waits indefinitely

  – Reached , waits indefinitely

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

How probable are these histories?



32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Probabilities: Initial States, Transitions
 Each policy has a probability distribution over histories/outcomes

 With unknown initial state:

▪ 𝑷(〈𝒔𝟎, 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, …  | 𝝅) =

𝑷 𝒔𝟎 ⋅ෑ

𝒊≥𝟎

𝑷(𝒔𝒊, 𝝅 𝒔𝒊 , 𝒔𝒊+𝟏)

 The book:

▪ Assumes you start
in a known state 

▪ So all histories start
with the same state

▪    𝑠0
  𝑠0

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)

m
ove(l2,l1)m

ov
e(

l1,
l2

)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait

Probability

of starting in

this specific 𝑠0

Probabilities

for each

required

state transition
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33History Example 1
 Example 



 Two possible histories, if 𝑃 𝑠1 = 1:
      

     



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait
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34History Example 2
 Example 



      

     



Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait
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35History Example 3
 Example 



       

      

      

  ∞     

Start

wait

wait

wait

wait

s2 s3

s4s1

s5

move(l2,l3)

move(l3,l2)

move(l4,l1)

move(l1,l4)
m

ove(l2,l1)m
ov

e(
l1,

l2
)

m
ov

e(
l4

,l3
) m

ove(l3,l4)

m
ove(l5,l4)

wait
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37Cost of an Action
 Part of the specification:  A cost function c 𝑠, 𝑎
 Representing the known cost of executing 𝑎 in state 𝑠

 𝑐(𝑠, 𝑎) = 1

 𝑐(𝑠, 𝑎) = 100

 𝑐(𝑠, 𝑤𝑎𝑖𝑡) = 1

c=1

c=1

c=1

c=1

s2 s3

s4s1

s5
c=1

c=1

c=1

c=1

c=100c=
10

0

c=
10

0 c=100

c=100
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38Cost of a History
 Assume as given:

 A policy 𝜋

 An outcome, an infinite history ℎ = s0, s1, …  resulting from executing 𝜋

 We can then calculate the cost of execution

for the given history / outcome:

C ℎ 𝜋 =෍

𝑖≥0

𝑐 𝑠𝑖 , 𝜋 𝑠𝑖

Given what happened,

this is how much it cost us!

”Cost of history given policy”:

Using the same actions in different states  different cost!

Using other actions to reach the same states different cost!
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39Expected Cost of a Policy
 We want to choose a good = ”cheap” policy

 Actual cost depends on outcome, which we can’t choose

 For each possible history (outcome), we can calculate:

▪ The probability that the history will occur

▪ The resulting cost

 So: calculate the statistically expected cost (∼"average" cost)

for the entire policy:

𝐸𝐶 𝜋 = ෍

ℎ∈{all possible histories for 𝜋}

𝑃 ℎ 𝜋 𝐶(ℎ|𝜋)

 Later, we will calculate costs

without the need to explicitly find all histories – examples then!
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41Stochastic Shortest Path Problem
 Closest to classical planning: Stochastic Shortest Path Problem
 Let  = (𝑆, 𝐴, 𝑃) be a stochastic system

 Let 𝑐: 𝑆, 𝐴 → 𝑅 be a cost function

 Let 𝑠0 ∈ 𝑆 be an initial state

 Let 𝑆𝑔 ⊆ 𝑆 be a set of goal states

 Then, find a policy of minimal expected cost
that can be applied starting at 
and that reaches a state in with probability 1

Stochastic outcomes 

only expected costs can be calculated

Probability 𝟏: "Infinitely unlikely"

that we don't reach a goal state
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42SSPP: Termination?
 But policies never terminate!

 Even in a goal state, 𝜋(𝑠) specifies an action to execute

 Histories are infinitely long

  Cost calculations include infinitely many actions!

 Why define policies this way, when we do want to stop at the goal?

 We are using more general "machinery"

that is also used for non-terminating execution!
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43SSPP: Absorbing Goal State
 How to solve the problem?

 Make every goal state 𝑔 absorbing – state s4 below

▪ For every action 𝑎,

𝑃(𝑔, 𝑎, 𝑔) = 1 returns to the same goal state (we'll stop anyway)

𝑐(𝑔, 𝑎) = 0  no more cost accumulates

 Solve the problem using general methods,

generate a policy

 How to execute?

 Follow the policy

 When you reach a

goal state, stop!

c=1

c=1

c=1

c=0

s2 s3

s4s1

s5

c=1

c=1

c=1

c=100c=
10

0 c=100

c=100
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44Utility Functions and SSPP
 The SSPP:

 Strictly positive action cost (>0) except in goal states (=0)

 If infinite history h visits a goal state, it consists of:

▪ Finitely many actions of finite positive cost

▪ Followed by infinitely many actions of cost 0

▪  Finite total cost

 If infinite history h does not visit a goal state:

▪ Infinitely many actions of strictly positive cost

▪  Infinite total cost

 If any history that does not visit a goal state has non-zero probability:

𝐸𝐶 𝜋 = ෍

ℎ∈{all possible histories for 𝜋}

𝑃 ℎ 𝜋 𝐶(ℎ|𝜋) = ∞

Policy 𝜋
has finite expected cost



𝜋 visits a goal state

with probability 1


𝜋 solves the SSPP
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46Generalizating from the SSPP
 We have defined the Stochastic Shortest Path Problem

 Similar to the classical planning problem,

but adapted to probabilistic outcomes

 But policies allow indefinite execution

 No predetermined termination criterion – go on "forever"

 Can we exploit this fact to generalize from SSPPs?

Yes – remove the goal states, assume no termination 

But without goal states, what is the objective?



47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Goals Rewards
 How to determine what's a good policy?

 Introduce rewards that can be accumulated during execution!

 Reward function 𝑅 𝑠, 𝑎, 𝑠′

▪ Reward gained for being in 𝑠, executing action 𝑎 and ending up in 𝑠′

▪ Can be negative!
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48Rewards: Robot Navigation
 Example:

 The robot does not "want to reach s4"

 It wants to execute actions to gain rewards

 Every time step it is in s5:

▪ Negative reward – maybe the robot is in our way 

 Every time step it is in s4:

▪ Positive reward –

maybe it helps us

and "gets a salary" c=1

c=1

c=0

c=0

s2 s3

s4s1

s5

c=1

c=1

c=1

c=1

c=100c=
10

0

c=
10

0

c=100

c=100

r=0

r=0

r=0

r= –100

r=+100
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49Rewards: Grid World
 Example: Grid World

 Actions: North, South, West, East, NorthWest, …

▪ Associated with a cost

▪ 90% probability of doing what you want

▪ 10% probability of moving to another cell

 Rewards in some cells

▪ 𝑅 𝑠, 𝑎, 𝑠′ = +100
for transitions where you

end up in the top right cell

 Danger in some cells

▪ 𝑅 𝑠, 𝑎, 𝑠′ = −200
for transitions where you

end up in the neighbor cell

 The same action may give +100,

may give −200!

-100 -200 +100

-80

+50
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50States, not Locations
 Important:  States != locations

Reward given:

A person who wants to move

is allowed to board

Can't stay in the same state

and "accumulate rewards":

Must execute an action,

which always leads to a new state

Can't "cycle" to receive

the same award again:

No path leads back to this

state
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51Simplification
 To simplify formulas, include the cost in the reward!

 Decrease each 𝑅(𝑠𝑖, 𝜋(𝑠𝑖), 𝑠𝑖+1) by 𝐶(𝑠𝑖, 𝜋(𝑠𝑖))

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1
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53Utility Functions
 Costreward, cost function  utility function

 Suppose a policy has one particular outcome

 results in one particular history (state sequence)

 How ”useful / valuable" is this outcome to us?  What is our reward?

 First:  Un-discounted utility

 h = s0, s1, …  𝑉 ℎ 𝜋 = σ𝑖≥0𝑅(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

The reward

for step 𝑖

Un-discounted utility

of history h

given policy π
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54Utility in a Context

Considers all possible infinite histories

(as defined earlier)

Policy = solution for infinite horizon

Execute until we achieve a goal state

Solution guarantees:

History has finitely many actions of cost>0

"Goal-based" execution (SSPP)

No predefined stop criterion

We will stop at some point

(the universe will end),

but we can't predict when

A history can have infinitely many actions

of reward > 0,

and there is no clear cut-off point!

Now: Indefinite execution

Never ends – unrealistic;

we don't have to care about this!

(Infinite execution)
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55Infinite Undiscounted Utility
 Leads to problems:

 𝜋1 could result in  

 Using undiscounted utility:

 Stays at forever, executing “wait”

 infinite amount of rewards!

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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56Infinite Undiscounted Utility (2)
 What’s the problem, given that we "like" being in state ?

 We can’t distinguish between different ways of getting there!

▪     

▪       

▪ Both appear equally good…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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57Discounted Utility
 Solution: Use a discount factor, , with 0 ≤  ≤ 1
 To avoid infinite utilities 𝑉(… )

 To model "impatience":

rewards and costs far in the future are less important to us

 Discounted utility of a history:

 𝑉 ℎ 𝜋 = σ𝑖≥0 𝛾
𝑖 𝑅(𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1)

 Distant rewards/costs

have less influence

 Convergence (finite results)
is guaranteed if 0 ≤ 𝛾 < 1

Examples will use 𝛾 = 0.9

Only to simplify formulas!

Should choose carefully…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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58Example



 

 

Given that we start in s1,
can lead to only two histories:

80% chance of history h1,

20% chance of history h2

We expect a reward of 256.3 on average

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100

r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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59Example



 

 

Given that we start in s1,

also two different histories…

80% chance of history h1,

20% chance of history h2

Expected reward 531,7 (π1 gave 256.3)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= 99

r= -100

r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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61Overview
 Markov Decision Processes

 Underlying world model: Stochastic system

 Plan representation: Policy – which action to perform in any state

 Goal representation: Utility function defining “solution quality”

 Planning problem: Optimization: Maximize expected utility

Why "Markov"?
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62

Nothing else matters!

Markov Property (1)
 If a stochastic process has the Markov Property:

 It is memoryless

 The future of the process

can be predicted equally well

if we use only its current state

or if we use its entire history

 This is part of the definition!

 𝑃(𝑠, 𝑎, 𝑠′) is the probability

of ending up in s’

when we are in s and execute a
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a

Markov Property (2)

At location 5

At location 6

Intermediate 

location

Broken

At location 3

At location 4

…

…

Only the 

current state

We don’t need to

know the states we

visited before…

…To find out where

we may end up, with

which prob.

and the 

action…
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64Remembering the Past
 Essential distinction:

 Example:

 If you have visited the lectures, you are more likely to pass the exam

▪ Add a visitedLectures predicate / variable,

representing in this state what you did in the past

 This information is encoded and stored in the current state

▪ State space doubles in size

(and here we often treat every state separately!)

▪ We only have a finite number of states

 can't encode an unbounded history

Cannot affect the transition function

Previous states in the history sequence:

Can partly be encoded into the current state

Can affect the transition function

What happened at earlier timepoints:
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66Expected Utility
 Expected utility – similar to expected cost:

 We know the utility of each history, of each outcome

▪ But we can only decide a policy

 Each outcome has a probability

▪ So we can calculate an expected ("average") utility for the policy: 𝐸(𝜋)
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67Expected Utility 2
 A policy selects actions; the world chooses the outcome

Action blue



world

selects

outcome

If the policy chooses

the green action,

the world selects one

of these outcomes

Action red 



one

possible

outcome
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68Expected Utility 3
 We must consider all possible outcomes / histories

but not all possible choices

Suppose the policy 

chooses green action

Irrelevant to us
These outcomes

must be handled!
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69Expected Utility 4
 In the next step the policy again makes a choice

 Use 𝜋(𝑠21), 𝜋 𝑠22 or 𝜋(𝑠23) depending on where you are

s1

s2
3

s2
2

s2
1
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70Expected Utility 4
 Calculating expected utility 𝐸(𝜋), method 1: "History-based"

 Find all possible infinite histories

 Calculate probabilities, rewards

over each entire history

 Multiply and sum

A

D

C

B

KJIGFE

H

E(π) = h P(h | π) V(h | π)

where V(h | π) = i ≥ 0 
i R(si, π(si), si+1)

<A,B,E,…>

<A,B,F,…>

<A,B,G,…>

<A,C,H,…>

…

Simple conceptually

Less useful for calculations
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71Expected Utility 5
 Calculating expected rewards, method 2: Recursive

 What's the probability

of the outcomes B, C, or D?

 What's the reward for

each transition?

 What's the reward of

continuing from

there?

A

D

C

B

KJIGFE

H

E(π) = E(π,s0)

E(π,s) = s’ S P(s, π(s), s') *

(R(s, π(s), s') +  E(π,s'))

E(π) = expected reward "from the start"

E(π,s) = "continuing after having reached s"
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72Expected Utility 6: "Step-Based"
 If π is a policy, then

 E(π,s) =  s’ S P(s, π(s), s') * (R(s, π(s), s') +  E(π,s'))

 The expected utility of continuing to execute π after having reached s

 Is the sum, for all possible states 𝑠’ ∈ 𝑆 that you might end up in,

▪

of the probability 𝑃(𝑠, 𝜋(𝑠), 𝑠′) of actually ending up in that state

given the action 𝜋(𝑠) chosen by the policy, times

▪ the reward you get for this transition

▪ plus the discount factor

times the expected utility 𝐸(𝜋, 𝑠′) of continuing π from the new state s’
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73Example 1
 𝐸(𝜋2, 𝑠1) = The expected reward of executing starting in :

 Ending up in s2: 100% probability times

▪ Reward −100

▪ Discount factor  times 𝐸(𝜋2, 𝑠2)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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74Example 2
 = the expected utility of executing starting in :

 Ending up in 𝑠3: 80% probability times

▪ Reward −1

▪ Discount factor  times 𝐸(𝜋2, 𝑠3)

 Ending up in 𝑠5: 20% probability times

▪ Reward −1

▪ Discount factor  times 𝐸(𝜋2, 𝑠5)

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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75Recursive?
 Seems like we could easily calculate this recursively!



▪ defined in terms of ) 

▪ defined in terms of ) and ) 

 …

 Just continue until you reach the end!

 Why doesn't this work?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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76Not Recursive!
 There isn’t always an ”end”!

 Modified example below is a valid policy π (different action in s5)

▪ defined in terms of ) 

▪ ) defined in terms of ) and ) 

▪ ) defined in terms of )

▪ ) defined in terms of )…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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77Equation System
 If π is a policy, then

 E(π,s) =  s’ S P(s, π(s), s') * (R(s, π(s), s') +  E(π,s'))

 The expected utility of continuing to execute π after having reached s

 Is the sum, for all possible states s’  S that you might end up in,

▪

of the probability P(s, π(s), s') of actually ending up in that state

given the action π(s) chosen by the policy, times

▪ the reward you get for this transition

▪ plus the discount factor

times the expected utility E(π,s') of continuing π from the new state s’

This is an equation system: |S| equations, |S| variables!

Requires different solution methods…
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80Repetition: Utility
 Let us first revisit the definition of utility

 We can define the actual utility given an outcome, a history

▪ Given any history 𝑠0, 𝑠1, … :

𝑉 𝑠0, 𝑠1, … 𝜋 = ෍

𝑖≥0

𝛾𝑖 𝑅 𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1

 We can define the expected utility using the given probability distribution:

▪ Given that we start in state s:

𝐸(𝜋, 𝑠) = ෍

𝑠0,𝑠1,…

𝑃 𝑠0, 𝑠1, … 𝑠0 = 𝑠)෍

𝑖≥0

𝛾𝑖 𝑅 𝑠𝑖 , 𝜋 𝑠𝑖 , 𝑠𝑖+1

▪ As we saw, we can also rewrite this recursively!

Given that we start in state s:

𝐸 𝜋, 𝑠 = ෍

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝐸 𝜋, 𝑠′

P(that entire history, 

when starting in s)

Discounted reward

for that entire history

Value of a history Discounted rewards claimed

All possible histories

All possible next states 𝑠′
P(first step 

leads to 𝑠′)
Immediate reward + discounted

reward of continuing from 𝑠′
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81Maximizing Expected Utility
 Suppose that:

 We know the initial state 𝑠0
 We want a policy 𝜋∗ that maximizes expected utility:  𝐸(𝜋∗, 𝑠0)

 How do we find one?

 Bellman’s Principle of Optimality:

 An optimal policy has the property that

whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision!

 Richard Ernest Bellman, 1920-1984
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82Principle of Optimality: Example
 Suppose we start in 𝑠1

 Suppose 𝜋∗ is optimal starting in 𝒔𝟏

▪ It maximizes 𝐸 𝜋∗, 𝑠1 :  Expected utility starting in 𝑠1

 Suppose that 𝜋∗ 𝑠1 = , so that the next state must be 𝑠2

 Then 𝜋∗ must also be optimal starting in 𝒔𝟐!

▪ Must maximize 𝐸 𝜋∗, 𝑠2 :  Expected utility starting in 𝑠2

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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83Principle of Optimality (2)
 Sounds obvious? Depends on the Markov Property!

 Suppose rewards depended on which states you had visited before

 To go  

▪ Use and 

▪ Reward –200 + –400 = –600

 To go  without having visited 

▪ Use 

▪ Reward for this step: 99, not –400

  Optimal action would

have to take history

into account

 This can’t happen

in an MDP:  Markovian!

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r=99 usually
r= - 400  if we visited s5

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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84Consequences (1)
 To find an optimal policy 𝜋∗:
 No need to know the initial state 𝑠0 in advance:

We can find a policy that is optimal for all initial states

 Definition:

An optimal policy 𝜋∗ maximizes expected utility for all states:

For all states s and alternative policies 𝜋,

𝐸 𝜋∗, 𝑠 ≥ 𝐸(𝜋, 𝑠)

 Definition:

A solution to an MDP is an optimal policy!
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85Consequences (2)
 Suppose I have a non-optimal policy 𝜋
 I select an arbitrary state s

 I make a local improvement:

Change 𝜋 𝑠 , selecting another action that [increases, decreases] E 𝜋, 𝑠

 This cannot make anything worse:

Cannot [decrease, increase] E 𝜋, 𝑠′ for any 𝑠′!

 Also:

 Every global improvement can be reached through such local improvements

(no need to first make the policy worse, then better)

 We can find optimal solutions through local improvements

 No need to “think globally”
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87Simplification
 We defined the expected utility given that we start in state 𝑠:

𝐸 𝜋, 𝑠 = ෍

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝐸 𝜋, 𝑠′

 In our current example, 

rewards do not depend on the outcome s' !

𝐸 𝜋, 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + ෍

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′
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88Policy Iteration
 First algorithm: Policy iteration

 General idea:

▪ Start out with an initial policy, maybe randomly chosen

▪ Calculate the expected utility of executing that policy

from each state

▪ Update the policy by making a local decision for each state :

”Which action should my improved policy choose in this state,

given the expected utility of the current policy?”

▪ Iterate until convergence (until the policy no longer changes)
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89Preliminaries 1: Single-step policy changes
 Preliminaries:

 Suppose I have a policy 𝜋, with an expected utility:

𝐸 𝜋, 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + ෍

𝑠′∈𝑆

𝑃 𝑠, 𝜋 𝑠 , 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

 Suppose I change the decision in the first step,

and keep the policy for everything else!

 New expected utility:

𝑄 𝜋, 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ ⋅ 𝛾𝐸 𝜋, 𝑠′

▪ 𝑄(𝜋, 𝑠, 𝑎) is the expected utility of 𝜋 in a state s

if we start by executing the given action 𝑎,

but we use the policy 𝜋 from then onward

Why?

This tells us if we have a 

potential improvement,

without solving a full equation

system!
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90Preliminaries 2: Example
 Example: 𝐸(𝜋, 𝑠1)

▪ The expected utility of following the current policy

▪ Starting in , beginning with 

 𝑄(𝜋, 𝑠1,move(𝑙1, 𝑙4))

▪ The expected utility of first trying to move from to ,

then following the current policy

 Does not correspond to

any possible policy!

▪ If returns

you to state , then the

next action is 
!

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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91Preliminaries 3
 Suppose you have an optimal policy π*

 Then, because of the principle of optimality:

▪ In every state, the local choice made by the policy is locally optimal

▪ For all states s,

𝐸(𝜋∗, 𝑠) = max
𝑎∈𝐴

𝑄(𝜋∗, 𝑠, 𝑎)

 This yields the modification step of policy iteration!

 We have a possibly non-optimal policy 𝜋,

want to create an improved policy 𝜋’

 For every state s, set

𝜋’(𝑠) = arg max
𝑎∈𝐴

𝑄(𝜋, 𝑠, 𝑎)

But what if there was an even better choice,

which we don’t see now because of our single step lookahead (Q)?

That’s OK:  We still have an improvement,

which cannot prevent future improvements
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92Preliminaries 4
 Example: 𝐸(𝜋, 𝑠1)

▪ The expected utility of following the current policy

▪ Starting in , beginning with )

 𝑄(𝜋, 𝑠1,𝑚𝑜𝑣𝑒(𝑙1, 𝑙4))

▪ The expected utility of first trying to move from to ,

then following the current policy

If doing ) first

has a greater expected utility,

we should modify

the current policy:

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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94Policy Iteration 1: Initial Policy 𝜋1
 Policy iteration requires an initial policy

 Let’s start by choosing “wait” in every state

 Let’s set a discount factor: 𝛾 = 0.9

▪ Easy to use in calculations on these slides,

but in reality we might use a larger factor

(we’re not that short-sighted!)

 Need to know expected utilities!

▪ Because we will make changes

according to 𝑄(𝜋1, 𝑠, 𝑎),
which depends on

s' S P(s, a, s’) E(π1,s')

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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95Policy Iteration 2: Expected Utility for 𝜋1
 Calculate expected utilities for the current policy 𝜋1
 Simple: Chosen transitions are deterministic and return to the same state!

▪ π,    π,

▪ 

▪ 

▪ 

▪ 

▪ 

 Simple equations to solve:

▪ 

▪ 

▪ 

▪ 

▪ 

Given this policy π1:

High rewards if we start in s4, 

high costs if we start in s5
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96

Best improvement

Policy Iteration 3: Update 1a

 For every state s:

 Let 

 That is, find the action a that maximizes   

▪

 These are not the true expected utilities for starting in state 𝑠1!

▪ They are only correct if we locally change the first action to execute

and then go on to use the previous policy (in this case, always waiting)!

▪ But they can be proven to yield good guidance,

as long as you apply the improvements repeatedly (as policy iteration does)

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

What is the best

local modification

according to the

expected utilities

of the current policy?

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1
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97Policy Iteration 4: Update 1b

 For every state s:

 Let 

 That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π1,s')

▪ – – –

– – –

– – – –

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1
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98Policy Iteration 5: Update 1c

 For every state s:

 Let 

 That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π1,s')

▪ – – –

– – –

–

▪

–

▪ – – –

– – –

–

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π1, s1) = 10
E(π1, s2) = 10
E(π1, s3) = 10
E(π1, s4) = +1000
E(π1, s5) = 1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5

r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1
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100Policy Iteration 6: Second Policy
 This results in a new policy

Now we have made use of

earlier indications that

s4 seems to be a good state

Try to go there

from s1 / s3 / s5!

No change in s2 yet…

>= +444,5
>= –10
>= +800
>= +1000
>= +700

E(π1,s1) =–10
E(π1,s2) = –10
E(π1,s3) = –10
E(π1,s4) =+1000
E(π1,s5) = –1000

Utilities based

on one modified

action, then
following

(can’t decrease!)

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r=
–200

r= –1
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101Policy Iteration 7: Expected Utilities for 𝜋2
 Calculate true expected utilities for the new policy π2

▪  –

▪  –

▪  –

▪ 

▪  –

 Equations to solve:

▪ –  –

▪ 

▪ – – 

▪ – – 

▪ –  

– 

– 


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102Policy Iteration 8: Second Policy
 Now we have the true expected utilities of the second policy…

E(π2,s1) = +816,36
E(π2,s2) = – 10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

S5 wasn’t so bad after all,

since you can reach s4

in a single step!

S1 / s3 are even better.

S2 seems much worse

in comparison,

since the benefits of s4

haven’t ”propagated” that far.

>= +444,5
>= –10
>= +800
>= +1000
>= +700

E(π1,s1) =–10
E(π1,s2) = –10
E(π1,s3) = –10
E(π1,s4) =+1000
E(π1,s5) = –1000

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r=
–200

r= –1
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103

Seems best – chosen!

Policy Iteration 9: Update 2a

 For every state s:

 Let 

 That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π ,s')

▪ –

– – –

–

▪ – – –

–

–

E(π2,s1) = +816,36
E(π2,s2) = –10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

What is the best

local modification

according to the

expected utilities

of the current policy?

Now we will change the action taken at s2,

since we have the expected utilities for reachable states s1, s3, s5… have increased

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1
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104Policy Iteration 10: Update 2b

 For every state s:

 Let 

 That is, find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π ,s')

▪ –

– – –

–

▪

▪ –

– – –

– –1

What is the best

local modification

according to the

expected utilities

of the current policy?

E(π2,s1) = +816,36
E(π2,s2) = –10
E(π2,s3) = +800
E(π2,s4) = +1000
E(π2,s5) = +700

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1
r= –100r=

 –
10

0

c=
0

r=
–100

r=
–200

r= –1
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105Policy Iteration 11: Third Policy
 This results in a new policy π3

 True expected utilities are updated

by solving an equation system

 The algorithm will iterate once more

 No changes will be made to the policy

 Termination with optimal policy!

r= –1

r= –1

r= –100

r=100

s2 s3

s4s1

s5
r= –1

r= –1

r=99

r= –1

r= –100r=
 –

10
0

c=
0

r=
–100

r=
–200

r= –1
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107Policy Iteration 12: Algorithm
 Policy iteration is a way to find an optimal policy π*

 Start with an arbitrary initial policy π1. Then, for i = 1, 2, …

▪ Compute expected utilities E(πi ,s) for every s by solving a system of equations

▪ System: For all s,   

▪ Result: The expected utilities of the “current” policy in every state s

▪ Not a simple recursive calculation – the state graph is generally cyclic!

▪ Compute an improved policy πi+1 “locally” for every s

▪    

▪ Best action in any given state s given expected utilities of old policy 

▪ If then exit

▪ No local improvement possible,

so the solution is optimal

▪ Otherwise

▪ This is a new policy – with new expected utilities!

▪ Iterate, calculate those utilities, …

Find utilities

according to 

current policy

Find best 

local

improvements
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108Convergence
 Converges in a finite number of iterations!

 We change which action to execute

if this improves expected (pseudo-)utility for this state

▪ This can sometimes increase,

and never decrease, the utility of the policy in other states!

▪ So utilities are monotonically improving

and we only have to consider a finite number of policies

 In general:

 May take many iterations

 Each iteration involved can be slow

 Mainly because of the need to solve a large equation system!
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110Avoiding Equation Systems
 Plain policy iteration:

 In every iteration 𝑖 we have a policy 𝜋𝑖 , want its expected utilities 𝐸(𝜋𝑖 , 𝑠)

 Can use an equation system or iterate until convergence:

▪ 𝐸𝑖, 0 𝜋𝑖 , 𝑠 = 0 for all s

▪ Then iterate for 𝑗=0, 1, 2, … and for all states s:

𝐸𝑖, 𝑗+1 𝜋𝑖 , 𝑠 = 𝑅 𝑠, 𝜋𝑖 𝑠 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝜋𝑖 𝑠 , 𝑠′ 𝐸𝑖,𝑗 𝜋𝑖 , 𝑠
′

 Will converge in the limit (𝑗 → ∞)

▪ 𝛾 < 1 steps sufficiently far into the future are almost irrelevant

▪ Stop when 𝐸𝑖,𝑗+1 is very close to 𝐸𝑖,𝑗 – then we’re close to 𝐸(𝜋𝑖 , 𝑠)

Finite horizon:

Exact expected utility for 0 steps

Exact exp. utility

for 1 step,

2 steps,

3 steps, … 
Reward from 

prev. iteration

Prob. of

outcome

Definite

reward



111

jo
nk

v@
id

a
jo

nk
v@

id
a

111Avoiding Equation Systems (2)
 Finally, the approximated utility function 𝐸𝑖,𝑛

determines the best actions to use

 Previously:

𝜋𝑖+1 𝑠 = argmax
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝐸(𝜋𝑖 , 𝑠)

 Approximated:

𝜋𝑖+1 𝑠 = argmax
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝐸𝑖,𝑛(𝜋𝑖 , 𝑠)

True expected cost

Approximate

expected cost
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113Value Iteration (1)
 Another algorithm: Value iteration – no policy used!

 What's the max expected utility of executing 0 steps starting in any state?

▪ No rewards, no costs

▪ For all states 𝑠 ∈ 𝑆, set 𝑉0(𝑠) = 0

 What's the max expected utility of executing 1 step starting in any state?

▪ Choose one action; max utility of executing 0 actions in resulting state is known

𝑉1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉0 𝑠

 What's the max expected utility of executing 𝒋 + 𝟏 steps?

▪ Choose one action; max utility of executing 𝑗 actions in resulting state is known

𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑗 𝑠

Maximizes finite-horizon utility
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114Value Iteration (2)
 Notice:  In essence, we find actions in inverse order

 Best utility in zero steps?

 One step?

 Two steps?

𝑉0 = 0

𝑉0 = 0𝑉1

𝑉0 = 0𝑉1𝑉2

Maximize 𝑉1: Choose an action

based on the next utility being 𝑉0
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115Value Iteration (3)
 Notice:  𝑉𝑗(𝑠) is not the expected value of a policy

 For a given state 𝑠, a policy 𝜋 always uses the same action 𝜋(𝑠)

 Value iteration chooses an action separately for every step

▪ Based on different information each time:

𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑗 𝑠

 Iterations 𝑗 and 𝑘 could use different actions for state 𝑠

 Is this a problem?
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116Value Iteration (4)
 Finite-horizon utility:

 𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑗 𝑠

 Will eventually converge towards an optimal value function

▪ Will converge faster if is close to the true value function

▪ Will actually converge regardless of the initial value of ,

despite not corresponding to a policy

 Intuition: As 𝑗 → ∞, the discount factor ensures…

▪ Unconsidered actions in the distant future become irrelevant

▪ As the value function converges, the implicit action choices will converge

 Call the final approximation 𝑉𝑚𝑎𝑥, then:

𝜋 𝑠 = arg max
𝑎∈𝐴

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠, 𝑎, 𝑠′ 𝑉𝑚𝑎𝑥 𝑠
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117Value Iteration (5)
 Main difference:

 With policy iteration

▪ Find a policy

▪ Find exact expected utilities for infinite steps using this policy 

(expensive, but gives the best possible basis for improvement)

▪ Use these to generate a new policy

▪ Throw away the old utilities,

find exact expected utilities for infinite steps using the new policy

▪ Use these to generate a new policy

▪ …

 With value iteration

▪ Find best utilities considering 0 steps; implicitly defines a policy

▪ Find best utilities considering 1 step; implicitly defines a policy

▪ Find best utilities considering 2 steps; implicitly defines a policy

▪ …
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119VI Example 1: Initial Guess V0

 Value iteration requires an initial approximation

 Let’s start with V for each s

 Does not correspond to any actual policy,

but to the expected utility of executing zero steps…

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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120VI Example 2: Update 1a

 For every state s:

 PI: find the action a that maximizes R(s, a) +  s' S P(s, a, s’)  E(π1,s')

 VI: find the action a that maximizes R(s, a) +  s'  S P(s, a, s’) V0(s') 

▪

▪

What is the best

local modification

according to the

current 

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1
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121VI Example 3: Update 1b

 For every state s:

 VI: find the action a that maximizes R(s, a) +  s'  S P(s, a, s’) V0(s')

▪

▪

▪

What is the best

local modification

according to the

current 

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1
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122VI Example 4: 𝑽𝟏
 This results in a new approximation of the greatest expected utility

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

V1(s1) =– 1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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123VI Example 5: Policy
 If we stopped value iteration here, we would get policy 𝜋1

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

𝑉1 corresponds to one step of

many polices, including 𝜋1

We don’t actually calculate 𝜋1:

It is implicit in

𝑉𝑗+1 𝑠 = max
𝑎∈𝐴

ቀ𝑅 𝑠, 𝑎 +

V1(s1) =– 1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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124VI Example 6: Update 2a

 For every state s:

 PI: find the action a that maximizes   

 VI: find the action a that maximizes   

▪ – – –

– – –

– –

▪ – – –

– – –

– – – –

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

What is the best

local modification

according to the

current 

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1
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125VI Example 7: Update 2b

 For every state s:

 VI: find the action a that maximizes R(s, a) +  s'  S P(s, a, s’) Vk–1(s')

▪ – – –

– – –

– –

▪

–

▪ – – –

– – –

– –

What is the best

local modification

according to the

current 

approximation?

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5
r= -1

r= -1

r= 99

r= -1
r= -100r=

 -1
00

r=
 0

r= -100

r= -200

r= -1

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100
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126VI Example 8: 𝑽𝟐
 This results in another new approximation

V2(s1) = +43.55
V2(s2) = –1.9
V2(s3) = –1.9
V2(s4) = +190
V2(s5) = –100.9

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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127VI Example 9: Policy
 Now we have two implicit policies

Again, 𝑉2 doesn’t represent the 
true expected utility of

Nor is it the true exp. utility of
executing two steps of

It is the true expected utility of
one step of , then one of

(But it will converge towards

true utility…)

V2(s1) = +43.55
V2(s2) = –1.9
V2(s3) = –1.9
V2(s4) = +190
V2(s5) = –100.9

V0(s1) = 0
V0(s2) = 0
V0(s3) = 0
V0(s4) = 0
V0(s5) = 0

V1(s1) = –1
V1(s2) = –1
V1(s3) = –1
V1(s4) = +100
V1(s5) = –100

r= -1

r= -1

r= -100

r= 100

s2 s3

s4s1

s5

r= -1

r= -1

r= 99

r= -1

r= -100r=
 -1

00

r=
 0

r= -100

r= -200

r= -1
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129Differences
 Significant differences from policy iteration

 Less accurate basis for action selection

▪ Based on approximate utility, not true expected utility

 Policy does not necessarily change in each iteration

▪ May first have to iterate n times, incrementally improving approximations

▪ Then another action suddenly seems better in some state

  Requires a larger number of iterations

▪ But each iteration is cheaper

  Can’t terminate just because the policy does not change

▪ Need another termination condition…
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130Illustration
 Illustration below

 Notice that we already calculated rows 1 and 2

▪ – – –

– – –

– –
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131Illustration
 Remember, these are “pseudo-rewards”!

324.109 = reward of waiting once in s5,

then continuing according to the previous 14 policies for 14 steps,

then doing nothing (which is impossible according to the model)
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132Illustration
 The policy implicit in the value function changes incrementally…
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133Illustration
 At some point we reach the final recommendation/policy:

Max value for 

action move-s4

Will never 

change

Max value for 

action move-s3

Will never 

change

Max value for 

action move-s4

Will never 

change

Max value for 

action move-s4

Will never 

change

Only

wait

Optimal policy found in iteration 4

Can’t know this:

These are not true rewards; maybe one action will soon “overtake” another!



134

jo
nk

v@
id

a
jo

nk
v@

id
a

134Different Discount Factors
 Suppose discount

factor is 0.99 instead

 Illustration, only showing

best pseudo-utility at each step

 Much slower convergence

▪



▪



 Care more about the future

 need to consider 

many more steps!
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135How Many Iterations?
 We can find bounds!

 Let ε be the greatest change in pseudo-utility between two iterations:

𝜖 = max
𝑠∈𝑆

𝑉𝑛𝑒𝑤 𝑠 − 𝑉𝑜𝑙𝑑(𝑠)

 Then if we create a policy 𝜋 according to 𝑉𝑛𝑒𝑤, we have a bound:

max
𝑠∈𝑆

𝐸(𝜋, 𝑠) − 𝐸(𝜋∗, 𝑠) < 2𝜖𝛾/(1 − 𝛾)

▪ For every state, the reward of 𝜋
is at most 2𝜖𝛾/(1 − 𝛾) from the reward of an optimal policy

0,5 0,9 0,95 0,99 0,999
0,001 0,002 0,018 0,038 0,198 1,998

0,01 0,02 0,18 0,38 1,98 19,98
0,1 0,2 1,8 3,8 19,8 199,8

1 2 18 38 198 1998
5 10 90 190 990 9990

10 20 180 380 1980 19980
100 200 1800 3800 19800 199800

Discount factor 𝛾

Maximum absolute 

difference 𝜖 between 

two iterations



136

jo
nk

v@
id

a
jo

nk
v@

id
a

136How Many Iterations? Discount 0.90

Quit after 10 

iterations  we

knowV10(s1)=467. 

Guarantee: New 

corresponding

policy gives

>= 467 – 697 if

we start in s1.

Quit after 50 

iterations  we

knowV50(s1)=811.

New guarantee:

The same policy 

actually gives

>= 811 – 10 if we

start in s1.

Bounds are 

incrementally 

tightened!

Quit after 2 iterations V2(s1)=43.

Guarantee: Corresponding policy gives >= 43 - 1620.
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137How Many Iterations? Discount 0.99

Quit after 250 

iterations 

we know

V250(s1)=8989. 

Guarantee: 

Corresponding

policy gives

>= 8989 - 1621.

Quit after 600 

iterations 

we know

V600(s1)=9775. 

Guarantee:

>= 9775 - 48.

Bounds are 

incrementally 

tightened!
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138Value Iteration
 Value iteration to find π*:

 Start with an arbitrary reward V0(s) for each s and an arbitrary  > 0

▪ 𝑉0 𝑠 = 0 corresponds directly to finite horizon reward

▪ Values closer to real rewards ensure faster convergence



▪

▪   

▪ 

▪ 

▪  

 On an acyclic graph, the values converge in finitely many iterations

 On a cyclic graph, value convergence can take infinitely many iterations

 That’s why  > 0 is needed

Not the original definition of Q(s,a):

Here we use the previous V()
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139Discussion
 Both algorithms converge in a polynomial number of iterations

 But the variable in the polynomial is the number of states

▪ The number of states is usually huge

 Need to examine the entire state space in each iteration

 These algorithms take huge amounts of time and space

 Probabilistic set-theoretic planning is EXPTIME-complete

▪ Much harder than ordinary set-theoretic planning, which was only PSPACE-

complete

 Methods exist for reducing the search space,

and for approximating optimal solutions
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140Value Iteration
 Value iteration to find π*:

 Start with an arbitrary reward V0(s) for each s and an arbitrary  > 0

▪ 𝑉0 𝑠 = 0 corresponds directly to finite horizon reward

▪ Values closer to real rewards ensure faster convergence



▪

▪   

▪ 

▪ 

▪  

 On an acyclic graph, the values converge in finitely many iterations

 On a cyclic graph, value convergence can take infinitely many iterations

 That’s why  > 0 is needed

Prioritize some states, visit them more often!

For example, states ”close to” significant changes in V
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142Overview
Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information 

gained after action

Deterministic:

Exact outcome

known in advance

Classical planning (possibly with extensions)

Information dimension is meaningless!

Non-deterministic:

Multiple outcomes, 

no probabilities

NOND:

Conformant Planning

FOND:

Conditional 

(Contingent) Planning

POND:

Partially Observable,

Non-Deterministic

Probabilistic:

Multiple outcomes

with probabilities

Probabilistic

Conformant Planning

(Non-observable MDPs: 

Special case of POMDPs)

Probabilistic

Conditional Planning

Stochastic Shortest Path 

Problems

Markov Decision 

Processes (MDPs)

Partially Observable MDPs 

(POMDPs)

 In general:

 Full information is the easiest

 Partial information is the hardest!
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144Action Representations
 Action representations:

 The book only deals with the underlying semantics:

“Unstructured” probability distribution 𝑃(𝑠, 𝑎, 𝑠′)

 Several “convenient” representations possible,

such as Bayes networks, probabilistic operators
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145Representation Example: PPDDL
 Probabilistic PDDL: new constructs for effects, initial state



▪ Effect takes place with probability , etc.

▪ Sum of probabilities (can be strictly less  implicit empty effect)

▪ (define (domain bomb-and-toilet) 

(:requirements :conditional-effects :probabilistic-effects) 

(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))

(:action dunk-package

:parameters (?pkg)

:effect (and

(when (bomb-in-package ?pkg) (bomb-defused))

(probabilistic 0.05 (toilet-clogged)))))

▪ (define (problem bomb-and-toilet) 

(:domain bomb-and-toilet) 

(:requirements :negative-preconditions) 

(:objects package1 package2) 

(:init (probabilistic 0.5 (bomb-in-package package1) 

0.5 (bomb-in-package package2))) 

(:goal (and (bomb-defused) (not (toilet-clogged)))))

5% chance of toilet-clogged,

95% chance of no effect

First, a "standard" effect

Probabilistic initial state
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146Ladder 1
▪

▪
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147Ladder 2
▪

▪

▪

▪
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148Exploding Blocks World
 When putting down a block:

 30% risk that it explodes

 Destroys what you placed the block on

 Use additional blocks as potential “sacrifices”

▪
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149Tire World
 Reward/cost-based

 Tire may go flat – tow trucks are expensive – good idea to load a spare










150

jo
nk

v@
id

a
jo

nk
v@

id
a

150Representation Example: RDDL


▪

▪


