é& LinkGping University g
Automated Planning

Heuristics for Forward State Space Search:
Overview and Examples

Jonas Kvarnstrom

Automated Planning Group

Department of Computer and Information Science

Linkoping University

Heuristics in Forward State Space Search:

Introduction

a
jonkv@ida

Heuristic Forward State Space Search

General Forward State Space Search Algorithm

forward-search(4, s, g) {
open € {<sg,, €> }
while (open # emptyset) {
use a strategy to select and remove one n=<s,path> from open

if goal g satisfied in state s thenis A heuristic strategy bases its

decisi :
foreach a € A such that y(s, a) ecisions on

(Y€ y(s, a) = Heuristic value h(n)
path’ € append(path, a) = Often other factors, such as
add n’=<s’, path’> to open g(n) = cost of reaching n

Requires a heuristic function Requires a heuristic strategy

How do we calculate h(n)? How do we use h(n)?

h;(n), h,(n), h,z4(n), A* IDA* D* simulated annealing,
landmarks, hill-climbing, (various forms of)
pattern databases,... best first search, ...

Example (1)

=
4 JE
2,

Example: 3 blocks, all on the table in sO

We now have
1 open node,
which is unexpanded

Example (2)

We now have
3 open nodes,
which are unexpanded

A heuristic function estimates the distance from each open node to the goal:
We calculate h(sq), h(s3), h(s3)

A heuristic strategy uses this value (and other info) to prioritize

Example (3)

jonkv@ida

We now have
4 open nodes,
which are unexpanded

Forward search: node = state,
so we may write h(n) or h(s)

2 new heuristic values are calculated: h(s1¢), h(S17)
The search strategy now has 4 nodes to prioritize

Heuristic Functions: What to Measure?

What to Measure?

= A heuristic strategy bases its decisions on:

jonkv@ida

= Heuristic value h(s)

= Often other factors, such as g(s) = cost of reaching s

Very general definition
=>» could measure anything that some strategy might find useful!

Often: h(s) tries to measure the cost of achieving the goal from s

Useful for finding cheap plans —
and often, as a side effect, for finding plans cheaply

= Question | B: What is ”’cost’’?

Plan Quality and Action Costs

9
jonkv@ida

Could say: Long plan = expensive plan

c(m) = || (humber of actions)

= Reasonable in Towers of Hanoi

= But: How to make sure your car is clean?

go to car wash get supplies wash car

go to car dealer buy new car shortest plan is best!?

Would prefer to model different action costs

Supported by most current planners
= Each action a € A associated with a cost c(a)

Total cost: C(T[) = ZaEn C(Cl)

Action Costs in PDDL

PDDL: Specify requirements

* (:requirements :action-costs)

i 10 JE

Numeric state variable for the total cost, called (total-cost)

= And possibly numeric state variables to calculate action costs
= (:functions (total-cost) -number Built-in type
(travel-slow-cost ?fl - count ?f2 - count) |- number supported by

(travel-fast-cost ?fl - count ?f2 - count) |-nnumber) Cost-based
planners

Initial state

= (:init (= (total-cost) 0)
(= (travel-slow-cost n0 nl) 6) (= (travel-slow-cost n0 n2) 7)
(= (travel-slow-cost n0 n3) 8) (= (travel-slow-cost n0 n4) 9)

..)

Special increase effects to increase total cost

» (:action move-up-slow
:;parameters (?lift - slow-elevator ?f1 - count ?f2 - count)
:precondition (and (lift-at ?lift ?f1) (above ?f1 ?f2) (reachable-floor ?lift ?f2))
.effect (and (lift-at ?lift ?f2) (not (lift-at ?lift ?f1))
(increase (total-cost) (travel-slow-cost ?f1 ?£2))))

Remaining Costs

jonkv@ida

The remaining cost in a search state s:

The cost of a cheapest (optimal) solution starting in s
Denoted by h*(s)

The cost of an optimal solution to (Z, SO,Sg)I
h™(so)

putdown(A) pickup(B) \pickup(C)

jonkv@ida

True Remaining Costs (1)

True Cost of Reaching a Goal: h*(n)

Initially: A,B,C on the table
pickup, putdown cost |
stack, unstack cost 2 (must be more careful)

pickup(C) putdown(C)

pickup(B) Yutdown(B)
S . C '

stack(B,C) Junstack(B,C) nstack(A,C)

True Remaining Costs (2)

jonkv@ida

True Cost of Reaching a Goal: h*(n)

Two reachable goal states

pickup(C) putdown(C)

picku p@p utdown(B)

pickup(B) Yutdown(B)
. C '

stack(B,C) Junstack(B,C) nstack(A,C)

jonkv@ida

True Remaining Costs (3)

True Cost of Reaching a Goal: h*(n)

Three reachable goal states
(there can be many)

True Remaining Costs (4)

If we knew the true remaining cost h*(n) for every node:

Algorithm simplePlan:
node € initstate Trivial straight-line path

minimizing h* values
gives an optimal solution!

while (not reached goal) {
node €< a successor of node with minimal h*(n)

icku@utdown{B)

jonkv@ida

3
jonkv@ida

Reflections

What does this mean!?

Calculating h*(n) is a good idea,
because then we can easily find optimal plans?

No — because we can prove that finding optimal plans is hard!

So calculating h*(n) must be hard as well...

|.We can always quickly compute h*(n) . _ _ .
3.We can quickly find optimal solutions
2. Given h*(n), for any classical planning problem

we can quickly find optimal solutions

5....so one of these premises 4. Known to be false!
must be false (PSPACE-complete)

Must settle for an estimate that helps us search less than otherwise

Heuristic Functions:

What properties should an estimate have /

Minimization: Intro

o
)
E)

—
e

o
o —

If | start with pickup(A), If | start with pickup(C),
then make optimal choices: then make optimal choices:
Plan cost = 55 Plan cost = 62

jonkv@ida

Minimization, case |

Which is best?

The strategy only cares
about relative values

h* hA, hB result in
identical choices: s first!

h*=55 h*=57 h*=62
hA=50 hA=53 hA=55 Close!
hB=4 hB=20 hB=21 Far from the truth...

70
60
50
40
30

20

sl s2 s3

Minimization, case 2

600
500
400
300
200
100

h*=55
hA=50
hB=107

sl

h*=57
hA=53
hB=258

hA=55
hB=522

jonkv@ida

Which is best?

The strategy only cares
about relative values

h* hA, hB result in
identical choices: s first!

Close!

Large overestimate!

jonkv@ida

Minimization, case 3

Strategy: Depth first search; select a child with minimal h(s)

Which is best?

h* and hB result in
identical choices

hA is worse,
despite being closer to h*:
Results in s3 first

h*=55 h*=57 h*=62
hA= hA=53 hA= Even if we continue optimally,
hB=4 hB=20 hB=21 cost = 62!

70
60
50
40
30

20

sl s2 s3

A* case |

70
60
50
40
30
20
10

h*=55
hA=50
hB=4

h*=57
hA=53
hB=20

hA=55

hB=2]

-

sl

s2

s3

Which is best?

A* expands all nodes
where g(s) + h(s) < optcost

As long as h is admissible
[Vs: h(s) < h*(s)],
increasing it is always better

A* case 2

600
500
400
300
200
100

h*=55
hA=50
hB=107

sl

h*=57
hA=53
hB=258

hA=55
hB=522

Which is best?

A* expands all nodes
where g(s) + h(s) < optcost

Because hB is not admissible,
optimal solutions
may be missed!

A* case 3

Which is best?

A* expands all nodes
where g(s) + h(s) < optcost

As long as h(s) is admissible

[A(s) < h*(s)],
h*=55 h#*=57 h¥#=62 increasing it is always better
hA better than hB
hA= hA=53 hA=
hB=4 hB=20 hB=2I

70
60
50
40
30

20

sl s2 s3

jonkv@ida

Two Requirements for Heuristic Guidance

Heuristic planners must consider two requirements

Define a search strategy Find a heuristic function
able to take guidance into account suitable for the selected strategy
Examples: Example:
A* uses a heuristic function Find a heuristic function
Hill-climbing uses a heuristic... differently! suitable specifically for A* or hill-climbing

Can be domain-specific,
given as input in the planning problem

Can be domain-independent,
generated automatically by the planner
given the problem domain

We will consider both - heuristics more than strategies

Some Desired Properties (1)

NY
3
jonkv@ida

What properties do good heuristic functions have!

Informative: Provide good guidance to the specific search strategy we use
= Close to h*(n)?

= Correct “ordering’?

] \oe
eeéxoeé%(\
ies""q"%& e®
\0 é
e Y
Heuristic
Search
Algorithmi ‘ Test on a
Heuristic ~ Planning variety of
Function " Problem benchmark
| |
y . L) examples
y \
/ Performance

}' and |
| Plan Quality |

Some Desired Properties (2)

What properties do good heuristic functions have!
Efficiently computable!

= Spend as little time as possible deciding which nodes to expand

Balanced...

= Many planners spend almost all their time calculating heuristics
= But: Don’t spend more time computing h than you gain by expanding fewer nodes!

= lllustrative (made-up) example:

Heuristic INodes | Expanding one Calculating h Total time
quality eEXpanded hode for one node

Worst 100000 100 us 1 us 10100 ms

Better 20000 100 ps 10 ps 2200 ms

5000 100 us 100 ps 1000 ms

2000 100 ps 1000 ps 2200 ms

500 100 ps 10000 ps 5050 ms

Best 200 100 ps 100000 ps 20020 ms

jonkv@ida

Speed vs. Cost

Cost can be indirectly related
to performance

stack(A,B)\stack(A,C)
Can find a cheap plan "under” s;¢
=> might find a plan in few steps
=> might not need to search so many nodes

=> might find a plan cheaply

Or maybe sl 6 opens up
a vast number of alternatives,
so finding a solution takes more time...

jonkv@ida

Prioritizing Speed or Plan Cost

[30 JF

Can design strategies to prioritize speed or plan cost

Find a solution quickly Find a good solution

Expand nodes where you think
you can find a way
to a good (high quality) solution,
even if finding it will be difficult

Expand nodes where you think
you can easily find a way
to a goal node

l Should prefer l Should prefer
Accumulated plan cost 50, Accumulated plan cost 5
estimated "cost distance" to goal 10 estimated "cost distance" to goal 30

Often one strategy+heuristic can achieve both reasonably well,

but for optimum performance, the distinction can be important!

A Simple

Domain-Independent Heuristic
and Search Strateqy

Heuristics given Structured States

©

jonkv@ida

In planning, we often want domain-independent heuristics

Should work for any planning domain — how!?

Take advantage of structured high-level representation!

Plain state transition system

We are in state
572,342,104,485,172,012

The goal is to be in one of the 10747
states in Sg={ s[482,293], s[482,294],
.

Should we try action

A297,295,283,291

leading to state
572,342,104,485,172,016?

Or maybe action A297,295,283,292

leading to state
572,342,104,485,175,201?

Classical representation

We are in a state where
disk 1 is on top of disk 2

The goal is for all disks to be
on peg C

Should we try take(B), leading to a
state where we are holding disk 1?

An Intuitive Heuristic

D
w
jonkv@ida

An intuitive heuristic:

Number of steps required to reach the goal from s
should be approximately proportional to
how many goal requirements are not yet achieved in s

An associated search strategy:

Suppose we want to minimize planning time

Choose an open node
with a minimal number of remaining goal facts to achieve

Counting Remaining Goals

LAJ
-
jonkv@ida

Count the number of facts that are “wrong”

Requires that states and goals are sets of facts

No

ontable(C)
on(A,C)
-on(C,A)
-on(A,B)
clear(A)
clear(B)
~clear(C)

‘o
=
s
>
b0
c
Y
3

- on(A,C)
“repaired” EEdCEEY

"’destroyed”

A
clB

— =clear(C)
+ holding(A)
+ handempty

6

<.

- clear(B)
+-~ontable(B)
+ holding(B)
+ handempty

gl c 52

Optimal:
unstack(A,C

stack(A,B)
pickup(C)
stack(C,A)

- -on(A,B)

4 _holding(a)

6

- handempty
+ clear(A)

- holding(A)

- handempty
+ clear(A)

+ ontable(A)

C)

Counting Remaining Goals (2)

A perfect solution? No!

We must often "unachieve" individual goal facts
to get closer to a goal state!

unstack(A,C) best, i OniA,C)A
ontable(B) but looks worse : ;lce ::(YC())
—IOIl(A,B)

AC 8 + -handempty
on(h ()3) A 4 holding(A)
20N b,
clear(B) €[B|D

oo’ He

w
D
jonkv@ida

Optimal:
unstack(A,C)

putdown(A)
pickup(B)

stack(B,C)
pickup(A)
stack(A,B)

w
a
jonkv@ida

Counting Remaining Goals (3)

Admissible!

No!

(Doesn’t matter in our chosen search strategy)

ﬂﬁn(]z’D) . 4 facts are ”’wrong”’,
nandem
ﬂdear(B)p 4 can be fixed with a

clear(D) single action

8% —B 8

Can we make it admissible?

Yes: Divide by the maximum number of facts modified by any action

Counting Remaining Goals (4)

D
~
jonkv@ida

Informative!
Facts to add: on(L,J) Goal

Facts to remove: ontable(I), clear(J)

Heuristic value of 3 — but is it close to the goal?

w = I O m m T A =B >

Don't worry:

At least we know that heuristics can be domain-independent!

w
9
jonkv@ida

Counting Remaining Goals (5): Analysis

What we see from this example...

Not very much: All heuristics have weaknesses!

Even the best planners The heuristic should make sure
will make “strange” choices, we don’t need to
visit tens, hundreds or even visit millions, billions or even
thousands of "unproductive” nodes trillions of ” unproductive” nodes
for every action in the final plan for every action in the final plan!

But a thorough empirical analysis would tell us:

This heuristic is far from sufficient!

w
Q
jonkv@ida

Example Statistics

Planning Competition 2011: Elevators domain, problem 1

A* with goal count heuristics
= States: 108922864 generated, gave up

LAMA 2011 planner, good heuristics, other strategy:

= Solution: 79 steps, 369 cost Important insight:
= States: 13236 generated, 425 evaluated/expanded
Even a
Elevators, problem e state-of-the-art planner
LAMA 2011 planner: can’t go directly to a goal

= Solution: 112 steps, 523 cost state!
= States: 41811 generated, 1317 evaluated/expanded

Generates many more
Elevators, problem 20 states than those

LAMA 2011 planner: actually on the path to

= Solution: 354 steps, 2182 cost the goal...

= States: 1364657 generated, 14985 evaluated/expands

Search Strategies and Heuristics
for Optimal
Forward State Space Planning

A Well Known Heuristic Search Algorithm: A*

Used in many optimal planners

[42)F

Dijstra vs.A*:The essential difference

Selects from open a node n with Selects from open a node n with
minimal g(n) minimal g(n) + h(n)

+ underestimated cost
of reaching a goal from n

Cost of reaching n from initial node

Uninformed (blind)

Example:

= Hand-coded heuristic function

— Goal

= Can move diagonally =
h(n) = Chebyshev distance
from n to goal = < Obstacle
max(abs(n.x-goal.x), abs(n.y-goal.y))

= Related to Manhattan Distance =
sum(abs(n.x-goal.x), abs(n.y-goal.y))

Start P>

[43 0F

A* Search:

Here:
A single
physical obstacle

In general:
Many states where
all available actions

will increase g+h
(cost + heuristic)

Investigate all states
where g+h=15,

- then all states

where g+h=16, ...

o
—
®

—
-

=

o
o —

Given an admissible heuristic h, A* is optimal in two ways

Guarantees an optimal plan

Expands the minimum number of nodes
required to guarantee optimality with the given heuristic

Still expands many “unproductive” nodes in the example

Because the heuristic is not perfectly informative

= Even though it is hand-coded

L3 £
o

= Does not take obstacles into account

SRRy
o 0w R e

k .
If we knew h*(n): L OREE R E RN

= Expand optimal path to the goal e e e e e e

R E SRR F

sessss0eco
DoRER
LR R R R R R R

*5
L
L

]

u n

el

L
iRl

RAEEE D0

What is an informative heuristic for A*?

o
=
®

—
e

=

(=]
o —

Basic requirement: Must be admissible = Vn.h(n) < h*(n)

As always, h(n) = h*(n) would be perfect — but not attainable...

As indicated before: The closer h(n) is to h*(n), the better

= Suppose hA and hB are both admissible

= Suppose Yn. hA(n) > hB(n): hA is at least close to true costs as hB

= Then A* with hA cannot expand more nodes

than A* with hB

Given an arbitrary planning problem

P =(2s0,9),
find an admissible heuristic function h(s)

L3 £
o

o i
oG R
+EEEEEEEE LRSS
s S EEEEEEE S S Y
TRBRRBRRRRERE
IE S EEEEEE S B
E S EEE RS

GO oD

SEEERRRRT T
oone

=
:
.

]

u u

el

L
iRl

LER A

(R R R 3 S B
(R R L RS R
(5 R RS
oL EEE
FHERER

Lo omn s sk ok

*
*
*
|
-

(L E

Creating Admissible Heuristic Functions:

The General Relaxation Principle

Fundamental ideas

3
~
jonkv@ida

For an arbitrary problem P and a state s,
compute an admissible heuristic value h(s)

Solitions to P starting in s

g B | h(s) < h*(s) = cost of
| optimal solution starting in state s
u _ _
Optimal solutions to P Find optimal solution

| | Return h(s) = h*(s) = cost(m)
ﬁ =» Correct but not practical

Fundamental ideas (2)

jonkv@ida

For an arbitrary problem P and a state s,
compute an admissible heuristic value h(s)

Transform <Ps> into some problem/state <P’,s’>
that we can easily solve optimally

SoIH:ions to P starting in s Solutions to P’

starting in s’
B N N . a o i
| - .
| - B]
|
Optimal solutions to F, B - B
.d]‘fﬁfuj to find J)

| | . Optimal solutions to P, -

I easy to find

...ensuring cost(optimal-solution(P’,s’)) <
cost(optimal-solution(Ps))

Fundamental ideas (3)

S
9
jonkv@ida

For an arbitrary problem P and a state s,
compute an admissible heuristic value h(s)

b y °
Solve problem <P’;s’> optimally B Solutions to P

Let h(s) = cost(m) . - . | -
N
_ m ®
Optimal solutions to P, B
. easy to find
- " B

We note:
= h(s) = cost(m) = cost(optimal-solution(P')) < cost(optimal-solution(P)) = h*(s)
= h(s) is admissible

jonkv@ida

Fundamental ideas (4)

Important:
What we need: cost(optimal-solution(P')) < cost(optimal-solution(P))

Could be achieved using completely disjoint solution sets
+ a proof that solutions to P' are cheaper

B Solutions to P'

Solutions to P
N - B u
- B | |
B N N
H B B N
g B

Optimal solutions to P,
easy to find

jonkv@ida

Fundamental ideas (5)

How to prove cost(optimal-solution(P')) < cost(optimal-solution(P))?

Sufficient criterion: One optimal solution to P remains a solution for P’

= cost(optimal-solution(P')) = min { cost(m) | 1T is any solution to P' } <=

cost(optimal-solution(P))
Includes the optimal solutions to P,

so min {...} cannot be greater

- Solutions to P
B |
|
_ | m

jonkv@ida

Relaxation

A stronger criterion: All solutions to P remain solutions for P'

This is called relaxation: P’ is a relaxed version of P

Relaxes the constraint on what is accepted as a solution:
The is-solution(plan)? test is "expanded, relaxed" to cover additional plans

Solutions to P'

- Solutions to P - B
- B N _ N
= - -
| B B |
n m B
ol n
_ I | n n
I . 8
n n

9
w
jonkv@ida

Relaxation for Planning Problems

A classical planning problem 2 = (%, s, Sg) has a set of solutions
Solutions(?) = { : 7 is an executable action sequence

leading from s, to a state in S, }

Suppose that:
P = (2, s, Sy) is a classical planning problem
P = (X, s, S,) is another classical planning problem
Solutions(?) < Solutions(2")

Then (and only then): 2" is a relaxation of 2

Solutions for P: Solutions for P’:
Soll, cost 10 oY IE ——======== » Soll, cost 10 All old solutions
Sol2, cost 12 Sol2, cost 12 remain solutions!

Sol3, cost 27 Sol3, cost 27

Sol4, cost 8
Sol5, cost 42 Now sol4 is optimal

jonkv@ida

Relaxation Example 1

Example |: Adding new actions

All old solutions still valid, but new solutions may exist

Modifies the STS by adding new edges / transitions

This particular example: shorter solution exists
J w putdown(B) pickup(C) putdown(C)
stack(B,A) unstack(B C)

w putdown(C w putdown(A

unstack(C A) nstack(C,B)

W/

°€°e

putdown(B) putdown(A)

nstack(C,B) ktack(A,B) Junstack(A,B)

nstack(B,C) nstack(A,C)

03030

Relaxation Example 2

Example 2: Adding goal states

All old solutions still valid, but new solutions may exist
Retains the same STS

This particular example: Optimal solution from s, retains the same length

s0
D putdown(B) pickup(C) putdown(C)
nstack(A,B) unstack(BC) unstack(CA) nstack(C,B)

i S
w putdown(B) putdown(C) D putdown(C putdown(A putdown(B) putdown(A)

nstack(B,A)
e Goal

@ nstack(C,A) @ nstack(C,B) nstack(A,B) nstack(B,C) nstack(A,C)

e Goal
on(A,C) or on(C,B) on(A,C) or on(C,B)

jonkv@ida

Relaxation Example 3

Example 3: Ignoring state variables
lgnore the handempty predicate in preconditions and effects

Different state space, no simple addition or removal,

but all the old solutions (paths) still lead to goal states!
= 22 reachable states - 26
= 47 transitions - 72

instack(C,B; putdown(A) pickup(A)
(ABN\p pu(dlack(A 8) \stack(A,B)

stack(B,A) ((Unstack(B,A) fstack(B A utdown(A) Yoickup (B} unstack(BAYN\p pickup(d) (putdown(a) /Pickup(B) Jputdown(®)
e e
fstack(8,C) M pickup(C) \stack(C,B) (unstack(B.C) ~ ptack(B.C) ickup(C) putdown(C)) tack(A.C) /Stack(C.A) A) putdown(C)
instack(B,f

tack(A,

jonkv@ida

Relaxation Example 3b

Example 3, enlarged

w putdown(C)

(F— w

unstack(C,B) Junstack(C,A) putdown(A) \pickup(A)

7 ()

pickup(A) putdown(A)

utdown(C)

stack(C,B) /putdown(B)

s7

L ——

ickup(A)

~N—
e'

bickup(B) putdown(B) stack(A,B) \stack(A,B)

unstack(C,A) \putdown(C)

s12

unstack(B,C) unstack(A,C) ptack(A,C) stack(C,A)

jonkv@ida

unstack(A,B), o

stack(A,C) unstack(LQJ

nstack(B,C)

pickup(B) ptack(B,A) putdown(B)

(& n
9
jonkv@ida

Relaxation Example 4

Example 4: Weakening preconditions of existing actions

Initial Goal

Possible first moves:
Move 8 right

Move 4 up

Move 6 left

Precondition relaxation: Tiles can be moved across each other
= Now we have 21 possible first moves: New transitions added to the STS

All old solutions are still valid, but new ones are added

= To move “8” into place:
= Two steps to the right, two steps down, ends up in the same place as ’1”

Can still be solved through search
The optimal solution for the relaxed 8-puzzle
can never be more expensive than the optimal solution for original 8-puzzle

Relaxation Heuristics: Summary

Relaxation: One general principle
for designing admissible heuristics for optimal planning

= Find a way of transforming planning problems, so that
given a problem instance P:

= Computing its transformation P’ is easy (polynomial)

= Finding an optimal solution to P’ is easier than for P

= All solutions to P are solutions to P’,
but the new problem can have additional solutions as well

= Then the cost of an optimal solution to P’
is an admissible heuristic for the original problem P

This is only one principle!

There are others, not based on relaxation

Relaxation:

Search or Direct Computation?

9
jonkv@ida

Search or Direct Computation (1)

As stated:
Compute an actual solution 1 for the relaxed problem P’

Compute cost(m)

Example: The 8-puzzle...

lgnore blank(x,y) in preconditions and effects

Run the problem through an optimal planner

Compute the cost of the resulting plan

(-action move-up
:parameters (!t !px ?py !by)
:precondition (and

(tile ?t) (position ?px) (position ?py) (position ?by)
(dec by ?py) (blank ?px ?by) (at ?t ?px ?py))
:effect (and (not (blank ?px ?by)) (not (at ?t ?px ?py))
(blank ?px ?py) (at ’t ?px !by)))

3
NY
jonkv@ida

Search or Direct Computation (2)

But we never use 1!
Let’s analyze the problem...

= Each piece has to be moved to the intended row
= Each piece has to be moved to the intended column

= These are exactly the required actions given the relaxation!

=> optimal cost for relaxed problem = sum of Manhattan distances

=>» admissible heuristic for original problem= sum of Manhattan distances

=>» Cost of optimal solution 7= can be computed efficiently:

Z xdistance(p) + ydistance(p)

DEpieces

But now we had to analyze the problem:
(1) Decide to ignore "blank”
(2) Find ”sum of manhattan distances”

Soon: How do we automatically find
good relaxations + computation methods?

Relaxation:

Essential Facts

(@)
—-_—
jonkv@ida

Relaxation Heuristics: Balance

The reason for relaxation is rapid calculation

Shorter solutions are an unfortunate side effect:
Leads to less informative heuristics

Relax too much = not informative

= Example:Any piece can teleport
into the desired position
=>» h(n) = number of pieces
left to move

{ No problem left! J

I

Very relaxed

I

Medium relaxation

I

Somewhat relaxed

I

E Original problem }

Relaxation Heuristics: Important Issues!

You cannot "use a relaxed problem as a heuristic".
What would that mean?
You use the cost of an optimal solution to the relaxed problem as a heuristic.

putdown(A) utdown{B) pickup(C) putdown(C)

nstack(A,B) nstack(B,A) \stack(B,C) Yunstack(B,C) stack(C,A) Yunstack(C,A) \stack(C,B) nstack(C,B)
e o This is the problem.
D D C) D . o e
waoun® Heoun(®) Hoonn(® The problem is not a heuristic. |

stack(B,A) Junstack(B,A) @ nstack(C,A) nstack(C,B) tack(A,B) Junstack(A,B) stack(B,C) unstack(B,C) tack(A,C)unstack(A,C)
Goal Goal

on(B,A) on(B,A)
on(A,C) or on(C,B) on(A,C) or on(C,B)

jonkv@ida

Relaxation Heuristics: Important Issues!

an
3
jonkv@ida

Solving the relaxed problem
can result in a more expensive solution
=> inadmissible!

You have to solve it optimally to get the admissibility guarantee.

@ putdown(B) bickup(C) putdown(C)

nstack(A,B) stack(B,A)
e One solution to relaxed problem:

outdown(B) putdown(C) putdown
o pickup(C)
ack(B,A) unstack(B,A) @ ack(C,A)

6

.

putdown(C)
@ stack(C,B) pICkUP(B)
stack(B,A)
e Goal e Godl pickup(C)

on(B,A) on(B,A) stack(C,B)
on(A,C) or on(C,B) on(A,C) or on(C,B)

Relaxation Heuristics: Important Issues!

3
~
jonkv@ida

You don’t just solve the relaxed problem once.
Every time you reach a new state and want to calculate a heuristic,
you have to solve the relaxed problem
of getting from that state to the goal.

w utdow bickup putdown(C)

?@ @ w Calculate:
utdown(B) putdown(C) utdown
h(s0)

nstack(B,A)
e Goal

@ ack(C.A) @ hstack(C.B) h(S |), h(SZ), h(s3)
on(B.A) on(B,A)

e Goal ..then for every node you create,
depending on the strategy
on(A,C) or on(C,B) on(A,C) or on(C,B)

Relaxation Heuristics: Important Issues!

Relaxation does not always mean "removing constraints"
in the sense of weakening preconditions (moving across tiles, removing walls, ...)
Sometimes we get new goals. Sometimes the entire state space is transformed.
Sometimes action effects are modified, or some other change is made.
What defines relaxation: All old solutions are valid, new solutions may exist.

putdown(A) w putdown(B) pickup(C) putdown(C)
nstack(A,B) nstack(B,A) unstack(B,C) unstack(CA) nstack(C,B)

putdown(B) putdown(C) utdown w putdown(A) utdown(B utdown
stack(B,A) Junstack(B,A) @ nstack(C,A) nstack(C,B) stack(A,B) Junstack(A,B) @ nstack(B,C) » nstack(A,C)

Goal Goal

on(B,A) on(B,A)
on(A,C) or on(C,B) on(A,C) or on(C,B)

jonkv@ida

Admissibility: Important Issues!

Relaxation is useful for finding admissible heuristics.

A heuristic cannot be admissible for some states.
Admissible == does not overestimate costs for any state!

putdown(A) p utdown{B) pickup(C) putdown(C)

nstack(A,B) nstack(B,A) unstack(B,C) 3 unstack(C,A) nstack(C,B)

putdown(B) putdown(C) utdown w putdown(A) utdown(B) P putdown(A)
stack(B,A) Junstack(B,A) @ nstack(C,A) nstack(C,B) stack(A,B) Junstack(A,B) @ nstack(B,C) nstack(A,C)

Goal Goal

on(B,A) on(B,A)
on(A,C) or on(C,B) on(A,C) or on(C,B)

jonkv@ida

jonkv@ida

Admissibility: Important Issues!

If you are asked "why is a relaxation heuristic admissible?", don't answer
"because it cannot overestimate costs". This is the definition of admissibility!

"Why is it admissible?" == "Why can't it overestimate costs?"

Admissible heuristics can "lead you astray" and you can "visit" suboptimal solutions.
Y Y Y P

But with the right search strategy, such as A*,
the planner will eventually get around to finding an optimal solution.
This is not the case with A* + non-admissible heuristics.

Delete Relaxation

Delete Relaxation (1)

In classical planning:

Negative effects can "un-achieve" goals or preconditions

A plan may have to achieve the same fact many times

Example: If handempty is a goal

0 -' handempty true...

vn(A) utdown{B) pickup(C) putdown(C) | P|ckup 9 false!
stack(B,A) unstack(B c) nstack(C,B) Re-achieve handempty. ..

: 0 O
w == ...S0 We can pickup =¥ false again!

putdown(C w putdown(A w putdown(B)

nstack(C,B) stack(A,B) Junstack(A,B) @ nstack(B,C) » nstack(A,C)

0

81

3“5

jonkv@ida

Delete Relaxation (2)

Suppose we remove all negative effects

3
w
jonkv@ida

Example: (unstack ?x ?y)

= Before transformation:
:precondition (and (handempty) (clear ?x) (on ?x ?y))
:effect (and (not (handempty)) (holding ?x) (not (clear ?x)) (clear ?y)
(not (on ?x ?y))

= After transformation:
:precondition (and (handempty) (clear ?x) (on ?x ?y))
-effect (and (holding ?x) (clear ?y))

A fact that is achieved stays achieved

Is this a relaxation?

Delete Relaxation (3)

~
S
jonkv@ida

Suppose we use the book's classical representation:

Precondition = set of literals that must be true
Goal = set of literals that must be true
Effects = set of literals (making atoms true or false)

Suppose we have a solution <A1,A2>:
= Initially handempty

= Action Al =>» handempty := false

= Action A2 =» requires handempty

Remove all negative effects:

= Initially handempty
= Action Al => no effect
= Action A2 =» requires handempty, not executable

<A1,A2> is no longer a solution; can’t be a relaxation

~
a
jonkv@ida

Delete Relaxation (4)

Suppose we use PDDL's plain :strips level

Forbids negative preconditions / goals

= Precondition = set of atoms (no negations!)
= Goal = set of atoms (no negations!)
= Effects = set of literals (making atoms true or false)

No solution can depend on a fact being false in a visited state

No solution can disappear because we stop making facts false

This is a relaxation if the problem lacks ne

jonkv@ida

Delete Relaxation (5): Example

STS for the original problem Delete-relaxed STRIPS problem

on(A,C) on(A,C)
u ontable(B) u ontable(B)
H E ontable(C) H B ontable(C)
clear(A) ' clear(A)
clear(B) clear(B)
handempty handempty

ontable(B) on(A,C) on(A,C) 3 on(A,C)
ontable(C) ontable(C) ontable(B) 5 ontable(B)
clear(B) clear(A) ontable(C) 5 ontable(C)
clear(C) holding(B) clear(A) = clear(A)
holding(A) clear(B) 8_ clear(B)
clear(C) § holding(B)
u u E holding(A) § handempty

<

handempty

C

STS for the original problem

on(A,C)
u ontable(B)
H B ontable(C)
clear(A)
clear(B)
handempty
¢
3
A\
9’&6
RN
ontable(B)
ontable(C)
clear(B)
clear(C)
holding(A)
a“
)
o
v
(1]
-
©»

-«

Initial state
does not change

Same "origin”,
fewer facts removed

C

Different "origin” but
same action sequence,
fewer facts removed

Delete-relaxed STRIPS problem

on(A,C)
u ontable(B)

H B ontable(C)
* clear(A)

clear(B)
handempty

on(A,C)
ontable(B)
ontable(C)
clear(A)

clear(B)

clear(C)
holding(A)

handempty

stack(A,B)

STS for the original problem Delete-relaxed STRIPS problem

on(A,C) on(A,C)
. ontable(B) . ontable(B)
B ontable(C) B ontable(C)
~— clear(A) ‘ clear(A)
clear(B) clear(B)
handempty handempty
¢
3
9""’&\
RN
on(A,C)
ontable(B) ontable(B)
ontable(C) ‘ ontable(C)
clear(A)
clear(B) clear(B)
clear(C) clear(C)
holding(A) holding(A)
handempty

No action requires
/I\ the absence of a fact ‘(M\\
Applicable ‘ Applicable

actions: app; actions: app;

jonkv@ida

Delete Relaxation (8): Example

or € original propiem Jelete-relaxec RIF propniem
on(A,C) on(A,C)
u ontable(B) u ontable(B)
u E ontable(C) u E ontable(C)
clear(A) clear(A)
clear(B) clear(B)
handempty handempty

ontable(B) on(A,C)
ontable(C) ontable(B)
clear(B) ontable(C)
clear(C) clear(A)
holding(A) clear(B)
No goal requires the de‘fr(c)
absence of a fact i)
handempty

Satisfies the : Also satisfies
goal? the goal

Delete Relaxation (9)

Negative effects are also called "delete effects”

3
o
jonkv@ida

They delete facts from the state

So this is called delete relaxation

"Relaxing the problem by getting rid of the delete effects"

Delete relaxation does not mean
that we "delete the relaxation” (anti-relax)!

Delete relaxation is only a relaxation
if preconditions and goals are positive!

Delete Relaxation (10)

Since solutions are preserved when facts are added:

a
jonkv@ida

A state where additional facts are true can never be "worse"!
(Given positive preconds/goals)

ontable(B)

ontable(C) e
ontable(C)
h * clear(B) < h * clear(B)
clear(C) — clear(C)
holding(A) i
handempty IR

Given two states (sets of true atoms) s,s'":
s D s’ = h*(s) <= h*(s’)

Delete Relaxation:

State Space Examples

jonkv@ida

Reachable State Space: BW size 2

5 states
8 transitions

(B) putdown(A)

nstack(A,B)

25 states
210 transitions

Tk B

Delete-Relaxed BW size 2: Detail View

Many new transitions caused by loops,
as expected!

jonkv@ida

pickup(B) pickup(A)
e» putdown (B Jpickup(B) e—- putdown(Adpickup(A)
- e

stack(B,B) i pickup(B) stack(A,A) stack(A,B)

s icku > BYstack(B,B) e sickupA)pickup(B) em pickup (A)

@ A) Npickup(A) stack(B,B) stack(A,A) pickup(®) stack(A,B)

e_ @ pickup(B) e@ putdown(B)
W,Wmackﬂ) stak(B,B) stack(A,B)

kup(B) —— ...-.:mmmm\ butdown(B) “

w stack(MB\stackm A)

stack(A,B) stack(A,A) Stack(B,B)

‘4__‘

jonkv@ida

Delete-Relaxed: "Loops” Removed

5 states
8 transitions

putdown(B) putdown(A)

25 states
50 transitions

(BB) pickup(B)

ck(A.B) stack(B,A) stack(A,B) /stack(B,B) stack(A,B) /stack(B,A) , . pickup(B)

stack(B,A)

The Optimal Delete Relaxation Heuristic

3
~
jonkv@ida

Optimal Delete Relaxation Heuristic

If only delete relaxation is applied:

We can calculate the optimal delete relaxation heuristic, h+(n)

h+(n) = the cost of an optimal solution
to a delete-relaxed problem
starting in node n

Accuracy of h+ in Selected Domains

How close is h™ (n) to the true goal distance h*(n)?

Worst case asymptotic accuracy as problem size approaches infinity:

= Blocks world:

1/4

= h+(n) >1/4 h*(n)

Optimal plans in delete-relaxed Blocks World
can be down to 25% of the length of optimal plans in "real” Blocks World

B

&
)
E
F
G
H
J

Standard:
unstack(A,B)
putdown(A)
unstack(B,C)
putdown(B)
unstack(C,D)
putdown(C)

unstack(H,I)
stack(H,J)

pickup(G)
stack(G,H)
pickup(F)
stack(F,G)
pickup(E)
stack(E,F)
pickup(D)
stack(D,E)

Relaxed:
unstack(A,B)
unstack(B,C)
unstack(C,D)
unstack(D,E)
unstack(E,F)
unstack(EG)
unstack(G,H)
unstack(H,I)

stack(H,J)
DONE!

=

jonkv@ida

(@ o)
9
jonkv@ida

Accuracy of h+ in Selected Domains (2)

How close is h™ (n) to the true goal distance h*(n)?

Worst case asymptotic accuracy as problem size approaches infinity:

= Blocks world: 1/4 = h+(n) >1/4 h*(n)

= Gripper domain: 2/3 (single robot moving balls)

= Logistics domain: 3/4 (move packages using trucks, airplanes)
= Miconic-STRIPS: 6/7 (elevators)

= Miconic-Simple-ADL: 3/4 (elevators)

= Schedule: 1/4 (job shop scheduling)

= Satellite: 1/2 (satellite observations)

Details:

= Malte Helmert and Robert Mattmuller
Accuracy of Admissible Heuristic Functions
in Selected Planning Domains

Example of Accuracy

jonkv@ida

How close is h™ (n) to the true goal distance h*(n)?

In practice:Also depends on the problem instance!

unstack(A,C) A I;d;iP(B; [Sl:iCk(;] ,C); stack(A,B)
pickup(B) - '

stack(B,C) HEH Good action!

stack(A,B)

> h+ =4 [h* = 6] E unstack(A,C); stack(B,C); stack(A,B)

= h+=3[h*=7]

Seems equally good as unstack,but is worse

H o
)
aﬂu u unstack(A,C); pickup(B);
— a stack(B C); stack(A B)
\—

Performance also depends on the search strategy

= How sensitive it is to specific types of inaccuracy

Computing the
Optimal Delete Relaxation Heuristic

Computing h+

9
NY
jonkv@ida

Is h* (n) easier to compute than h*(n)!?

h*(n) = length of optimal plan for arbitrary planning problem
= Supports negative effects
= |f we can execute either al;a2 or a2;al:

al removes p, a2 adds p = net result:add p

a2 adds p,al removes p =» net result: remove p

Both orders must be considered

h*(n) = length of optimal plan after removing negative effects
= |f we can execute either al;a2 or a2;al:
Must lead to the same state (add p1 before p2, or p2 before pl)

Sufficient to consider one order

Incomplete analysis — but h* (n) is easier to compute, in the worst case

jonkv@ida

Calculating h+

Still difficult to calculate in general!
NP-equivalent (reduced from PSPACE-equivalent)

= Since you must find optimal solutions to the relaxed problem

Even a constant-factor approximation
is NP-equivalent to compute!

= Finding h(n) so that Vn.h(n) = c - h*(n)

Therefore, rarely used "as is"

But forms the basis
of many other heuristics

stack
stack(B,B)

Ab (BB) bickup(B) sta
stack(B,B) stack(B,A) ck(A,B) stack(B,A) stack(A,B) /stack(B,B) stacl

(X L X ©
stack(B,B) stack(A,B) /stack(B A) k(A,B) tack(A,A) stack(B,A) \stack

q""'

Optimal Classical Planning:

The Admissible h, Heuristic

Intuitions (1)

Why is h*(n) so "slow™?

(W)
9
jonkv@ida

Must compute the exact cost

of an optimal plan
achieving all goals

sO

As problem sizes grow,
the number of goals will grow
=» plan lengths grow (even delete-relaxed!)
=» number of plans to check (directly or indirectly) grows exponentially

o
a
jonkv@ida

Intuitions (2)

Suppose we delete-relax, then only consider one goal fact

Remove goal requirements =» add new goal states in S,

Relaxation!
”Old” plans achieving all goals are still valid solutions

Also has much shorter solutions, much faster to compute

)

exponential size Too relaxed!

And which goal to choose!?

Intuitions (3)

Given two admissible heuristics h,(n) and hz(n):

9
~
jonkv@ida

hag(n) = max(hA(n), hg (n)) is admissible

If neither heuristic overestimates, their maximum cannot overestimate

The h, Heuristic

(W)
\;E;;:)
jonkv@ida

ldea (from HSPr*): Consider one goal atom at a time

Treat each goal atom separately
Take the maximum of the costs

)

Uses a set of relaxations!

exponential size

Computing h{ (n)

jonkv@lda

The h] Heuristic Example (action cost=1)

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D) H

Don't find the best way to achieve all goal atoms:
{ clear(A), on(A,B), on(B,C), on(B,C), ontable(C), clear(D), ontable(D) }

Avoid interactions:
Find the best way to achieve clear(A)
Then find the best way to achieve on(A,B)

Use backward search, starting with the goals

so: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

o
=
E)

=
=

The h, Heuristic Example (action cost=1)

jon

clear(A) on(A,B) on(B,C) ontable(C)

clear(D)

ontable(D)

cost O

First goal atom:
clear(A)

How to achieve on(A,B)?

Not true in the initial state.

stack(A,B)
Already achieved, holding(A) = clear(B) as an effect...

Check all actions having on(A,B)

cost 0 Here: Only stack(A,B)!

We have two preconditions to achieve.

Reduce interactions even more:

Consider each of these as a separate "subgoal®!
First holding(A), then clear(B).

so: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The h, Heuristic: Intuitions (2)

jonkv@ida

|dea: Treat each goal atom separately h,(n): Split the problem even further;
Take the maximum of the costs consider individual subgoals at every "level"

jonkv@ida

The h, Heuristic Example (continued)

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D)

cost O g0Ost 2 cost cost 0 cost 0 cost 0

stack(A,B)

holding(A) clear(B) holding(B) clear(C)
cost 1 cost 0 co !t 1 co!t 1

handempty clear(A) on(A,C)
cost 0 cost O cost 0 pickup(B)
| Search concinues:This is cheaper! U SAIEEGC

cost O cost 0

handempty clear(A) on(A,D)

More calculations show:

handempty = clear(A) on(A,C) ﬁ Bu

so: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

This is expensive...

The h, Heuristic: Important Property 1

We don’t search for

a valid plan achieving
on(B,C)!

Then we would need
putdown(A)...

The heuristic considers
individual subgoals
at all levels,
misses interactions
at all levels

on(B,C)

Each goal considered

separately!

holding(B) clear(C)

cost 1 cost 1

—

jonkv@ida

Each precondition
considered separately!

pickup(B)

clear(B)

cost 0

handempty

cost O

considered separately!

Each precondition

handempty clear(A)

Hoo

on(A,C)

A

Nno compinatcoriail eEXpliosion

The h, Heuristic Important Property 2

jonkv@ida

Given a problem
using :strips expressivity,
we ignore negative effects!

(Given a goal atom,
find an action achieving it,
without considering
any other effects)

on(B,C)

holding(B) clear(C)

cost 1 cost 1

pickup(B)
handempty clear(B)

cost O cost 0

handempty clear(A) on(A,C)

h, takes the delete relaxation heuristic, relaxes it further

jonkv@ida

The h, Heuristic: Important Property 3

cost O g0Ost 2 cost cost 0 cost 0 cost 0

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D) H

stack(A,B)
holding(A) clear(B) holding(B) clear(C)

cost 1 cost 0 cost 1 codt 1

The same action can be dounted twice!

Doesn’t affect admissibil

’

cost 0 cost 0 cost 0

handempty | clear(A) on(A,C) r:&/
|

um of subcosts,

since we take the maxi
not the sum

handempty clear(A) on(A,C)

The h, Heuristic: Formal Definition

h,(s) = A (s, g) - the heuristic depends on the goal g

For a goal, a set g of facts to achieve:

A, (s, g) = the cost of achieving the most expensive proposition in g

= A(s,g) =0 (zero) ifgCs Il Already achieved entire goal
= A(s,g) = i {As,p)|p€Eg} _ otherwise // Part of the goal not achieved

The cost of each
atom in goal g

Implicit delete relaxation:

Max: The entire goal Cheapest way of
L t least achievingpl € ¢
expensive as the most may actually delete p2 € g

expensive subgoal

So how expensive is it to achieve a single proposition?

jonkv@ida

The h, Heuristic: Formal Definition

jonkv@ida

h,(s) = A (s, g) - the heuristic depends on the goal g

For a single proposition p to be achieved:

A, (s, p) = the cost of achieving p from s
= Ais,p)=0 ifp€Es /I Already achieved p
= Ai(s,p) = if Va€A. p & effects™(a) // Unachievable
= Otherwise:
A((s,p) = - { cost(a) + A,(s, precond(a)) | a€A and p € effects*(a) }

Must execute an action a€A that achieves p,
and before that, acheive its preconditions

: Choose the action

that lets you achieve the proposition p as cheaply as possible

jonkv@ida

The h, Heuristic Examples

In the problem below:
= g={ontable(C), ontable(D), clear(A), clear(D), on(A,B), on(B,C) }

So for any state s:

= A(s, g) = max { A,(s, ontable(C)), A,(s, ontable(D)), A4(s, clear(A)),
A4 (s, clear(D)), A4 (s, on(A,B)), A(s, on(B,C)) |}

With unit action costs:

L._.J = 2 [h+ =3, h*=75]
c|B|D
s dﬂ = 2 [h+ =3, h*=7]
+ = =
’ L)

N
Goo s
[c[e]o unu > 3[h+=4,h*=7) Eu

jonkv@ida

The h, Heuristic: Properties

h,(s) is:
Easier to calculate than the optimal delete relaxation heuristic h+
Somewhat useful for this simple BW problem instance

Not sufficiently informative in general

Example:

Forward search in Blocks World using Fast Downward planner, A*

Blocks nodes blind | nodes hl
5 1438 476

6 6140 963

7 120375 24038

8 1624405 392065

9 25565656 14863802
10 >84 million 208691676

(out of mem)

Optimal Classical Planning:

The Admissible h_ Heuristics

jonkv@ida

The h_ Heuristics

Next idea:Why only consider single atoms!?
h,(s)=A(s,g): The most expensive atom
h,(s)=A,(s,g): The most expensive pair of atoms

h,(s)=A4(s,g): The most expensive triple of atoms

=> A family of admissible heuristicsh_=h,, h,, ...
for optimal classical planning

The h, Heuristic

h,(s) = A,(s, g): The most expensive pair of goal propositions

jonkv@ida

Goal = A,(s,2=0 ifgCs // Already achieved
(set) = A,(s,g) =max{A,(s,p,9) | p.qE€E g} otherwise // Can have p=q!
= A(s,p,q) =0 if p,q € s // Already achieved

Pairof = A,(s,p,q) = if Ya€A. p & effects*(a)

propo- or Va€A. q & effects*(a)

sitions = A,(s, p, q) = min {

min { cost(a) + A,(s, precond(a)) | a€A and p,q € effects*(a) },
(maybe min { cost(a) + A,(s, precond(a)U{q}) | a€A, p € effects*(a), q & effects(a) },
p=q) min { cost(a) + A,(s, precond(@)U{p}) | a€A, q € effects*(a), p & effects(a) }
}

h,(s) is more informative than h,(s), requires non-trivial time

m > 2 rarely useful

The h, Heuristic and Delete Effects

In this definition of h,:

= Ay(s,p,q) =min {
cost(a) + min { A,(s, precond(a)) | a€A and p,q € effects*(a) },
cost(a) + min { A, (s, precond(a) U {q}) | a€A, p € effects*(a), q & effects(a) },
cost(a) + min { A, (s, precond(a) U {p}) | a€A, q € effects*(a), p & effects(a) }

}

Takes into account some delete effects
So h, is not a delete relaxation heuristic (but it is admissible)!

Misses other delete effects

= Goal: {p, q, 1}

= Al: Adds {p,q} Deletes {r}
= A2: Adds {p,r} Deletes {q}
= A3: Adds {q,r} Deletes {p}

= A(s, p,q), Ay(s, q,1), Ay(s, p,v) =1: Any pair can be achieved with a single action

= A,(s, g) = max(A,(s, p,q), A (s, q,1), Ay(s, p,r)) =max(1,1,1) =1,
but the problem is unsolvable!

jonkv@ida

jonkv@ida

The h, Heuristic and Pairwise Mutexes

If Ay(s, P Q) =
Starting in s,, can't reach a state where p and q are true

Starting in sy, p and q are mutually exclusive (mutex)

One-way implication!

Can be used to find some mutex relations, not necessarily all

jonkv@ida

The h, Heuristic and Delete Relaxation

In the book:

= Ay(s,p, q) = min {
1 + min { A,(s, precond(a)) | a€A and p,q € effects*(a) },
1 + min { A,(s, precond(a) U {q}) | a€A, p € effects*(a) },
1 + min { A, (s, precond(a) U {p}) | a€A, q € effects*(a) }
}

This is not how the heuristic is normally presented!
= Corresponds to applying (full) delete relaxation
= Uses constant action costs (1)

jonkv@ida

The h_ Heuristics: Calculating

Calculating h_(s) in_practice:

Characterized by Bellman equation over a specific search space
Solvable using variation of Generalized Bellman-Ford (GBF)

(Not part of the course)

0 ifsC1l
h™(s) = § Milgegyees) R (8") +6(s,8") _if [s] < m
maXycg, |s’[<m h'™ (S/)

Cost of cheapest action
taking you from s to s'

jonkv@ida

Accuracy of h_ in Selected Domains

How close is h_(n) to the true goal distance h*(n)?

Asymptotic accuracy as problem size approaches infinity:
= Blocks world: 0 = h_(n) >0h*n)

= For any constant m!

jonkv@ida

Accuracy of h_ in Selected Domains (2)

Consider a constructed family of problem instances:

= 10n blocks, all on the table H

= Goal: n specific towers of 10 blocks each 5 '

What is the true cost of a solution from the initial state? m
= For each tower, 1 block in place + 9 blocks to move

= 2 actions per move B E
= 9*2*n=18nactions | ‘ \7 |

As problem sizes grow,
the number of goals can grow
h,(initial-state) = 4 and plan lengths can grow indefinitely

h,(initial-state) = 2 — regardless of n!

= All instances of clear, ontable, handempty already achieved
= Achieving a single on(...) proposition
requires two actions

* Achieving two on(...) propositions But h_(n) only considers a constant

h(initial-state) = 6 number of goal facts!
Each individual set of size m does not
necessarily become harder to achieve,
and we only calculate max, not sum...

jonkv@ida

Accuracy of h__ in Selected Domains (3)

How close is h_(n) to the true goal distance h*(n)?

Asymptotic accuracy as problem size approaches infinity:
= Blocks world: 0 = h_(n) >0h*n)

= Gripper domain: 0
= Logistics domain: 0 Scill boll — i . -
t —t -

. Miconic.STRIPS: 0 ill useful s is 2 worst-case analysis
o as sizes approach infinity!

* Miconic-Simple-ADL: 0 + Variations such as additive h_ exist

= Schedule: 0

= Satellite: 0

For any constant m!

Details:

= Malte Helmert, Robert Mattmuller
Accuracy of Admissible Heuristic Functions in Selected Planning Domains

jonkv@ida

The h, Heuristic Accuracy

Experimental accuracy of h2 in a few classical problems:

[Tnstance | Opt. | A(root)
E}ggﬁ::?l g ? ‘JL Seems to work well
' for the blocks world...
blocks-15 14 11
cight-1 31 15
eight-2 31 15
eight-3 20 12
grid-1 14 14
gl}ppeli—‘l) ? Less informative for the
gl }ppel—Z %) gripper domain!
gripper-3 15 4

The h_ Heuristic Nodes Expanded

5
6
7
8
9

1438

6140

120375

1624405
25565656 (25.25)

>84 million
(out of mem)

476 112 |18
963 78 23
24038 1662 36
392065 35971

14863802

208691676

jonkv@ida

Backward Search and h,,, Heuristics

jonkv@ida

Forward Search with h_

Consider h_ heuristics using forward search:

Need
A_(s1, g),
A_(s2, g),
Need
A (s3, g), A_(s4, g),
Need Q ; N
A_(s0, g) ’
c[B|D E 54
s0 »
s2 e ——
B|D -
u s5 C)
D g —
I w

jonkv@ida

Forward Search with h_: lllustration

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D)
cost O cost 2 cost 2 Tostll cost O cost 0
stack(A,B)
. . |
holding(A) clear(B) holding(B) clear(C) ~—
cost1 cost O co !t 1 cogt 1

handempty clear(A) on(A,C)
cost 0 cost O cost 0 pickup(B)
i

cost O cost 0

handempty clear(A) on(A,D)

More calculations show:
This is expensive...

handempty | clear(A) on(A,C) ﬁ Bu

current: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

Calculations depend very much on the entire current state!

New search node = new current state = recalculate A_ from scratch

Backward Search with h__

jonkv@ida

In backward search:

Need
A_(s0, g3), g3
A, (s0, g4),
A_(s0, g5)
DA

same starting state =»
use the old A, values

for previously
encountered

goal subsets

S

|m I

alw

)
s0 u
B|D]

A4(s0, g1)
is the max of

A,(s0, ontable(C)),
A,(s0, ontable(D)),

A,(s0, clear(A)),

A,(s0, holding(A))

Need
A, (s0, gl),
A_(s0, g2)

ek

A
D

g2
D

A,(s0, g0)
is the max of
A,(s0, ontable(C)),
A,(sO, ontable(D)),
A (s0, clear(A)),
A (s0, clear(D)),
A (s0, on(A,B)),

Need
A_(s0, g0)

HSPr, HSPr*

Results:

jonkv@ida

Faster calculation of heuristics

Not applicable for all heuristics!

= Many other heuristics work better with forward planning

Heuristics for Satisficing
Forward State Space
Planning

jonkv@ida

Optimal and Satisficing Planning

Optimal planning often uses admissible heuristics + A*

Are there worthwhile alternatives!?

If we need optimality:

Can’t use non-admissible heuristics

Can’t expand fewer nodes than A*

But we are not limited to optimal plans!

High-quality non-optimal plans can be quite useful as well

Satisficing planning
Find a plan that is sufficiently good, sufficiently quickly

Handles larger problems

Investigate many different points on the efficiency/quality spectrum!

Theh,,, Heuristic Function

Also called h,

jonkv@ida

Background

h_ heuristics are admissible, but not very informative

Only measure the most expensive goal subsets

For satisficing planning, we do not need admissibility

What if we use the sum of individual plan lengths for each atom!
Result:h_,;, also called h,

The h,, Heuristic: Example

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D)

cost O g0Ost 2 cost cost 0 cost 0 cost 0

h,ad(So) =
stack(A,B) Sudrcrll(g’B) _
holding(A) clear(B) holding(B) clear(C) 5

cost 1 cost O co !t 1 cogt 1

handempty clear(A) on(A,C)
cost 0 cost O cost 0 pickup(B)
I LN, | ncempty | dear®)

cost O cost 0

handempty clear(A) on(A,D)

More calculations =» expensive... handempty Gias h on(A,C) dnu

so: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

jonkv@ida

The h,;, Heuristic: Formal Definition

h_,.(s) =h,(s) = A,(s, g) — the heuristic depends on the goal g

For a goal, a set g of facts to achieve:
A,(s, g) = the cost of achieving the most expensive proposition in g

= NAys,g)=0 ifgCs /I Already achieved entire goal
= Ay(s, @)=

Ao(s,p) | pEg} @ otherwise // Part of the goal not achieved

The cost of each
atom p in goal g

Sum:We assume we
have to achieve

every subgoal
separately

So how expensive is it to achieve a single proposition?

%
I~
jonkv@ida

The h,;, Heuristic: Formal Definition

h_,.(s) =h,(s) = A,(s, g) — the heuristic depends on the goal g

For a single proposition p to be achieved:
= Ay(s, p) = the cost of achieving p from s

= Ays,p)=0 ifp€Es /I Already achieved p
= Ay(s, p) =00 if Va€A. p & effects*(a) // Unachievable
= QOtherwise:

Ay(s, p) = { cost(a) + A(s, precond(a)) | a€A and p € effects*(a) }

Must execute an action a€A that achieves p,
and before that, acheive its preconditions

Min: Choose the action

that lets you achieve p as cheaply as possible

The h,, Heuristic: Example

h,44(s) = By(s, g)

For another example:

ontable(E): unstack(E,A), putdown(E) =» 2

clear(A): unstack(E,A) = 1

on(A,B): unstack(E,A), unstack(A,C), stack(A,B) = 3

on(B,C): unstack(E,A), unstack(A,C), pickup(B), stack(B,C) = 4

on(C,D): unstack(E,A), unstack(A,C), pickup(C), stack(C,D) =» 4

on(D,E): pickup(D), stack(D,E) =» 2 prN

=» sum is 16 [h+ =10, h*=12]
E
Hoo —
B[D

stimate, not admissible!

0
3
—
=
o
@
&
(¢
/]
a
—
H
&
AL
@
o
c
LgL
2)
73
O
>
<
(0
H‘
@

jonkv@ida

jonkv@ida

The h,,, Heuristic Admissibility

Why not admissible!?

Does not take into account interactions between goals

Simple case: Same action used
= on(A,B): unstack(E,A); unstack(A,C); stack(A,B) = 3
= on(B,C): unstack(E,A); unstack(A,C); pickup(B); stack(B,C) = 4

More complicated to detect:
= Goal: pandq

= Al: effect p

= A2: effect q

= A3: effect pand g

= To achieve p: Use Al — No specific action used twice

- To achieve q: Use A2 — Still misses interactions

Hill Climbing

in HSP (Heuristic Search Planner)

Satisficing planning, in a nutshell:

Try to move quickly towards a reasonably good solution

o
=
®

—
e

=

(=]
o —

Hill Climbing (1)

What about Steepest Ascent Hill Climbing?

Greedy local search algorithm for optimization problems

() Start in some current location

s=(X,Y) s={on(A,C),...}

Objective Functian

Elev ation

'5'!:"!0’0 i‘t“ﬂ\\' i
I : R
s i ”t%é‘# .

Y-Coordinate v o ¥-Coordinate

o
—
®

—
e

=

(=]
o —

Hill Climbing (2)

(2) Find the local neighborhood, which can easily be reached

Example: Points (x,y)

at a distance of 0.1 All successors
Objective Function Of state s

Elev ation

—_

i
o L
< T

(IELN]
B
)
it]
4 e L
= L e L S S e

Y-Coordinate v o ¥-Coordinate

Hill Climbing (3)

(3) Make a locally optimal choice at each step:
Chooses the best successor/neighbor

Hill Climbing (4)

We don’t have a strict state quality measure!

Goal states are perfect, other states are not solutions

But minimizing heuristic value might lead to a goal state...
(Minimize h(n) = maximize — h(n))

=> A good heuristic should provide useful ordering A

c[8|D

@ =

o
=
®

—
e

=

(=]
o —

jonkv@ida

Hill Climbing (5)

Example of hill climbing search:

h(n)=50]

g

h(n)=40] h(n)=72] h(n)=44]

T~

h(n)= 42] n(n)=55] n(n)=39]

— T~

i(n)=30] h(n)=33] n(n)=37]

.

h(n)=25] h(n)=26] (n) =22 J

Hill Climbing (6)

jonkv@ida

A* search:

n € initial state

open € @
loop
if n

is a solution then return n

expand children of n
calculate h for children

add

children to open

n € node in open

end loop

minimizing f(n) = g(n) + h(n)

Be stubborn:

| Only consider
children of this node,
don't even keep track
of other nodes
to return to

Steepest Ascent
Hill-climbing
n € initial state

loop
if n is a solution then return n
expand children of n
calculate h for children

if (some child decreases h(n)):
n < child with minimal h(n)
else stop // lodal optimum
end loop

over finding a good plan

jonkv@ida

Local Optima (1)

(4) When there is nothing better nearby: Stop!

HC is used for optimization
= Any point is a solution,

we search for the best one
Might find a local optimum:
The top of a hill 1

P /ﬂ '/ / '
IR -,.-,;’f"*

<5 /’ 2

Y-Coordinate ¥-Coordinate

jonkv@ida

Local Optima (2)

Classical planning =» absolute goals Steepest Ascent

Even if we can't decrease h(n), Hill-climbing
we can't simply stop n € initial state
loop
if is a solution then return n
h(n)=50] expand children of n
calculate h for children
A if (some child decreases h(n)):
h(n)=52] h(n)=72] h(")=55] n €< child with minimal h(n)
else stop // local optimum

end loop

Local Optima (3)

Standard solution to local optima:
Random restart

Randomly choose another node/state

Continue searching from there

Hope you find a global optimum
eventually

Can planners choose

Steepest Ascent

Hill-climbing with Restarts

n € initial state

loop
if is a solution then return n
expand children of n

calculate h for children

if (some child decreases h(n)):
n €< child with minimal h(n)

arbitrary random states?

» else n € some random state
end loop

Elewation

Y-Coordinate

#-Coordinate

o
)
E)

—
e

o
o —

jonkv@ida

Local Optima (4)

In Plannmg: Steepest Ascent
The solution is not a state Hill-climbing with Restarts (2)
but the path to the state n € initial state
loop

Random states may not be

.. if n is a solution then return n
reachable from the initial state

expand children of n
calculate h for children

So: if (some child decreases h(n)):
Randomly choose another n € child with minimal h(n)
already visited node/state » else n < some rnd. visited state

This node is reachable! end loop

Elewation

Y-Coordinate v o w-Coordinate

(onAB) 2 133
(onBO() 3 3 44
(clearA) 0 100
(clear D) 0 001
(ontableC) 0 0 0 O
(ontableD) 0 0 0 1
h(n)=sum 5 579
5

h=5 7

C[B|D
9

No successor improves the

heuristic value; some are equal!

We have a plateau...

jonkv@ida

Jump to a random state immediately?

No: the heuristic is not so accurate —
maybe some child is closer to the goal
even though h(n) isn’t lower!

=>» Let’s keep exploring:
Allow a small number of consecutive
moves across plateaus

i_

?)1,.1.3 N
g U?:rb e

A plateau...

(Vg
o |
o
QJ
i —
SO
Q.

jonkv@ida

Hill Climbing with h,,: Local Optima

(onAB) 2 133 022 00 If we continue, all successors
(onBC) 3 344 322 44 have higher heuristic values!
(clearA) 0 100 000 00D .
(clear D) 0 001 010 01 We have_a Ioc.al optimum...
(ontableC) 0 000 00O 10 Impasse —.optlmum or plateau
(ontabeD) 0 001 000 011 Some impasses allowed
h(n)=sum 5 579 354 56
9
45
5 DJ
: D
G
h=5 u / /
C|B[D
3+7: pickup(C) g
9 3+ 4: pickup()E
3+ 8: pickup(D) u

o
=
®

—
e

=

(=]
o —

Local Optima

Local optimum:You can't improve the heuristic function in one step

But maybe you can still get closer to the goal:
The heuristic only approximates our real objectives

Objective Function

25+~
24
5 15-
LN dm
N IR s
) ,';ug“‘\\\\\\ :
0s AR TTITHIN
"5

-]
Y-Coordinate u #-Coordinate

jonkv@ida

Impasses and Restarts

What if there are many impasses?

Maybe we are in the wrong part of the search space after all...

= Misguided by h,,, at some earlier step

=>» Select another promising expanded node where search continues

HSP Example

jonkv@ida

Example from HSP | .x: ,
Its children seem to

* Hill Climbing with h, be worse. If we have
allowing some impasses reached the impasse
(plus some other tweaks) threshold:

There’s a plateau Now the best child
here... : :

is an improvement
But HSP allows a
few impasses!

=» Move to the
best child

...in that case we
might restart from
this node.

HSP 1: Heuristic Search Planner

HSP 1.x: h_ 4, heuristic + hill climbing + modifications
Works approximately like this (some intricacies omitted):

= impasses = 0;
unexpanded = { };
current = initialNode;

while (not yet reached the goal) {

children € expand(current); // Apply all applicable actions
if (children = @) {
Deadend > current = pop(unexpanded);
restart } else {
bestChild € best(children); // Child with the lowest heuristic value
Essentially add other children to unexpanded in order of h(n); // Keep for restarts!
hill-climbing, but if (h(bestChild) > h(current)) {
notall StEDS have impasses++;
to move “up” if (impasses == threshold) {
current = pop(unexpanded); // Restart from another node
porany impasses = 0;
downhill/plateau ’
moves = escape } Slmple structure,
1 } but highly competitive at its introduction

(using h,44 as a heuristic)

jonkv@ida

Heuristics part Il

Pattern Database Heuristics

Pattern Database Heuristics: Intro

Many heuristics solve subproblems, combine their cost

In each subproblem for

In each subproblem for

jonkv@ida

the h , heuristics:

Pick m goal literals at a time
lgnore the others
Solve a subproblem optimally

‘ clear(A) H n(A,B) H on(B,C) H ntable(C) H clear(D) H ontable

ble(D) ‘
ost 2 cost0 cost0 cost 0 H
\ hi(so) =
B,C) max(2,2) =
2
olding clear!
cqit1 coft1

holdin, g(A) clear(B)

sg: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

Pattern Database (PDB) Heuristics

Pick some ground facts from the problem
lgnore the others
Solve a subproblem optimally

epi@Ayuof

4
)

N

K7,
|G’
o

@)

3

(7y)

R
(@)
O
fa)
)
-
=
£

(7]

Q

)

e

i)
(Vg)
G K
b fa)
o I
o >
V) 2
-

OJ
| >N
A =
> LS.
2
S o
J C
<L o
O
(7]
C
(@)
@)

BW4

BW4: Ground Facts

jonkv@ida

All ground facts in this problem instance:

(onAA) (on A B) (onAC) (on A D)
(onBA) (on B B) (on B C) (on B D)
(onCA) (on CB) (onCC) (on CD)
(onDA) (on D B) (on D C) (on D D)
(ontable A) (ontable B) (ontable C) (ontable D)
(clear A) (clear B) (clear C) (clear D)
(holding A) (holding B) (holding C) (holding D)
(handempty)

BW4: Potential Subproblem

jonkv@ida

Example: only consider some ground facts related to block A
(on AB), (on A C), (on AD), (clear A), (ontable A)

Initial state:

A[B|CID

Goal:

ontable(A)
ontable(B)
ontable(C)
ontable(D)
clear(A)
clear(B)
clear(C)
clear(D)
handempty

ontable(A)

—

clear(A) An "abstract

state"

clear(A)
on(A,B)
on(B,C)
on(C,D)
ontable(D)
handempty

clear(A)
on(A,B)

—)

BW 4: Potential Subproblem (2)

Including (on A B), (on A C), (on A D), (clear A), (ontable A)

Example action: (unstack A B)

= Before transformation:
:precondition (and (handempty) (clear A) (on A B))
-effect (and (not (handempty)) (holding A) (not (clear A)) (clear B)
(not (on A B)))

= After transformation:
:precondition (and (clear A) (on A B))
-effect (and (not (clear A)) (not (on A B)))

Loses some preconditions

and effects

Example action: (unstack C D)

= Before transformation:
:precondition (and (handempty) (clear C) (on C D))
-effect (and (not (handempty)) (holding C) (not (clear C)) (clear D)
(not (on CD)))

jonkv@ida

= After transformation:
:precondition (and) Loses all preconditions and
-offect (and) effects =» never used!

jonkv@ida

PDB Heuristics: Patterns

The set of ground facts is called a pattern

Many states match the pattern,
are represented by a single abstract state

Such states are considered equivalent

’ ’ b

aboveB=clear, aboveB=clear, aboveB=clear,
’ ’ ’ represented aboveB=clear,
aboveD=clear, aboveD=clear, aboveD=clear, P . _
N - by a single aboveD=clear,
O A ’ abstract osB=on-table,
posB=on-table, posB=on-table, posB=on-table P _
state posD=on-table
posD=on-table, posD=on-table, posD=on-table,

A pattern generally contains few variables/facts — sometimes only one!

jonkv@ida

Relaxation?

Is this a relaxation? osizlolage S
ontable(B)
Yes ontable(C)
Facts disappear from states sellofae) ‘
= T clear(A) clear(A)
= S"={snincluded|s € S} clear(B)
clear(C)
. ' clear(D)
But also from precond/goal requirements! handempty

= |f a; could be executed in s,
transform(a;) can be executed in s N included

If ' is the state transition function given transformed actions, then
y'(transform(a;), s N included) = y(a;, s) N included

=» executable action sequences are preserved

If g € s,then g Nincluded € s N included

So: Solutions are preserved (but new solutions may arise)

jonkv@ida

BW4: State Transition Graph

New reachable state transition graph:

Current state: Everything on the table, hand empty, all blocks clear
= Abstract state: sO = { (ontable A), (clear A) }

Goal state:AonBonConD

= Abstract goal: s64 =
{ (onAB), (clear A) }

Sufficiently few states
to quickly compute
optimal costs

= Cost is at least 2:
Shortest path sO =» s64

Optimal cost of a relaxation T Note: Redundant edges

> are omitted for clarity
admissible heuristic (multiple actions with the same effect)

jonk\;@ida

BW4: Subproblem 2

Subproblem 2: Some facts related to B

Current state: Everything on the table, hand empty, all blocks clear
= Abstract state: { (ontable B), (clear B) }

Goal state:
AonBonConD

= Abstract goal: B DTSHEASSHE St(E, . un(B,A) \un(B,C)
{(onBC)}

Find a path,
compute its cost

jonkv@ida

BW4: Subproblem 3

Subproblem 3: Only consider (holding ?x) facts...

Also yields a cost

IO —
o/mk

As in h,,, take the maximum of these costs = admissible heuristic

Pattern Database Heuristics:

State Representation

jonkv@ida

PDB Heuristics: State Variables

For PDB heuristics, a state variable representation is useful

Typically:
= Reduces the number of facts

= Provides more information about which states are actually reachable!

Model problems using the state variable representation,
or let planners convert automatically from predicate representation

PDB Heuristics: State Variables (2)

jonkv@ida

Example: Blocks world with 4 blocks

536,870,912 states (reachable and unreachable)
in the standard predicate representation

But in all states reachable from "all-on-table" (all "normal” states):
= Block A is:
Held in the gripper

Clear — at the top of a tower (possibly a tower of one block)
Below B

Below C, or
Below D

= Equivalently: Exactly one of these facts is true in every reachable state (mutex!)
(holding A), (clear A), (onB A), (on CA), (onD A)

= =>» Remove those facts,
introduce state variable aboveA € { clear, B, C, D, holding }

jonkv@ida

Example, continued
536,870,912 states (reachable and unreachable) in predicate representation

20,000 states (reachable and unreachable) in state variable representation:
= aboveA € {clear, B, C, D, holding }
= aboveB € {clear, A, C, D, holding }
= aboveC € { clear, A, B, D, holding }

= aboveD € {clear, A, B, C, holding } Using state variables is useful

= posA € {on-table, other} because PDBs work better

with fewer "irrelevant states”
in the state space...

The state variable translation
is not part of the PDB heuristic!

= posB € { on-table, other }
= posC € { on-table, other}
* posD € { on-table, other } ...s0 we can model using state variables,

= hand € { empty, full } or let the planner rewrite the problem
from PDDL predicates.

Provides more structure: Obvious that A can't be under B and under C

Useful when ignoring facts: Ignore where A is, care about where B is

jonkv@ida

PDB Heuristics: Rewriting the Problem

Rewriting works as before
Suppose the pattern is { aboveB, aboveD, posB, posD }

Rewrite the goal

= Suppose that the original goal is expressed as
Original: { aboveB = A, aboveA = C, aboveC = D, aboveD = clear, hand = empty }

= Abstract: {aboveB = A, aboveD = clear} B u
Rewrite actions, removing some preconds / effects LH.J

= (unstack A D) no longer requires aboveA = clear

= (unstack B C) still requires aboveB = clear

aboveB € { clear, A, C, D, holding }
aboveD € { clear, A, B, C, holding }
posB € { on-table, other }

posD € { on-table, other }

PDB Heuristics: Gripper Example

A common restricted Compact state variable representation:

gripper domain: loc(ball)) € { room1, room2, gripperl, gripper?2 }
loc-robot € { room1, room?2 }

One robot with

two grippers
2 * 4 states, some unreachable — which ones?

Two rooms . :
Standard predicate representation: 24"* = 42n+2

All n balls originally in
the first room

Obijective: All balls in
the second room

Possible patterns:

{loc(ball,) } =» 4 abstract states
{loc(ball,), loc-robot } =» 8 abstract states
{loc(bally) | k < n} =>» 4" abstract states

{loc(bally) | k < log(n)} =>» 4'°&™ abstract states

jonkv@ida

Pattern Database Heuristics:

Computation

jonkv@ida

PDB Heuristics: Databases!

Because we keep few state variables:

Many real states map to the same abstract state
=>» Every abstract state may be encountered many times during search

=» Cache calculated costs

Dijkstra efficiently finds optimal paths from all abstract states

=>» Precalculate all heuristic values for each pattern
Store in a look-up table — a database

PDB Heuristics: Calculating (1)

jonkv@ida

|: Find all abstract states reachable from the abstract initial state

]
aboveB=clear,
.
aboveD=clear,

.

posB=on-table,

posD=on-table,

[lllustration only; not the same problem]

jonkv@ida

PDB Heuristics: Calculating (2)

2: Find all reachable abstract goal states

= Real goal = {aboveB = A, aboveA = C, aboveC = D, aboveD = clear,
hand = empty }
= Abs. goal = {aboveB = A, aboveD = clear }

= Abs. goal states= { aboveB = A, aboveD = clear, posB = on-table, posD = on-table },
{ aboveB = A, aboveD = clear, posB = on-table, posD = other },
{ aboveB = A, aboveD = clear, posB = other, posD = on-table },
{ aboveB = A, aboveD = clear, posB = other, posD = other }

o
=
®

—
-

=

o
o —

PDB Heuristics: Calculating (3)

3: Compute the database

For every reachable abstract state,
find a cheapest path to any abstract goal state

Can be done with backward search
from the set of reachable abstract goal states, using Dijkstra

PDB Heuristics: Calculating (4)

jonkv@ida

Abstract goal states

aboveB = A,
aboveD = clear,
posB = other,
posD = other

aboveB = A, aboveB = A, aboveB = A,
aboveD = clear, aboveD = clear, aboveD = clear,
posB = on-table, posB = on-table, posB = other,
posD = on-table posD = other posD = on-table

)

<

~

O

a
aboveB = clear, aboveB = A, aboveB = A,
aboveD = clear, aboveD = holding, aboveD = holding,
posB = on-table, posB = on-table, posB = on-table,

posD = on-table posD = on-table posD = other

jonkv@ida

PDB Heuristics; Databases

Abstract goal states
aboveB = A, aboveB = A, aboveB = A, aboveB = A,

aboveD = clear, aboveD = clear, aboveD = clear, aboveD = clear,

posB = on-table, posB = on-table, posB = other, posB = other,

posD = on-table posD = other posD = on-table posD = other
cost 0 4 cost 0 o cost 0 o cost 0

aboveB = clear, aboveB = A, aboveB = A,

aboveD = clear, aboveD = holding, aboveD = holding, and so on

posB = on-table, posB = on-table, posB = on-table, for all reachable

posD = on-table posD = on-table posD = other abstract states
cost1 cost1 cost1

This database represents an admissible heuristic!

Given a real state:
Find the unique abstract state that matches; return its precomputed cost

PDB Heuristics: Complexity

Database:

Stores one cost for every abstract state s

= Cost is optimal within the relaxed problem

= Cost is admissible for the “real” problem

For the database to be computable in polynomial time:

As problem instances grow,
the pattern can (only) grow to include a logarithmic number of variables

Problem size n, maximum number of values for a state variable d =
number of pattern variables: O (logn),

number of abstract states for the pattern: 0(d!°8™) = 0(n!°8 %)

Dijkstra is polynomial in the number of states

jonkv@ida

How are PDBs used
when solving the original planning problem ?

Step 1: Using a single pattern

jonkv@ida

PDB Heuristics in Forward Search (1)

Step |: Automatically generate a planning space abstraction

A pattern, a selection of state variables to consider

Choosing a good abstraction is a difficult problem!

= Different approaches exist...

Step 2: Calculate the pattern database

As already discussed

jonkv@ida

PDB Heuristics in Forward Search (2)

Step 3: Forward search in the original problem

For each new successor state sy, calculate heuristic value hy ;5 (51)

= Example: s;={ aboveD = A, aboveA = C, aboveC = clear, aboveB = holding,
posA = other, posB = other,

posC = other, posD = on-table, B L.J

hand = full } H

D

Example: s; ={ aboveB = holding, aboveD = A, posB = other, posD = on-table }

= Convert this to an abstract state

= Use the database to quickly look up hyqp(s;) =
the cost of reaching the nearest abstract goal from s;

aboveB = holding, aboveD = A, posB = other, posD = on-table =» cost n/
aboveB = holding, aboveD = A, posB = other, posD = other = cost n2

How can PDB heuristics
become more informative ?

jonkv@ida

Accuracy for a Single PDB Heuristic

How close to h*(n) can an admissible PDB-based heuristic be?

Assuming polynomial computation:
= Each abstraction can have at most O(log n) variables/groups

= h(n) < cost of reaching the most expensive subgoal of size O(log n)

Significant differences compared to h_, heuristics!

Subgoal size is not constant but grows with problem size

On the other hand, does not consider all subgoals of a particular size

Decides state variables in advance — for h,,, facts are chosen on each level

But still, log(n) grows much slower than n

= =» For any given pattern, asymptotic accuracy is (often) 0

= As before, practical results can be better!

jonkv@ida

Improving PDBs

How to increase information?

Can't increase the size of a pattern beyond logarithmic growth...

Can use multiple abstractions / patterns!

For each abstraction, compute a separate pattern database

Each such cost is an admissible heuristic

= So the maximum over many different abstractions
is also an admissible heuristic

What is the new level of accuracy!?
Still O... asymptotically
But this can still help in practice!

jonkv@ida

Additive PDB Heuristics (1)

To improve further:

Define multiple patterns

Sum the heuristic values given by each pattern

As in h_,,, this could lead to overestimation problems

Some of the effort necessary to reach the goal is counted twice

To avoid this and create an admissible heuristic:

Each fact should be in at most one pattern
Each action should affect facts in at most one pattern
=>» Additive pattern database heuristics

Additive PDB Heuristics (2)

BW: Is p1={facts in even rows}, p2={facts in odd rows} additive?

No: pickup(B) affects {aboveB,posB} in p1, {hand} in p2

jonkv@ida

aboveB € { clear,A, C, D, holding }

aboveB aboveD € { clear;A, B, C, holding } aboveA

aboveD \

posB

posB € { on-table, other } aboveC

posD € { on-table, other } posA

posC

pl

N
N

One potential problem:

Both patterns could use pickup(B) in their optimal solutions

= sum counts this twice! This is what we're trying to avoid...

Additive PDB Heuristics (3)

BW:Is pl={aboveA}, p2={aboveB} additive?
= No: unstack(A,B) affects {aboveB} in p1, {aboveA} in p2

= True for all combinations of aboveX

aboveA unstack(A,B) aboveB

unstack(A,C)

unstack(A,D) aboveD

An additive PDB heur. could use one of these:

* pl={aboveA} This formulation of the

= pl ={aboveA, aboveC, aboveD } Blocks World is

- .. "connected in the wrong way"
Can't have two separate patterns p1,p2 for this approach

both of which include an aboveX to work well

= Those aboveX will be directly connected by some unstack action

%
o
jonkv@ida

Additive PDB Heuristics (4)

"Separating” patterns in the Gripper domain:

loc-robot

pick(balll, gripper2)

pick(balll, gripperl)

loc(balll)
drop(balll, gripper?)

drop(balll, gripperl)

pick(ball2, gripperl) pick(ball2, gripper2)
loc(ball2)
drop(ball2, gripperl) drop(ball2, gripper?)

(T1oddri8)pasn
(zraddui8)pasn

Ny
-

loc(ball,) € { room1, room?2, gripperl, gripper?2 }
loc-robot € { room1, room?2 }
used(gripper,) € { true, false }

jonkv@ida

Additive PDB Heuristics (5)

loc-robot

loc(balll)

(zraddui8)pasn

c
0
0]
ol
N
0Q
a
o
)
Q)
ﬁ
=
N

loc(ball2)

p2 = {loc(ball2) }

For each pattern we chose one variable
Then we have to include all actions affecting it

The other variables those actions affect [used()] don't have to be part of any pattern!

Additive PDB Heuristics (6)

Notice the difference in structure!
unstack(A,B)

unstack(A,C) aboveC

unstack(A,D) aboveD

BW: Every pair of aboveX facts has a direct connection through an action

pick(balll, gripperl) pick(balll, gripper2)
e loc(balll) e
drop(balll, gripperl) drop(balll, gripper?)
pick(ball2, gripperl) pick(ball2, gripper?)
e loc(ball2) e
drop(ball2, gripper?)

drop(ball2, gripperl)

(zradduaid)pasn

c
n
D
0.
—~
Oje}
2.
e
o
1)
N
=
%

Gripper: No pair of loc() facts has a direct connection through an action

Additive PDB Heuristics (7)

When every action affects facts in at most one pattern:

jonkv@ida

The subproblems we generated are completely disjoint
= They achieve different aspects of the goal

= Optimal solutions must use different actions

The heuristic never tries to generate

optimal plans for used(gripperl) —
we have not included it in any pattern

The heuristic's optimal plans for {loc(balll)} can only use these actions
pick(balll, gripperl)
‘ drop(balll, gripperl) |

pick(ball2, gripperl)

pick(balll, gripper?)

' drop(balll, gripper2) ‘
‘ pick(ball2, gripper?) ’
ol

rop(ball2, gripper2)

loc(balll)

(T1odduai8)pasn
(zradduid)pasn

loc(ball2)

drop(ball2, gripperl)

The heuristic's optimal plans for {loc(ball2)} can only use these actions

Additive PDB Heuristics (8)

= Avoids the overestimation problem we had with h_,

jonkv@ida

Problem earlier: This cannot happen

Goal: pandgq when every action affects facts
Al: effect p in at most one pattern

A2: effect q

A3: effect pand q =» The abstractions

are additive

To achieve p: Heuristic uses Al =» Adding costs

To achieve q: Heuristic uses A2 from multiple heuristics
yields an

Sum of costs is 2 — optimal cost is |, using A3 admissible heuristic!

Additive PDB Heuristics (9)

Can be taken one step further...

jonkv@ida

Suppose we have several sets of additive abstractions:

= Can calculate an admissible heuristic from each additive set,
then take the maximum of the results
as a stronger admissible heuristic

Max =
admissible heuristic hz?;db (s) = max(hzlgdb (s), hzz,db (s)

Sum => Sum =>
admissible heuristic hzl,db (s) admissible heuristic hzzjdb (s)
pl p2 p3 p4 p5 p6 p7 p8 p9

4 patterns satisfying 5 patterns satisfying
additive constraints additive constraints

jonkv@ida

Additive PDB Heuristics (10)

How close to h*(n) can an additive PDB-based heuristic be?

For additive PDB heuristics with a single sum,
asymptotic accuracy as problem size approaches infinity...

In Gripper:

In state s, there are n balls in room|, and no balls are carried

Additive PDB heuristic hZ55 (s,)):

= One singleton pattern for each ball location variable loc(ball,)

= For each pattern, the optimal cost is 2
pick(ball,room|,gripper|): loc(ball)=room| =>» loc(ball)=gripper|
drop(ball,room2,gripperl): loc(ball)=gripper| =» loc(ball)=room?2

= hfDB(s,) = sum for n balls = 2n

Real cost:

= Use both grippers: pick, pick, move(room |,room2), drop, drop, move(room2,room|)
= Repeat n/2 times, total cost ~ 6n/2 = 3n

=>» Asymptotic accuracy 2n/3n = 2/3

Additive PDB Heuristics (11)

How close to h*(n) can an additive PDB-based heuristic be?

jonkv@ida

For additive PDB heuristics with a single sum,
asymptotic accuracy as problem size approaches infinity:

h+ (too slow!) h2 Additive PDB

Gripper 2/3 0 2/3
Logistics 3/4 0 1/2
Blocks world | /4 0 0

Miconic-STRIPS 6/7 0 1/2
Miconic-Simple-ADL 3/4 0 0

Schedule | /4 0 1/2
Satellite 1/2 0 1/6

Only achieved if the planner finds the best combination of abstractions!

This is a very difficult problem in itself!

Heuristics part |V

An Overview of

Landmark Heuristics

jonkv@ida

Landmark Heuristics (1)

Landmark:
’a geographic feature used by explorers and others
to find their way back or through an area”

jonkv@ida

Landmark Heuristics (2)

Landmarks in planning:
Something you must pass by/through in every solution to a specific planning problem

Assume we are currently in state s...

Fact Landmark for s: Formula Landmark for s:
A fact that is not true in s, A formula that is not true in s,
but must be true at some point but must be true at some point
in every solution starting in s in every solution starting in s
clear(A) clear(A) A handempty

holding(C)

andmark Heuristics (3)

jonkv@ida

Facts and formulas, not states! Why?

Usually many paths lead
from s to a goal state

= Few states are shared
among all paths

= Many facts occur
along all paths

Not ”"we must reach the
landmark state’’!

Instead ’we must reach
some state that satisfies
the fact/formula landmark”

SO L

G, TR PRI 2 el ae =04

e, °\§?§z@@ . A %ﬁ >
ST GESR 'ﬁ%‘f‘fi i

Landmark Heuristics (4)

jonkv@ida

Landmarks in planning:

Something you must pass by/through in every solution to a specific planning problem

Assume we are currently in state s...

Fact Landmark for s:

A fact that is not true in s,
but must be true at some point
in every solution starting in s

d L

clear(A)
holding(C)

Action Landmark for s:

An action that must be used
in every solution starting in s

g oD

i

...so the effects of
action landmarks

are fact landmarks,
and so are their

u preconds
unstack(B,C) (except those facts
putdown(’B) that are .already true

stack(D,C) in s)

...but not putdown(C)! (Why?)

Landmark Heuristics (5)

Generalization:

o
S
jonkv@ida

Disjunctive action landmark {a4, a,, a3} for state s

= Every solution starting in state s and reaching a goal
must use at least one of these actions

From action to fact:

= Every fact in (N{eff(a)|a € landmark} — s) is a fact landmark for s

From fact to action:

= [f p is a fact landmark,
then {a € A | p € eff(a)} is a disjunctive action landmark for s

= Not necessarily minimal:
Some of the actions may not be required
(removing an action can still result in a disjunctive A.L.)

Finding Landmarks:

A (Too) General Technique

jonkv@ida

Finding Landmarks: General Technique

One general technique for discovering landmarks:

Current planning problem, P Modified planning problem, P’

Initial state does not include atom A

— Removed all actions
that add atom A
...then every solution to P If this problem (P’) is unsolvable...
must use one of the removed actions Test:
o Delete relaxation of P’ is
=> Action set is a disj. act. landmark unsolvable,
= Atom A is a fact landmark or h, (sp) =, or...

= P’ is unsolvable

Unsolvable when removing a set of actions

=» some action in the set must be used = disjunctive action landmark!

Finding Landmarks: General Technique (2)

jonkv@ida

This technique is very general

Applicable to any planning problem, any atom

General techniques tend to be widely applicable but slow...

jonkv@ida

Verifying Landmarks (1)

How difficult is it to verify that an action is an action landmark,

in the general case!
Suppose we can verify this
Then given any STRIPS problem P, we can determine if it has a solution:

= Add a new action:

cheat
:precond true
-effects goal-formula

= If cheat is an action landmark, then it is needed in order to solve the problem
=» the original problem was unsolvable

=> As difficult as solving the planning problem (PSPACE-complete)

Porteous et al (2001): On the Extraction, Ordering, and Usage of Landmarks in Planning

Verifying Landmarks (2)

How difficult is it to verify that a fact is a fact landmarlk,

in the general case!
Suppose we can verify this

Then given any STRIPS problem P, we can determine if it has a solution:

= Add a new fact:
cheated (false in the initial state)

= Add new action:

cheat
:precond true :effects
(and cheated goal-formula)

= If cheated is a fact landmark,
then cheat was necessary =» the original problem was unsolvable

=>» Again , as difficult as solving the planning problem

jonkv@ida

But of course there are special cases...

Finding Landmarks:

Efficiently

Means-Ends Analysis (1)

Discover landmarks using means-ends analysis

B g
*

D

The goals are (obviously) fact landmarks,

except those true in the current state:
clear(D), on(D,C), on(A,B), ontable(B)

on(D,C) is a landmark,
on(D,C) is not true in the current state (sO)
=» we must cause on(D,C) with an action

All actions causing on(D,C) require holding(D),

which is not true in the current state
=> holding(D) is a landmark!

Actions causing holding(D) require handempty,
but handempty is true in the current state
=> handempty is not necessarily a landmark

jonkv@ida

Means-Ends Analysis (2)

Formally:

Discovering landmarks through means-ends analysis

// All unachieved goal facts are fact landmarks
fact-landmarks € g - currentstate
do {
for each p in landmarks {
achievers < {a € A | p € eff(a)}

candidates € ﬂaEachieverS pre(a)
fact-landmarks € fact-landmarks U (candidates — currentstate)

}

} until no more fact-landmarks found Add those facts
that are preconditions of all actions

achieving the known landmark p
and that are not true
in the current state

jonkv@ida

jonkv@ida

Means-Ends Analysis (3)

Weakness of means-ends analysis:
Suppose the goal is {A, B, C, D}, initial state is {}

Processing for landmark A:

Action Al Action A2
effect A effect A
precond X, Y, Z precond V, W, X

Processing for landmark X:

Action A3 Action A4 N -
effect X effect X -) No Iandmarks,
precond P, Q precond R, S "stop" processing

Maybe all actions achieving P require Z,
and all actions achieving R also require Z
Weakness: We do not check this! Why?

Checking interactions across branches = full backward-chaining
=>» complexity as in full plan generation...

jonkv@ida

Domain Transition Graphs (1)

General concept: domain transition graphs

Assume we use a state variable representation

= Each variable has a domain, a set of possible values
= aboveA € {clear, B, C, holding }

= aboveB € { clear, A, C, holding }

= aboveC € {clear, A, B, holding }

= posA € { on-table, other }

= posB € { on-table, other }

= posC € { on-table, other} clear

= hand € { empty, full } Example:
For each state variable: pickup(A)putdown(A) LI
= Add a node for each value

= Add an edge holding

for each action changing the value

stack(A,B) /‘unstack(A,B) \stack(A,C)unstack(A,C)

Landmarks from DTGs

jonkv@ida

Suppose:
In the current state, aboveA = clear .+=-.

In the goal, aboveA = B '

Then aboveA=holding
is a landmark

pickup(A)putdown(A)

holding

.
.
.
.
.
.
A J

'x‘ stack(A,B) /‘unstack(A,B) \stack(A,C)unstack(A,C)

4 B C

Landmarks and Relaxation

jonk\;@ida

Assume a problem P, and a relaxed problem P’

Suppose f is a fact landmark for a P’

Solutions for \ All these solutions
relaxed problem P’ pass through

states satisfying f

Solutions for

original problem P All these solutions

must also pass through

K states satisfying f

Then f is a fact landmark for the original problem as well!

Similarly for action landmarks, etc.

jonkv@ida

Landmarks

Many other techniques exist...

Beyond the scope of the course

Also, can sometimes find or approximate necessary orderings
We must achieve holding(A), then holding(B)

Using Landmarks as Subgoals

Example

jonkv@ida

Example Problem:

Truck t transports object o
within road network A/B/C/D

Airplane p transports object
between airports C/E

Goal: Object at E

Domain transition graph
for location of object:

B—O—=(O—E—C
O

Karpas & Richter: Landmarks — Definitions, Discovery Methods and Uses

jonkv@ida

Landmarks as Subgoals (1)

Use of landmarks:

As subgoals: Try to achieve each landmark in succession,
using inferred landmark orderings

= Example from Karpas & Richter: Landmarks — Definitions, Discovery Methods and Uses

@ 0-at-B t at-B

(A) & N

S = e Olﬂt

od(w
{F@
/
‘\._+
=
O

.
.
.
t -t

jonkv@ida

Landmarks as Subgoals (2)

Already true
when we start

o-at-B t-at-B
yd

B C E t-at-C
= Q p-at-C o-at-C
rl= h
0-in-p
d
o-at-E

Two landmarks could be "first" (all predecessors achieved)
Current goal: t-at-B V p-at-C (disjunctive!)

jonkv@ida

Landmarks as Subgoals (3)

Suppose we begin by achieving t-at-B:
Simple planning problem,
results in a single action -- drive(t, B)

Current goal: o-in-T or p-at-C

jonkv@ida

Landmarks as Subgoals (4)

Suppose we continue by achieving o-in-T:
Simple planning problem,
results in a single action -- load-truck(o,t,B)

jonkv@ida

Landmarks as Subgoals (5)

Sometimes very helpful, but:

There are still choices to be made — backtrack points!

Optimizing for one part of the overall goal at a time: 0-at-B t-at-B

= Can’t see the whole picture \O-iﬂ-lt/
= Can miss opportunities:
Cheapest solution here =» more expensive solution later t-at-C
= Can be incomplete: Va
Cheapest solution here = impossible to solve later p-aT-C\l O\-[a’[-C
0-in-p
l

Landmark Counts and Costs

Landmarks for Heuristics; Intro

jonkv@ida

Use of landmarks:

As a basis for non-admissible heuristic estimates
in standard forward state space search

Pioneered by LAMA, which is:

= The winner of the sequential satisficing track of the 2008/201 | competitions

If LAMA-201 | had participated in IPC-2014 (the latest competition):
= Would have been |2th of 21 planners

But LAMA is part of the following planners from the 2014 competition:
IBaCoP2, | st place in the sequential satisficing track
IBaCoP, 2nd place in the sequential satisficing track
ArvandHerd, Ist place in the sequential multi-core track

IBaCoP, 2nd place in the sequential multi-core track

jonkv@ida

Landmark Counts and Costs (1)

LAMA counts landmarks:

|dentifies a set of landmarks that still need to be achieved
after reaching state s through path (action sequence) 7

= L(s,nm) = (L \ Accepted(s,)) U RegAgain(s,nm)
o-at-B| |t-at-B All discovered landmarks,
\o—in—‘t/ minus those that are
. accepted as achieved
}—at—C (has become true dafter Plus those we can show will
p-at-C| [o-at-C predecessors are achieved!) have to be re-achieved
S
0-in-p
1

Not admissible: One action may achieve multiple landmarks!

Landmark Counts and Costs (2)

The LAMA heuristic combines:

jonkv@ida

The number of landmarks still to be achieved in a state

FF heuristics (relaxed planning graph)

Searches for low-cost plans

= But we also want to find plans quickly!
= Heuristics estimate both:
Cost of actions required to reach the goal

Cost of the search effort required to reach the goal

Search strategy:

= First, greedy best-first (create a solution as quickly as possible)

= Then, repeated weighted A* search with decreasing weights

Iteratively improve the plan — anytime planning!

Landmark Counts and Costs (3)

Other uses of landmarks:

jonkv@ida

As a basis for admissible heuristic estimates

Idea: The cost of each action is divided across the landmarks it achieves

& &
Simplified example: @‘.ﬂ p
= Suppose there is a goto-and-pickup action of cost 10, 0

that achieves both t-at-B and o-in-t L{—_.‘__l

= Suppose no other action can achieve these landmarks b

= One can then let (for example)

cost(t-at-B)=3 and cost(o-in-t)=7 o-at-B| [t-at-B
N/
0-in-t
The sum of the cost of remaining landmarks At C
is then an admissible heuristic /
i : p-at-C| |o-at-C
= Must decide how to split costs across landmarks <~ 7
= Optimal split can be computed polynomially, O'T'p

but is still expensive o-at-E

Landmarks: Modified Problem

Landmarks as a basis for a modified planning problem

jonkv@ida

Add new predicates “achieved-landmark-n”

o-at-B t-at-B

= Concretely: object-has-been-in-plane AN rt/
0-in-
t-at-C
An action achieving a landmark = \ v
. . -at-

makes the corresponding predicate true ba Sts at c
= (load object plane) =» object-has-been-in-plane := true 0 T b

o-at-E

The goal requires all such predicates to be true
= (:goal object-has-been-in-plane ...)

=> Any other heuristic can be applied to the modified problem!
= h1(S): What is the cost

Goal cleas n(A,B; on(B,C ontable(C, clear(D, ontable(D,
of achieving object-has-been-in-plane? al — | s | - | = | = | — | E
1(80) =

holding(A) clear(B) holding(B) clear(C)

f I
c({ i : :ost 0 ci il ch 1
B

Search Techniques

Dual Queue Techniques

jonkv@ida

Helpful Actions and Completeness

Recall FF’s helpful actions

~ Actions chosen in the first level

garbage garbage
of the relaxed planning graph aarry
when computing the heuristic rol

clean clean
\ clean
FF uses these to prune the tree aseep aseep
in Enforced Hill Climbing

o dinner
Leads to incompleteness

state-level 0 action-level 1 state-level 1 ...more levels

May search for a long time,
exhaust the search space,
then start over using complete search

wrapped

"Helpful actions” are more likely to be helpful

But skipping the other actions completely is too strict!

Fast Downward: Prioritize helpful actions ("preferred successors”)

Dual Queues

jonkv@ida

Dual queues ("open lists™):
One for ordinary successors, one for preferred successors

In each expansion step:

= Pick the best action from the preferred queue

Expand it (create successors); place each successor in the appropriate queue

= Pick the best action from the non-preferred queue

Expand it (create successors); and place each successor in the appropriate queue

Fewer preferred successors than non-preferred

= Takes less time to reach a node in the preferred queue = we prefer these

If we "misclassified” an action as non-helpful:

= We don’t have to exhaust the "preferred part” of the search space
before we can "recover”

jonkv@ida

Boosted Dual Queues

Boosted Dual Queues:

Used in later versions of Fast Downward and LAMA

Whenever progress is made (better h-value reached):

= Expand 1000 preferred successors

If progress is made again within these 1000 successors:
= Add another 1000, accumulating
= (Progress made after 300 =» keep expanding 1700 more)

After reaching the preferred successor limit:

= Expand a node from the non-preferred queue

Still complete
= More aggressive than ordinary dual queues

= Less aggressive than pure pruning

Deferred Evaluation / Lazy Search

o
—
®

—
-

=

o
o —

Deferred Evaluation

Standard best-first search:

Remove the "best" (most promising) state from the priority queue

Check whether it satisfies the goal

Generate all successors

Calculate their heuristic values Typically takes most of the time

Place in priority queue (“open list”)

Potentially faster: Deferred Evaluation (Fast Downward, ...)

Remove the "best” state from the priority queue

Check whether it satisfies the goal

Calculate its heuristic value (only one!)

Generate all successors

Place in priority queue using the parent's heuristic value

Takes less time, but less accurate heuristic — "one step behind"

Often faster but lower-quality plans

Parameter Optimization and
Portfolio Planners

nique — not limited to state-space search!

jonkv@ida

Parameter Optimization (1)

Some planners have many parameters to tweak

In early planning competitions, domains were known in advance

= Participants could manually adapt their "domain-independent” planners...

Somewhat exaggerated quote from |IPC-2008 results:

= if domain name begins with “PS” and part after first letter is “SR”:
use algorithm 100

= else if there are 5 actions, all with 3 args, and 12 non-ground predicates:
use algorithm —1000

= else if all predicates ground and 10th/| Ith domain name letters “PA”:
use algorithm —1004

= else if there are || actions and action name lengths range from 5 to 28:
use algorithm 107

From 2008, this was no longer allowed
= Planners were handed in

= Then the organizers ran the planners — also on previously unknown domains

3
o
jonkv@ida

Parameter Optimization (2)

How about automatically learning parameters!?

One specific form of learning in planning — others exist

Experimental application to Fast Downward

= Optimization for speed: 45 params, 2.99 * 10'3 possible configurations
= Optimization for quality: 77 params, 1.94 * 1026 possible configurations
Example parameters:

= Heuristics used:

hiax = hos Wiy Wy hep By (landmarks), h 4 (admissible landmarks), goal count, ...

= Method used to combine heuristics: Max, sum, selective max (learns which
heuristic to use per state), tie-breaking, Pareto-optimal, alternation

= Preferred operators used or not, for each heuristic

Like FF's helpful actions, but used for prioritization, not pruning

= Search strategy combinations: Eager best-first, lazy best-first, EHC

Parameter learning framework ParamlILS used

Parameter Optimization (3): Results

Under the diagonal = faster
than default configuration

For 540 small
training instances:

= Very good results

= To be expected — parameters
tuned for these specific problems!

For 270 larger test instances:

* From the same domains

= Performance still improves

Unsolvable in 900 seconds
by the default configuration

FD-Autotune.s configured

FD-Autotune.s configured

jonkv@ida

1000 -
100
10 A
e + +
- +
- + % + + +
P o + *-
R - T e i S i
a T ‘ T T T ‘ T T T ‘ T T T |
1 10 100 1000
FD-Autotune.s default
1000 -
+
100 - £ bt +
) ﬁii%++¥h++¥+%%ﬁ
4 +
,,ﬁF%_4:ﬁ**f i
¥ T+
10 - o+ +
| A+
ﬁ* + +
1 -
T T T T
1 10 100 1000

FD-Autotune.s default

epignyjuol

Results

~
<
| —
=
——
o
N
—
=
(-
 —
QJ
. —
=
o
 —
=
o

Results from the satisficing track of IPC-201 |

lama-2011

B [] fdss-1

| fd-autotune-2

[] fdss-2
[] fd-autotune-1
[] roamer
|
[1] forkuniform
B [| probe

«\
i3

Q\
&Q

ﬂoo

Two versions of FD-autotune competed, adapted to older domains
Sequentlal Satlsficing track Results

Some were reused in this competition, most were new

1

| arvand

L1
L1

IRIEINIE

“ [1NNNNRRNNN
I _
“ | NN RN
R TR T

lama-2008

lamar

[1 randward
[1 brt

i
li

z
A
_
“ NIINRACN
« AN
“____::____z_____g
_
|
_

| cbp2

L
L
L

|
|

M

| daeyahsp
| yahsp2

I
I

I
I

i19139q = JaxJeQq

| yahsp2-mt

| cbp
| Iprpgp

I
n
il
T
[

| madagascar-p

| popf2
| madagascar

| cptd

| satplanim-c
| sharaabi

| acoplan

I

1l
TN
IR
T

| acoplan2

epignyjuol

lama-2011

B [] fdss-1

lama-2008

| fd-autotune-2
lamar

I
I
B [| roamer
| |
[1] forkuniform
B [| probe

| madagascar-p

| yahsp2-mt
| popf2

| cbp
| madagascar

| cptd
| satplanim-c

| arvand
| sharaabi

|
L1
L1

| cbp2

| daeyahsp
| yahsp2

| lprpgp

| acoplan

| acoplan2

[] fdss-2

[] fd-autotune-1
[1 randward
[1 brt

| Il

L T UCL RN
MM T
“ INNRNRRR0 BT
“%%_:___:_____
™
=
_
-

O
i3

Q\
&Q

IR 1)
T
TN A
T N
T O
~ I
. NN Ao |
“~ DR W
S TR TR

i19139q = JaxJeQq

ﬂoo

Sequential Satlsficing track Results

Different planners seem good in different domains!

I~
]
) —
-
=
 —
 w—
SO
=By S
=N =
s >
=N o
L 7,
= I
- O
Q.

Portfolio Planning (2)

Further analysis would show:

Even if two planners solve equally many problems in one domain,
they may solve different problems

Also, planners often return plans quickly or not at all

/ All problems \ / All problems \ / All problems \
/ In 900s by B \

Solved in 450s Solved bl h
running
/Solved in 900s by A\ SRR for 450s,

Solved in 450s by then running
planner A B for 450s

Portfolio Planning (3)

The competition has a fixed time limit

Can benefit from splitting this across multiple algorithms!

=> Portfolio planning

/ All problems \ / All problems \ / All problems \
/ In 900s by B \

Solved in 450s Solved bl)
runnin
/Solved in 900s b A\ by planner'B for 45(g)s,

Solved in 450s by then running
planner A B for 450s

Portfolio Planning (4)

Fast Downward Stone Soup: Learning

Which configurations to use
How much time to assign to each one

Given test examples from older domains

Algorithm Score Time Marginal
BIOLP 605 455 46
RHW landmarks 597 0 —
LM-cut 593 569 26
h' landmarks 588 0 —
M&S-bisim 1 447 175 8
h Inax 4 2 7 O .
M&S-bisim 2 426 432 20
blind 393 0 —
M&S-LFPA 10000 316 0 —
M&S-LFPA 50000 299 0 —
M&S-LFPA 100000 286 0 —
Portfolio 654 1631

“Holy Grail” 673

Configurations
learned for
sequential optimal
planning

B

jonkv@ida

epi@Ayuof

il
¢ w
o c
-
3y —
| O.m iy
. B TR =5 .E
| | gUl.|D.|O ~ <t
2AEGTOFXSLE BT
o] ET 6>ET O
CEHhEEELDaEwEO
«.\@« uieinimmimiEiEiEiiEiniE
<
hS)
1%
éw«\\ il il il
.._.\,\9
ro%

7
ww
\&
4
WVo
5

Sequential Optimization track: Results

~
LM
| —
-
=N S
o
—
o o
oo =
=} =
=3
G >
e %
— <
oo

Portfolio Planning (6)

Results from IPC-2014:

Sequential Satisficing Track

= #1:1BaCoP -- portfolio planner, |12 planners, |50 seconds per planner

ARVAND (Nakhost,Valenzano, and Xie 201 |)
FD-AUTOTUNE | & 2 (Fawcett et al. 201 1)

FD STONE SOUP (FDSS) | & 2 (Helmert et al. 201 I)
LAMA 2008 & 201 | (Richter,Westphal,and Helmert 201 1)
PROBE (Lipovetzky and Geffner 201 |)

MADAGASCAR (Rintanen 201 1)

RANDWARD (Olsen and Bryce 201 1)

YAHSP2-MT (Vidal 2011)

LPG-TD (Gerevini et al. 2004)

= #2:1BaCoP2 -- portfolio planner

Before the competition: Extracted interesting properties of planning problems;
used ML to learn which planners were most likely to solve them

At the competition: Used the learned model to classify new problems;
applied the 5 planners that seemed most useful (360 seconds each)

B

jonkv@ida

