
jonas.kvarnstrom@liu.se – 2017

Automated Planning
Heuristics for Forward State Space Search:

Overview and Examples

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Heuristic Forward State Space Search
 General Forward State Space Search Algorithm



 ε

𝑎 ∈ 𝐴 𝛾 𝑠, 𝑎 ≠ ∅ {
 𝛾(𝑠, 𝑎)


 A heuristic strategy bases its

decisions on:

 Heuristic value h(n)

 Often other factors, such as

g(n) = cost of reaching n

How do we use 𝒉(𝒏)?
A*, IDA*, D*, simulated annealing,

hill-climbing, (various forms of)

best first search, …

Requires a heuristic strategy

How do we calculate 𝒉(𝒏)?
𝒉𝟏 𝒏 , 𝒉𝟐 𝒏 , 𝒉𝒂𝒅𝒅 𝒏 ,

landmarks,

pattern databases, …

Requires a heuristic function

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4

We now have
open node,

which is unexpanded

Example (1)
Example: 3 blocks, all on the table in s0

s0

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5

We now have

3 open nodes,

which are unexpanded

Example (2)
We visit 𝑠0 and expand it

A heuristic function estimates the distance from each open node to the goal:
We calculate 𝒉(𝒔𝟏), 𝒉(𝒔𝟐), 𝒉(𝒔𝟑)

A heuristic strategy uses this value (and other info) to prioritize

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6

We now have

4 open nodes,

which are unexpanded

Example (3)
Suppose the strategy chooses to visit 𝑠1:

2 new heuristic values are calculated: 𝒉(𝒔𝟏𝟔), 𝒉(𝒔𝟏𝟕)

The search strategy now has 4 nodes to prioritize

Forward search: node ≈ state,

so we may write 𝒉(𝒏) or 𝒉 𝒔

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8What to Measure?

 A heuristic strategy bases its decisions on:

 Heuristic value h(s)

 Often other factors, such as g(s) = cost of reaching s

Question 1A: What should a heuristic function measure?

Very general definition

 could measure anything that some strategy might find useful!

Often: h(s) tries to measure the cost of achieving the goal from s

 Question 1B: What is ”cost”?

Useful for finding cheap plans –

and often, as a side effect, for finding plans cheaply

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Plan Quality and Action Costs
 Could say: Long plan = expensive plan

 𝑐 𝜋 = |𝜋| (number of actions)

▪ Reasonable in Towers of Hanoi

▪ But: How to make sure your car is clean?

 Would prefer to model different action costs

 Supported by most current planners

▪ Each action ∈ associated with a cost

 Total cost: c 𝜋 = σ𝑎∈𝜋 𝑐(𝑎)

wash car

shortest plan is best?go to car dealer

go to car wash

buy new car

get supplies

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10

Built-in type

supported by

cost-based

planners

Action Costs in PDDL
 PDDL: Specify requirements

▪

 Numeric state variable for the total cost, called (total-cost)

▪ And possibly numeric state variables to calculate action costs

▪

 Initial state

▪

 Special increase effects to increase total cost

▪

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Remaining Costs
 The remaining cost in a search state s:

 The cost of a cheapest (optimal) solution starting in s

 Denoted by h*(s)

 The cost of an optimal solution to Σ, 𝑠0, 𝑆𝑔 :

 h∗(𝑠0)

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12True Remaining Costs (1)

goal: 0

𝒉∗ 𝒔𝟒 = 𝟏

3

5

5

6

7

8

8

10 2

4

5

7 7 7

8 8 8

10 10 10

True Cost of Reaching a Goal: h*(n)

Initially: A,B,C on the table

pickup, putdown cost 1

stack, unstack cost 2 (must be more careful)

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13True Remaining Costs (2)

2

3

5

8

7

10goal: 0

goal: 0

𝒉∗ 𝒔𝟒 = 𝟏

3

5

6

82

4

5

7 7

8 8

10 10

True Cost of Reaching a Goal: h*(n)

Two reachable goal states

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14True Remaining Costs (3)

2

3

5

8

7

10goal: 0

goal: 0

1

3

5

6

82

4

3

1 5

6

2 8

goal: 0

True Cost of Reaching a Goal: h*(n)

Three reachable goal states

(there can be many)

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15True Remaining Costs (4)





If we knew the true remaining cost h*(n) for every node:

Trivial straight-line path

minimizing h* values

gives an optimal solution!

5

goal: 0

1

3

5

4

3

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Reflections
 What does this mean?

 Calculating h*(n) is a good idea,

because then we can easily find optimal plans?

 No – because we can prove that finding optimal plans is hard!

 So calculating h*(n) must be hard as well…

2. Given h*(n),

we can quickly find optimal solutions

1. We can always quickly compute h*(n)
3. We can quickly find optimal solutions

for any classical planning problem

4. Known to be false!

(PSPACE-complete)

5. …so one of these premises

must be false

Must settle for an estimate that helps us search less than otherwise

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Minimization: Intro
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

h*=55 h*=57 h*=62

If I start with pickup(A),

then make optimal choices:

Plan cost = 55

If I start with pickup(C),

then make optimal choices:

Plan cost = 62

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Minimization, case 1
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=4 hB=20 hB=21

Close!

Far from the truth…

Which is best?

The strategy only cares

about relative values

h*, hA, hB result in

identical choices: 𝒔𝟏 first!

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Minimization, case 2
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

0

100

200

300

400

500

600

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=107 hB=258 hB=522

Close!

Large overestimate!

Which is best?

The strategy only cares

about relative values

h*, hA, hB result in

identical choices: 𝒔𝟏 first!

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Minimization, case 3
Strategy: Depth first search; select a child with minimal ℎ(𝑠)

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=54 hA=53 hA=47

hB=4 hB=20 hB=21

Which is best?

h* and hB result in

identical choices

hA is worse,

despite being closer to h*:

Results in 𝒔𝟑 first

Even if we continue optimally,

cost ≥ 62!

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22A*, case 1
Back to case 1 – but suppose the strategy is A*

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=4 hB=20 hB=21

Which is best?

A* expands all nodes

where 𝒈 𝒔 + 𝒉 𝒔 ≤ optcost

As long as 𝒉 is admissible

[∀𝒔: 𝒉 𝒔 ≤ 𝒉∗(𝒔)],

increasing it is always better

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23A*, case 2
Case 2: Suppose the strategy is A*

0

100

200

300

400

500

600

s1 s2 s3

h*=55 h*=57 h*=62

hA=50 hA=53 hA=55

hB=107 hB=258 hB=522

Which is best?

A* expands all nodes

where 𝒈 𝒔 + 𝒉 𝒔 ≤ optcost

Because hB is not admissible,

optimal solutions

may be missed!

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24A*, case 3
Case 3: Suppose the strategy is A*

0

10

20

30

40

50

60

70

s1 s2 s3

h*=55 h*=57 h*=62

hA=54 hA=53 hA=47

hB=4 hB=20 hB=21

Which is best?

A* expands all nodes

where 𝒈 𝒔 + 𝒉 𝒔 ≤ optcost

As long as 𝒉(𝒔) is admissible

[𝒉 𝒔 ≤ 𝒉∗(𝒔)],

increasing it is always better

hA better than hB

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Two Requirements for Heuristic Guidance
 Heuristic planners must consider two requirements

Examples:

A* uses a heuristic function

Hill-climbing uses a heuristic… differently!

Example:

Find a heuristic function

suitable specifically for A* or hill-climbing

Define a search strategy

able to take guidance into account

Find a heuristic function

suitable for the selected strategy

Can be domain-specific,

given as input in the planning problem

Can be domain-independent,

generated automatically by the planner

given the problem domain

We will consider both – heuristics more than strategies

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Some Desired Properties (1)
 What properties do good heuristic functions have?

 Informative: Provide good guidance to the specific search strategy we use

▪ Close to ℎ∗ 𝑛 ?

▪ Correct ”ordering”?

▪ …

Heuristic
Function

Heuristic
Search

Algorithm

Planning
Problem

Test on a

variety of

benchmark

examples

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Some Desired Properties (2)
 What properties do good heuristic functions have?

 Efficiently computable!

▪ Spend as little time as possible deciding which nodes to expand

 Balanced…

▪ Many planners spend almost all their time calculating heuristics

▪ But: Don’t spend more time computing h than you gain by expanding fewer nodes!

▪ Illustrative (made-up) example:

Heuristic

quality

Nodes

expanded

Expanding one

node

Calculating h

for one node

Total time

Worst μ μ

Better μ μ

… μ μ

… μ μ

… μ μ

Best μ μ

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Cheap Plans, Found Cheaply?
 Cost can be indirectly related

to performance

Can find a cheap plan ”under” 𝑠16
 might find a plan in few steps

 might not need to search so many nodes

 might find a plan cheaply

Maybe!

Or maybe s16 opens up

a vast number of alternatives,

so finding a solution takes more time…

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Prioritizing Speed or Plan Cost
Can design strategies to prioritize speed or plan cost

Expand nodes where you think

you can easily find a way

to a goal node

Expand nodes where you think

you can find a way

to a good (high quality) solution,

even if finding it will be difficult

Find a solution quickly Find a good solution

Often one strategy+heuristic can achieve both reasonably well,

but for optimum performance, the distinction can be important!

Should prefer Should prefer

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Heuristics given Structured States
 In planning, we often want domain-independent heuristics

 Should work for any planning domain – how?

 Take advantage of structured high-level representation!

 Plain state transition system

 We are in state

 The goal is to be in one of the

states in

 Should we try action

leading to state

 Or maybe action

leading to state

 Classical representation

 We are in a state where
disk is on top of disk

 The goal is for all disks to be

on peg C

 Should we try take(B), leading to a
state where we are holding disk ?

 …

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33An Intuitive Heuristic
 An intuitive heuristic:

 Number of steps required to reach the goal from s

should be approximately proportional to

how many goal requirements are not yet achieved in s

 An associated search strategy:

 Suppose we want to minimize planning time

 Choose an open node

with a minimal number of remaining goal facts to achieve

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34Counting Remaining Goals
 Count the number of facts that are “wrong”

 Requires that states and goals are sets of facts

 No

”repaired”

”destroyed”

”w
ro

n
g

va
lu

e
”

Optimal:

unstack(A,C)

stack(A,B)

pickup(C)

stack(C,A)

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Counting Remaining Goals (2)
 A perfect solution? No!

 We must often "unachieve" individual goal facts

to get closer to a goal state!

Optimal:

unstack(A,C) best,

but looks worse

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Counting Remaining Goals (3)
 Admissible?

 No!

 (Doesn’t matter in our chosen search strategy)

 Can we make it admissible?

 Yes: Divide by the maximum number of facts modified by any action

”w
ro

n
g

va
lu

e
” facts are ”wrong”,

can be fixed with a

single action

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Counting Remaining Goals (4)
 Informative?

 Facts to add:

 Facts to remove:

 Heuristic value of – but is it close to the goal?

Don't worry:

At least we know that heuristics can be domain-independent!

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Counting Remaining Goals (5): Analysis
 What we see from this example…

 Not very much: All heuristics have weaknesses!

 But a thorough empirical analysis would tell us:

 This heuristic is far from sufficient!

Even the best planners

will make “strange” choices,

visit tens, hundreds or even

thousands of ”unproductive” nodes

for every action in the final plan

The heuristic should make sure

we don’t need to

visit millions, billions or even

trillions of ” unproductive” nodes

for every action in the final plan!

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Example Statistics
 Planning Competition : Elevators domain, problem

 A* with goal count heuristics

▪

 LAMA planner, good heuristics, other strategy:

▪

▪

 Elevators, problem

 LAMA planner:

▪

▪

 Elevators, problem

 LAMA planner:

▪

▪

Important insight:

Even a

state-of-the-art planner

can’t go directly to a goal

state!

Generates many more

states than those

actually on the path to

the goal…

jonas.kvarnstrom@liu.se – 2017

Search Strategies and Heuristics
for Optimal

Forward State Space Planning

Used in many optimal planners

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42A* (1)
 Dijstra vs. A*: The essential difference

 Example:

▪ Hand-coded heuristic function

▪ Can move diagonally 

h(n) = Chebyshev distance

from n to goal =

▪ Related to Manhattan Distance =

Start

Goal

Obstacle

 Selects from open a node n with

minimal g(n)

 Cost of reaching n from initial node

 Selects from open a node n with
minimal g(n) + h(n)

 + underestimated cost
of reaching a goal from n

Dijkstra A*

Uninformed (blind) Informed

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43A* (2)
 A* Search:

Here:

A single

physical obstacle

In general:

Many states where

all available actions

will increase g+h

(cost + heuristic)

Investigate all states

where g+h=15,

then all states

where g+h=16, …

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44A* (3)
 Given an admissible heuristic h, A* is optimal in two ways

 Guarantees an optimal plan

 Expands the minimum number of nodes

required to guarantee optimality with the given heuristic

 Still expands many ”unproductive” nodes in the example

 Because the heuristic is not perfectly informative

▪ Even though it is hand-coded

▪ Does not take obstacles into account

 If we knew h*(n):

▪ Expand optimal path to the goal

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45A* (4)
 What is an informative heuristic for A*?

 Basic requirement: Must be admissible ∀𝑛. ℎ(𝑛) ≤ ℎ∗(𝑛)

 As always, ℎ 𝑛 = ℎ∗(𝑛) would be perfect – but not attainable…

 As indicated before: The closer h(n) is to h*(n), the better

▪ Suppose hA and hB are both admissible

▪ Suppose ∀n. hA(n) ≥ hB(n): hA is at least close to true costs as hB

▪ Then A* with hA cannot expand more nodes

than A* with hB

Given an arbitrary planning problem

𝑃 = Σ, 𝑠0, 𝑔 ,

find an admissible heuristic function ℎ(𝑠)

Problem

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47Fundamental ideas
 For an arbitrary problem 𝑃 and a state 𝑠,

compute an admissible heuristic value ℎ(𝑠)

Solutions to P starting in s

Optimal solutions to P Find optimal solution 𝝅
Return 𝒉 𝒔 = 𝒉∗ 𝒔 = cost(𝝅)

 Correct but not practical

𝒉 𝒔 ≤ 𝒉∗ 𝒔 = cost of

optimal solution starting in state s

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48Fundamental ideas (2)
 For an arbitrary problem 𝑃 and a state 𝑠,

compute an admissible heuristic value ℎ(𝑠)

Solutions to P starting in s

Optimal solutions to P,

difficult to find

Solutions to P’

starting in s’

Optimal solutions to P’,

easy to find

Transform <P,s> into some problem/state <P’,s’>

that we can easily solve optimally

…ensuring cost(optimal-solution(P’,s’)) ≤
cost(optimal-solution(P,s))

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49Fundamental ideas (3)
 For an arbitrary problem 𝑃 and a state 𝑠,

compute an admissible heuristic value ℎ(𝑠)

 Solve problem <P’,s’> optimally

resulting in solution 𝜋

 Let ℎ(𝑠) = cost(𝜋)

 We note:
▪ ℎ(𝑠) = cost(𝜋) = cost(optimal-solution(P')) ≤ cost(optimal-solution(P)) = h*(s)

▪ 𝒉(𝒔) is admissible

Solutions to P’

starting in s’

Optimal solutions to P’,

easy to find

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Fundamental ideas (4)
 Important:

 What we need: cost(optimal-solution(P')) ≤ cost(optimal-solution(P))

 Could be achieved using completely disjoint solution sets

+ a proof that solutions to P' are cheaper

Solutions to P

Optimal solutions to P,

difficult to find

Solutions to P'

Optimal solutions to P’,

easy to find

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Fundamental ideas (5)
 How to prove cost(optimal-solution(P')) ≤ cost(optimal-solution(P))?

 Sufficient criterion: One optimal solution to P remains a solution for P'

▪ cost(optimal-solution(P')) = min { cost(π) | π is any solution to P' } <=

cost(optimal-solution(P))
Includes the optimal solutions to P,

so min {…} cannot be greater

Solutions to P

Optimal solutions to P

Solutions to P'

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Relaxation
 A stronger criterion: All solutions to P remain solutions for P'

 This is called relaxation: P’ is a relaxed version of P

 Relaxes the constraint on what is accepted as a solution:

The is-solution(plan)? test is "expanded, relaxed" to cover additional plans

Solutions to P'
Solutions to P

Optimal solutions to P

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Relaxation for Planning Problems
 A classical planning problem P =  has a set of solutions

 Solutions(P) = { 𝜋 : 𝜋 is an executable action sequence

leading from to a state in }

 Suppose that:

 P =  is a classical planning problem

 P’ =  is another classical planning problem

 Solutions(P) ⊆ Solutions(P’)

 Then (and only then): P’ is a relaxation of P

Optimal in P

Now sol4 is optimal

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54

Goal

Relaxation Example 1
 Example 1: Adding new actions

 All old solutions still valid, but new solutions may exist

 Modifies the STS by adding new edges / transitions

 This particular example: shorter solution exists

on(B,A)

on(A,C)

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55

GoalGoal

Relaxation Example 2
 Example 2: Adding goal states

 All old solutions still valid, but new solutions may exist

 Retains the same STS

 This particular example: Optimal solution from 𝒔𝟎 retains the same length

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Relaxation Example 3
 Example 3: Ignoring state variables

 Ignore the handempty predicate in preconditions and effects

 Different state space, no simple addition or removal,

but all the old solutions (paths) still lead to goal states!

▪ 22 reachable states  26

▪ 42 transitions  72

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57Relaxation Example 3b
 Example 3, enlarged

58

jo
nk

v@
id

a
jo

nk
v@

id
a

58Relaxation Example 4
 Example 4: Weakening preconditions of existing actions

 Precondition relaxation: Tiles can be moved across each other

▪ Now we have possible first moves: New transitions added to the STS

 All old solutions are still valid, but new ones are added

▪ To move “8” into place:

▪ Two steps to the right, two steps down, ends up in the same place as ” ”

GoalInitial

Possible first moves:

Can still be solved through search

The optimal solution for the relaxed 8-puzzle

can never be more expensive than the optimal solution for original 8-puzzle

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59Relaxation Heuristics: Summary
 Relaxation: One general principle

for designing admissible heuristics for optimal planning

 Find a way of transforming planning problems, so that

given a problem instance P:

▪ Computing its transformation P’ is easy (polynomial)

▪ Finding an optimal solution to P’ is easier than for P

▪ All solutions to P are solutions to P’,

but the new problem can have additional solutions as well

 Then the cost of an optimal solution to P’

is an admissible heuristic for the original problem P

This is only one principle!

There are others, not based on relaxation

61

jo
nk

v@
id

a
jo

nk
v@

id
a

61Search or Direct Computation (1)
 As stated:

 Compute an actual solution 𝜋 for the relaxed problem P’

 Compute cost(𝜋)

 Example: The 8-puzzle…

 Ignore blank(x,y) in preconditions and effects

 Run the problem through an optimal planner

 Compute the cost of the resulting plan 𝜋

(:action move-up

:parameters (?t ?px ?py ?by)

:precondition (and

(tile ?t) (position ?px) (position ?py) (position ?by)

(dec ?by ?py) (blank ?px ?by) (at ?t ?px ?py))

:effect (and (not (blank ?px ?by)) (not (at ?t ?px ?py))

(blank ?px ?py) (at ?t ?px ?by)))

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62Search or Direct Computation (2)
 But we never use 𝜋!

 Let’s analyze the problem…

▪ Each piece has to be moved to the intended row

▪ Each piece has to be moved to the intended column

▪ These are exactly the required actions given the relaxation!

  optimal cost for relaxed problem = sum of Manhattan distances

  admissible heuristic for original problem= sum of Manhattan distances

  Cost of optimal solution 𝜋 can be computed efficiently:

෍

𝑝∈𝑝𝑖𝑒𝑐𝑒𝑠

𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝) + 𝑦𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝)

But now we had to analyze the problem:

(1) Decide to ignore ”blank”

(2) Find ”sum of manhattan distances”

Soon: How do we automatically find

good relaxations + computation methods?

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64Relaxation Heuristics: Balance
 The reason for relaxation is rapid calculation

 Shorter solutions are an unfortunate side effect:

Leads to less informative heuristics

 Relax too much  not informative

▪ Example: Any piece can teleport

into the desired position

 h(n) = number of pieces

left to move

Original problem

Somewhat relaxed

Medium relaxation

Very relaxed

No problem left!

F
a
st

e
r

c
o

m
p

u
ta

ti
o

n

M
o

re
 in

fo
rm

a
tiv

e

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65Relaxation Heuristics: Important Issues!

You cannot "use a relaxed problem as a heuristic".

What would that mean?

You use the cost of an optimal solution to the relaxed problem as a heuristic.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

This is the problem.

The problem is not a heuristic.

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66Relaxation Heuristics: Important Issues!
Solving the relaxed problem

can result in a more expensive solution

 inadmissible!

You have to solve it optimally to get the admissibility guarantee.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

One solution to relaxed problem:

pickup(C)

putdown(C)

pickup(B)

stack(B,A)

pickup(C)

stack(C,B)

67

jo
nk

v@
id

a
jo

nk
v@

id
a

67Relaxation Heuristics: Important Issues!

You don’t just solve the relaxed problem once.

Every time you reach a new state and want to calculate a heuristic,

you have to solve the relaxed problem

of getting from that state to the goal.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

Calculate:

h(s0)

h(s1), h(s2), h(s3)

…then for every node you create,

depending on the strategy

68

jo
nk

v@
id

a
jo

nk
v@

id
a

68Relaxation Heuristics: Important Issues!
Relaxation does not always mean "removing constraints"

in the sense of weakening preconditions (moving across tiles, removing walls, …)

Sometimes we get new goals. Sometimes the entire state space is transformed.

Sometimes action effects are modified, or some other change is made.

What defines relaxation: All old solutions are valid, new solutions may exist.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69Admissibility: Important Issues!

Relaxation is useful for finding admissible heuristics.

A heuristic cannot be admissible for some states.

Admissible == does not overestimate costs for any state!

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70Admissibility: Important Issues!

If you are asked "why is a relaxation heuristic admissible?", don't answer

"because it cannot overestimate costs". This is the definition of admissibility!

"Why is it admissible?" == "Why can't it overestimate costs?"

Admissible heuristics can "lead you astray" and you can "visit" suboptimal solutions.

But with the right search strategy, such as A*,

the planner will eventually get around to finding an optimal solution.

This is not the case with A* + non-admissible heuristics.

72

jo
nk

v@
id

a
jo

nk
v@

id
a

72Delete Relaxation (1)
 In classical planning:

 Negative effects can "un-achieve" goals or preconditions

 A plan may have to achieve the same fact many times

 Example: If handempty is a goal

handempty true…

Pickup  false!

Re-achieve handempty…

…so we can pickup  false again!

73

jo
nk

v@
id

a
jo

nk
v@

id
a

73Delete Relaxation (2)
 Suppose we remove all negative effects



▪ Before transformation:

▪ After transformation:

 A fact that is achieved stays achieved

Is this a relaxation?

74

jo
nk

v@
id

a
jo

nk
v@

id
a

74Delete Relaxation (3)
 Suppose we use the book's classical representation:

 Precondition = set of literals that must be true

 Goal = set of literals that must be true

 Effects = set of literals (making atoms true or false)

 Suppose we have a solution :

▪ Initially

▪ Action 

▪ Action  requires

 Remove all negative effects:

▪ Initially

▪ Action  no effect

▪ Action  requires , not executable

 is no longer a solution; can’t be a relaxation

75

jo
nk

v@
id

a
jo

nk
v@

id
a

75Delete Relaxation (4)
 Suppose we use PDDL's plain :strips level

 Forbids negative preconditions / goals

▪ Precondition = set of atoms (no negations!)

▪ Goal = set of atoms (no negations!)

▪ Effects = set of literals (making atoms true or false)

 No solution can depend on a fact being false in a visited state

 No solution can disappear because we stop making facts false

This is a relaxation if the problem lacks negative preconditions / goals!

76

jo
nk

v@
id

a
jo

nk
v@

id
a

76Delete Relaxation (5): Example
STS for the original problem Delete-relaxed STRIPS problem

N
o
 p

h
ys

ic
al

co
rr

e
sp

o
n
d
e
n
ce

!

STS for the original problem Delete-relaxed STRIPS problem

=

⊆

Initial state

does not change

Same ”origin”,

fewer facts removed

⊆

Different ”origin” but

same action sequence,

fewer facts removed

STS for the original problem Delete-relaxed STRIPS problem

Applicable

actions: app1

Applicable

actions: app2⊆
No action requires

the absence of a fact

⊆

79

jo
nk

v@
id

a
jo

nk
v@

id
a

79Delete Relaxation (8): Example
STS for the original problem Delete-relaxed STRIPS problem

Satisfies the

goal?

Also satisfies

the goal⇒
No goal requires the

absence of a fact

80

jo
nk

v@
id

a
jo

nk
v@

id
a

80Delete Relaxation (9)
 Negative effects are also called "delete effects"

 They delete facts from the state

 So this is called delete relaxation

 "Relaxing the problem by getting rid of the delete effects"

Delete relaxation does not mean

that we "delete the relaxation" (anti-relax)!

Delete relaxation is only a relaxation

if preconditions and goals are positive!

81

jo
nk

v@
id

a
jo

nk
v@

id
a

81Delete Relaxation (10)
 Since solutions are preserved when facts are added:

A state where additional facts are true can never be "worse"!

(Given positive preconds/goals)

h*() ≤ h*()

Given two states (sets of true atoms) s,s':
⊃ 

Delete Relaxation:

State Space Examples

83

jo
nk

v@
id

a
jo

nk
v@

id
a

83Reachable State Space: BW size 2
5 states

8 transitions

25 states

210 transitions

84

jo
nk

v@
id

a
jo

nk
v@

id
a

84Delete-Relaxed BW size 2: Detail View
Many new transitions caused by loops,

as expected!

85

jo
nk

v@
id

a
jo

nk
v@

id
a

85Delete-Relaxed: "Loops" Removed
5 states

8 transitions

25 states

50 transitions

Insight: Relaxed ≠ smaller

The Optimal Delete Relaxation Heuristic

87

jo
nk

v@
id

a
jo

nk
v@

id
a

87Optimal Delete Relaxation Heuristic
 If only delete relaxation is applied:

 We can calculate the optimal delete relaxation heuristic, h+(n)

 h+(n) = the cost of an optimal solution

to a delete-relaxed problem

starting in node n

88

jo
nk

v@
id

a
jo

nk
v@

id
a

88Accuracy of h+ in Selected Domains
 How close is ℎ+(𝑛) to the true goal distance ℎ∗(𝑛)?
 Worst case asymptotic accuracy as problem size approaches infinity:

▪ Blocks world: 

Optimal plans in delete-relaxed Blocks World

can be down to 25% of the length of optimal plans in ”real” Blocks World

89

jo
nk

v@
id

a
jo

nk
v@

id
a

89Accuracy of h+ in Selected Domains (2)
 How close is ℎ+(𝑛) to the true goal distance ℎ∗(𝑛)?
 Worst case asymptotic accuracy as problem size approaches infinity:

▪ Blocks world: 

▪ Gripper domain:

▪ Logistics domain:

▪ Miconic-STRIPS:

▪ Miconic-Simple-ADL:

▪ Schedule:

▪ Satellite:

 Details:

▪ Malte Helmert and Robert Mattmüller

Accuracy of Admissible Heuristic Functions

in Selected Planning Domains

90

jo
nk

v@
id

a
jo

nk
v@

id
a

90Example of Accuracy
 How close is ℎ+(𝑛) to the true goal distance ℎ∗(𝑛)?
 In practice: Also depends on the problem instance!

 Performance also depends on the search strategy

▪ How sensitive it is to specific types of inaccuracy









Computing the
Optimal Delete Relaxation Heuristic

92

jo
nk

v@
id

a
jo

nk
v@

id
a

92Computing h+
 Is ℎ+(𝑛) easier to compute than ℎ∗(𝑛)?

 ℎ∗(𝑛) = length of optimal plan for arbitrary planning problem

▪ Supports negative effects

▪ If we can execute either or :

▪ removes p, adds p  net result: add p

▪ p, removes p  net result: remove p

▪ Both orders must be considered

 ℎ+(𝑛) = length of optimal plan after removing negative effects

▪ If we can execute either or :

▪ Must lead to the same state (add before , or before)

▪ Sufficient to consider one order

 Incomplete analysis – but ℎ+(𝑛) is easier to compute, in the worst case

93

jo
nk

v@
id

a
jo

nk
v@

id
a

93Calculating h+
 Still difficult to calculate in general!

 NP-equivalent (reduced from PSPACE-equivalent)

▪ Since you must find optimal solutions to the relaxed problem

 Even a constant-factor approximation

is NP-equivalent to compute!

▪ Finding ℎ 𝑛 so that ∀𝑛. ℎ 𝑛 ≥ 𝑐 ⋅ ℎ+(𝑛)

 Therefore, rarely used "as is"

 But forms the basis
of many other heuristics

95

jo
nk

v@
id

a
jo

nk
v@

id
a

95Intuitions (1)
 Why is ℎ+ 𝑛 so ”slow”?

s0

Must compute the exact cost

of an optimal plan

achieving all goals

As problem sizes grow,

the number of goals will grow

 plan lengths grow (even delete-relaxed!)

 number of plans to check (directly or indirectly) grows exponentially

96

jo
nk

v@
id

a
jo

nk
v@

id
a

96Intuitions (2)
 Suppose we delete-relax, then only consider one goal fact

 Remove goal requirements  add new goal states in 𝑆𝑔

 Relaxation!

 ”Old” plans achieving all goals are still valid solutions

 Also has much shorter solutions, much faster to compute

exponential size
Too relaxed!

And which goal to choose?

97

jo
nk

v@
id

a
jo

nk
v@

id
a

97Intuitions (3)
 Given two admissible heuristics ℎ𝐴 𝑛 and ℎ𝐵 𝑛 :

 ℎ𝐴𝐵 𝑛 = max ℎ𝐴 𝑛 , ℎ𝐵 𝑛 is admissible

 If neither heuristic overestimates, their maximum cannot overestimate

98

jo
nk

v@
id

a
jo

nk
v@

id
a

98The h1 Heuristic
 Idea (from HSPr*): Consider one goal atom at a time

exponential size

Treat each goal atom separately

Take the maximum of the costs

Uses a set of relaxations!

Computing 𝒉𝟏(𝒏)

100

jo
nk

v@
id

a
jo

nk
v@

id
a

100The h1 Heuristic: Example (action cost = 1)

Don't find the best way to achieve all goal atoms:

Avoid interactions:
Find the best way to achieve

Then find the best way to achieve

…

Use backward search, starting with the goals

101

jo
nk

v@
id

a
jo

nk
v@

id
a

101The h1 Heuristic: Example (action cost = 1)

First goal atom:

clear(A)

Already achieved,

cost 0

How to achieve on(A,B)?

Not true in the initial state.

Check all actions having on(A,B)

as an effect…

Here: Only stack(A,B)!

We have two preconditions to achieve.

Reduce interactions even more:

Consider each of these as a separate "subgoal"!

First holding(A), then clear(B).

102

jo
nk

v@
id

a
jo

nk
v@

id
a

102The h1 Heuristic: Intuitions (2)

Idea: Treat each goal atom separately

Take the maximum of the costs

: Split the problem even further;

consider individual subgoals at every "level"

103

jo
nk

v@
id

a
jo

nk
v@

id
a

103The h1 Heuristic: Example (continued)

More calculations show:

This is expensive…

Search continues: This is cheaper!

h1() =

104

jo
nk

v@
id

a
jo

nk
v@

id
a

104The h1 Heuristic: Important Property 1

This is why it is fast! No need to consider interactions  no combinatorial explosion

We don’t search for

a valid plan achieving

on(B,C)!

Then we would need
…

The heuristic considers

individual subgoals

at all levels,

misses interactions

at all levels

Each precondition

considered separately!

Each goal considered

separately!

Each precondition

considered separately!

105

jo
nk

v@
id

a
jo

nk
v@

id
a

105The h1 Heuristic: Important Property 2

h1 takes the delete relaxation heuristic, relaxes it further

Given a problem

using :strips expressivity,

we ignore negative effects!

(Given a goal atom,

find an action achieving it,

without considering

any other effects)

106

jo
nk

v@
id

a
jo

nk
v@

id
a

106The h1 Heuristic: Important Property 3

The same action can be counted twice!

Doesn’t affect admissibility,

since we take the maximum of subcosts,

not the sum

107

jo
nk

v@
id

a
jo

nk
v@

id
a

107The h1 Heuristic: Formal Definition

 For a goal, a set g of facts to achieve:

 ∆1(s, g) = the cost of achieving the most expensive proposition in g

▪ ∆1(s, g) = 0 (zero) if g ⊆ s // Already achieved entire goal

▪ ∆1(s, g) = max { ∆1(s, p) | p ∈ g } otherwise // Part of the goal not achieved

The cost of each

atom in goal g

h1(s) = ∆1(s, g) – the heuristic depends on the goal g

Max: The entire goal

must be at least as

expensive as the most

expensive subgoal

So how expensive is it to achieve a single proposition?

Implicit delete relaxation:

Cheapest way of
achieving ∈

may actually delete ∈

108

jo
nk

v@
id

a
jo

nk
v@

id
a

108The h1 Heuristic: Formal Definition

 For a single proposition p to be achieved:

 ∆1(s, p) = the cost of achieving p from s

▪ ∆1(s, p) = 0 if p ∈ s // Already achieved p

▪ ∆1(s, p) = ∞ if ∀a∈A. p ∉ effects+(a) // Unachievable

▪ Otherwise:

∆1(s, p) = min { cost(a) + ∆1(s, precond(a)) | a∈A and p ∈ effects+(a) }

Must execute an action a∈A that achieves p,

and before that, acheive its preconditions

h1(s) = ∆1(s, g) – the heuristic depends on the goal g

Min: Choose the action

that lets you achieve the proposition p as cheaply as possible

109

jo
nk

v@
id

a
jo

nk
v@

id
a

109The h1 Heuristic: Examples
 In the problem below:

▪

 So for any state s:

▪

 With unit action costs:









110

jo
nk

v@
id

a
jo

nk
v@

id
a

110The h1 Heuristic: Properties
 h1(s) is:

 Easier to calculate than the optimal delete relaxation heuristic h+

 Somewhat useful for this simple BW problem instance

 Not sufficiently informative in general

 Example:

 Forward search in Blocks World using Fast Downward planner, A*

Blocks nodes blind nodes h1

5 1438 476

6 6140 963

7 120375 24038

8 1624405 392065

9 25565656 14863802

10 >84 million

(out of mem)

208691676

112

jo
nk

v@
id

a
jo

nk
v@

id
a

112The hm Heuristics
 Next idea: Why only consider single atoms?

 The most expensive atom

 The most expensive pair of atoms

 The most expensive triple of atoms

 …

 A family of admissible heuristics

for optimal classical planning

113

jo
nk

v@
id

a
jo

nk
v@

id
a

113The h2 Heuristic
 h2(s) = ∆2(s, g): The most expensive pair of goal propositions

▪ ⊆

▪ ∈

▪ ∈

▪ ∀ ∈ ∉
∀ ∈ ∉

▪

∈ ∈
∪ ∈ ∈ ∉
∪ ∈ ∈ ∉

Goal
(set)

Pair of
propo-
sitions

(maybe
p=q)

 more informative than , requires non-trivial time

 m > rarely useful

114

jo
nk

v@
id

a
jo

nk
v@

id
a

114The h2 Heuristic and Delete Effects
 In this definition of h2:

▪

∈ ∈
∪ ∈ ∈ ∉
∪ ∈ ∈ ∉

 Misses other delete effects

▪

▪ Adds Deletes

▪ Adds Deletes

▪ Adds Deletes

▪ Any pair can be achieved with a single action

▪

but the problem is unsolvable!

Takes into account some delete effects
So h2 is not a delete relaxation heuristic (but it is admissible)!

115

jo
nk

v@
id

a
jo

nk
v@

id
a

115The h2 Heuristic and Pairwise Mutexes
 If ∆2(s0, p, q) = ∞:

 Starting in s0, can't reach a state where p and q are true

 Starting in s0, p and q are mutually exclusive (mutex)

 One-way implication!

 Can be used to find some mutex relations, not necessarily all

116

jo
nk

v@
id

a
jo

nk
v@

id
a

116The h2 Heuristic and Delete Relaxation
 In the book:

▪

∈ ∈
∪ ∈ ∈
∪ ∈ ∈

 This is not how the heuristic is normally presented!

▪ Corresponds to applying (full) delete relaxation

▪ Uses constant action costs ()

117

jo
nk

v@
id

a
jo

nk
v@

id
a

117The hm Heuristics: Calculating
 Calculating hm(s) in practice:

 Characterized by Bellman equation over a specific search space

 Solvable using variation of Generalized Bellman-Ford (GBF)

 (Not part of the course)

Cost of cheapest action

taking you from s to s'

118

jo
nk

v@
id

a
jo

nk
v@

id
a

118Accuracy of hm in Selected Domains
 How close is hm(n) to the true goal distance h*(n)?

 Asymptotic accuracy as problem size approaches infinity:

▪ Blocks world: 

▪ For any constant m!

119

jo
nk

v@
id

a
jo

nk
v@

id
a

119Accuracy of hm in Selected Domains (2)
 Consider a constructed family of problem instances:

▪ blocks, all on the table

▪ Goal: specific towers of blocks each

 What is the true cost of a solution from the initial state?

▪ For each tower, block in place + blocks to move

▪ actions per move

▪ actions



▪ All instances of clear, ontable, handempty already achieved

▪ Achieving a single on(…) proposition

requires two actions



▪ Achieving two on(…) propositions



 …

As problem sizes grow,

the number of goals can grow

and plan lengths can grow indefinitely

But hm(n) only considers a constant

number of goal facts!

Each individual set of size m does not

necessarily become harder to achieve,

and we only calculate max, not sum…

120

jo
nk

v@
id

a
jo

nk
v@

id
a

120Accuracy of hm in Selected Domains (3)
 How close is hm(n) to the true goal distance h*(n)?

 Asymptotic accuracy as problem size approaches infinity:

▪ Blocks world: 

▪ Gripper domain:

▪ Logistics domain:

▪ Miconic-STRIPS:

▪ Miconic-Simple-ADL:

▪ Schedule:

▪ Satellite:

 For any constant m!

 Details:

▪ Malte Helmert, Robert Mattmüller

Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Still useful – this is a worst-case analysis

as sizes approach infinity!
+ Variations such as additive exist

121

jo
nk

v@
id

a
jo

nk
v@

id
a

121The h2 Heuristic: Accuracy
 Experimental accuracy of in a few classical problems:

Seems to work well

for the blocks world…

Less informative for the

gripper domain!

122

jo
nk

v@
id

a
jo

nk
v@

id
a

122The hm Heuristic: Nodes Expanded

Blocks/length nodes blind nodes h1 nodes h2 nodes h3 nodes h4

5 1438 476 112 18 13

6 6140 963 78 23

7 120375 24038 1662 36

8 1624405 392065 35971

9 25565656 (25.2s) 14863802

10 >84 million

(out of mem)

208691676

124

jo
nk

v@
id

a
jo

nk
v@

id
a

124Forward Search with hm

 Consider heuristics using forward search:

s1

125

jo
nk

v@
id

a
jo

nk
v@

id
a

125Forward Search with hm: Illustration

More calculations show:

This is expensive…

Search continues: This is cheaper!

Calculations depend very much on the entire current state!
New search node  new current state  recalculate from scratch

126

jo
nk

v@
id

a
jo

nk
v@

id
a

126Backward Search with hm

 In backward search:

New search node 

same starting state 

use the old ∆m values

for previously

encountered

goal subsets

127

jo
nk

v@
id

a
jo

nk
v@

id
a

127HSPr, HSPr*
 Results:

 Faster calculation of heuristics

 Not applicable for all heuristics!

▪ Many other heuristics work better with forward planning

jonas.kvarnstrom@liu.se – 2017

Heuristics for Satisficing
Forward State Space

Planning

129

jo
nk

v@
id

a
jo

nk
v@

id
a

129Optimal and Satisficing Planning
 Optimal planning often uses admissible heuristics + A*

 Are there worthwhile alternatives?

 If we need optimality:

 Can’t use non-admissible heuristics

 Can’t expand fewer nodes than A*

 But we are not limited to optimal plans!

 High-quality non-optimal plans can be quite useful as well

 Satisficing planning

▪ Find a plan that is sufficiently good, sufficiently quickly

▪ Handles larger problems

Investigate many different points on the efficiency/quality spectrum!

Also called

131

jo
nk

v@
id

a
jo

nk
v@

id
a

131Background
 heuristics are admissible, but not very informative

 Only measure the most expensive goal subsets

 For satisficing planning, we do not need admissibility

 What if we use the sum of individual plan lengths for each atom!

 Result: , also called

132

jo
nk

v@
id

a
jo

nk
v@

id
a

132The hadd Heuristic: Example

More calculations  expensive…

Cheaper!

hadd() =

133

jo
nk

v@
id

a
jo

nk
v@

id
a

133The hadd Heuristic: Formal Definition

 For a goal, a set g of facts to achieve:

 = the cost of achieving the most expensive proposition in g

▪ = 0 if ⊆ // Already achieved entire goal

▪ = sum { ∈ } otherwise // Part of the goal not achieved

The cost of each
atom in goal

– the heuristic depends on the goal

Sum: We assume we

have to achieve

every subgoal

separately

So how expensive is it to achieve a single proposition?

134

jo
nk

v@
id

a
jo

nk
v@

id
a

134The hadd Heuristic: Formal Definition

 For a single proposition p to be achieved:

 = the cost of achieving p from s

▪ if ∈ // Already achieved p

▪ if ∀ ∈ ∉ // Unachievable

▪ Otherwise:
∈ ∈

Must execute an action a∈A that achieves p,

and before that, acheive its preconditions

– the heuristic depends on the goal

Min: Choose the action

that lets you achieve p as cheaply as possible

135

jo
nk

v@
id

a
jo

nk
v@

id
a

135The hadd Heuristic: Example


 For another example:

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪  sum is

Can underestimate but also overestimate, not admissible!

136

jo
nk

v@
id

a
jo

nk
v@

id
a

136

– No specific action used twice

– Still misses interactions

The hadd Heuristic: Admissibility
 Why not admissible?

 Does not take into account interactions between goals

 Simple case: Same action used

▪ 

▪ 

 More complicated to detect:

▪

▪

▪

▪

▪ To achieve p: Use A1

▪ To achieve q: Use A2

Satisficing planning, in a nutshell:

Try to move quickly towards a reasonably good solution

138

jo
nk

v@
id

a
jo

nk
v@

id
a

138Hill Climbing (1)
 What about Steepest Ascent Hill Climbing?

 Greedy local search algorithm for optimization problems

 (1) Start in some current location

s=(x,y) s={on(A,C),…}

139

jo
nk

v@
id

a
jo

nk
v@

id
a

139Hill Climbing (2)
 (2) Find the local neighborhood, which can easily be reached

Example: Points (x,y)

at a distance of 0.1 All successors

of state s

140

jo
nk

v@
id

a
jo

nk
v@

id
a

140Hill Climbing (3)
 (3) Make a locally optimal choice at each step:

Chooses the best successor/neighbor

141

jo
nk

v@
id

a
jo

nk
v@

id
a

141Hill Climbing (4)
 We don’t have a strict state quality measure!

 Goal states are perfect, other states are not solutions

 But minimizing heuristic value might lead to a goal state…

 (Minimize ℎ 𝑛 = maximize – ℎ(𝑛))

 A good heuristic should provide useful ordering

142

jo
nk

v@
id

a
jo

nk
v@

id
a

142Hill Climbing (5)
 Example of hill climbing search:

143

jo
nk

v@
id

a
jo

nk
v@

id
a

143Hill Climbing (6)



 ∅







Ignore g(n): prioritize finding a plan quickly

over finding a good plan

Be stubborn:

Only consider

children of this node,

don't even keep track

of other nodes

to return to

144

jo
nk

v@
id

a
jo

nk
v@

id
a

144Local Optima (1)
 (4) When there is nothing better nearby: Stop!

 HC is used for optimization

▪ Any point is a solution,

we search for the best one

 Might find a local optimum:

The top of a hill

145

jo
nk

v@
id

a
jo

nk
v@

id
a

145Local Optima (2)
 Classical planning  absolute goals

 Even if we can't decrease h(n),

we can't simply stop 



146

jo
nk

v@
id

a
jo

nk
v@

id
a

146Local Optima (3)
 Standard solution to local optima:

Random restart

 Randomly choose another node/state

 Continue searching from there

 Hope you find a global optimum

eventually

 Can planners choose

arbitrary random states?







147

jo
nk

v@
id

a
jo

nk
v@

id
a

147Local Optima (4)
 In planning:

 The solution is not a state

but the path to the state

 Random states may not be

reachable from the initial state

 So:

 Randomly choose another

already visited node/state

 This node is reachable!







148

jo
nk

v@
id

a
jo

nk
v@

id
a

148Hill Climbing with hadd: Plateaus
 (on A B) 2 1 3 3
 (on B C) 3 3 4 4
 (clear A) 0 1 0 0
 (clear D) 0 0 0 1
 (ontable C) 0 0 0 0
 (ontable D) 0 0 0 1
 h(n)=sum 5 5 7 9

No successor improves the

heuristic value; some are equal!

We have a plateau…

Jump to a random state immediately?

No: the heuristic is not so accurate –

maybe some child is closer to the goal

even though h(n) isn’t lower!

 Let’s keep exploring:

Allow a small number of consecutive

moves across plateaus

149

jo
nk

v@
id

a
jo

nk
v@

id
a

149Plateaus
 A plateau…

150

jo
nk

v@
id

a
jo

nk
v@

id
a

150Hill Climbing with hadd: Local Optima
 (on A B) 2 1 3 3 0 2 2 0 0
 (on B C) 3 3 4 4 3 2 2 4 4
 (clear A) 0 1 0 0 0 0 0 0 0
 (clear D) 0 0 0 1 0 1 0 0 1
 (ontable C) 0 0 0 0 0 0 0 1 0
 (ontable D) 0 0 0 1 0 0 0 0 1
 h(n)=sum 5 5 7 9 3 5 4 5 6

3+7: pickup(C)
3+4: pickup(B)
3+8: pickup(D)

If we continue, all successors

have higher heuristic values!

We have a local optimum…

Impasse = optimum or plateau

Some impasses allowed

151

jo
nk

v@
id

a
jo

nk
v@

id
a

151Local Optima
 Local optimum: You can't improve the heuristic function in one step

 But maybe you can still get closer to the goal:

The heuristic only approximates our real objectives

152

jo
nk

v@
id

a
jo

nk
v@

id
a

152Impasses and Restarts
 What if there are many impasses?

 Maybe we are in the wrong part of the search space after all…

▪ Misguided by hadd at some earlier step

  Select another promising expanded node where search continues

153

jo
nk

v@
id

a
jo

nk
v@

id
a

153HSP Example
 Example from HSP 1.x:

 Hill Climbing with hadd

allowing some impasses

(plus some other tweaks)

…in that case we

might restart from

this node.

Its children seem to

be worse. If we have

reached the impasse

threshold:

Now the best child

is an improvement

There’s a plateau

here…

But HSP allows a

few impasses!

 Move to the

best child

154

jo
nk

v@
id

a
jo

nk
v@

id
a

154HSP 1: Heuristic Search Planner
 HSP : heuristic + hill climbing + modifications

 Works approximately like this (some intricacies omitted):

▪



∅



Essentially
hill-climbing, but
not all steps have

to move “up”

Too many
downhill/plateau
moves  escape

Dead end 
restart

Simple structure,

but highly competitive at its introduction

(using ℎ𝑎𝑑𝑑 as a heuristic)

jonas.kvarnstrom@liu.se – 2017

Heuristics part III

157

jo
nk

v@
id

a
jo

nk
v@

id
a

157Pattern Database Heuristics: Intro
Many heuristics solve subproblems, combine their cost

Pick 𝑚 goal literals at a time

Ignore the others

Solve a subproblem optimally

Pick some ground facts from the problem

Ignore the others

Solve a subproblem optimally

In each subproblem for

the 𝒉𝒎 heuristics:

In each subproblem for

Pattern Database (PDB) Heuristics

More calculations show:

This is expensive…

Search continues: This is cheaper!

h1() =

158

jo
nk

v@
id

a
jo

nk
v@

id
a

158BW4: Achievable States
 Consider physically achievable states in the blocks world, size 4:

159

jo
nk

v@
id

a
jo

nk
v@

id
a

159BW4: Ground Facts
 All ground facts in this problem instance:



160

jo
nk

v@
id

a
jo

nk
v@

id
a

160BW4: Potential Subproblem
 Example: only consider some ground facts related to block A







An "abstract

state"

161

jo
nk

v@
id

a
jo

nk
v@

id
a

161BW4: Potential Subproblem (2)




▪ Before transformation:

▪ After transformation:



▪ Before transformation:

▪ After transformation:



162

jo
nk

v@
id

a
jo

nk
v@

id
a

162PDB Heuristics: Patterns
 The set of ground facts is called a pattern

 Many states match the pattern,

are represented by a single abstract state

 Such states are considered equivalent

aboveA=clear,

aboveB=clear,

aboveC=clear,

aboveD=clear,

posA=on-table,

posB=on-table,

posC=on-table,

posD=on-table,

hand=empty

aboveA=C,

aboveB=clear,

aboveC=A,

aboveD=clear,

posA=on-table,

posB=on-table,

posC=on-table,

posD=on-table,

hand=full

≈

aboveA=B,

aboveB=clear,

aboveC=D,

aboveD=clear,

posA=on-table,

posB=on-table

posC=on-table,

posD=on-table,

hand=empty

≈

aboveB=clear,

aboveD=clear,

posB=on-table,

posD=on-table

represented

by a single

abstract

state

A pattern generally contains few variables/facts – sometimes only one!

163

jo
nk

v@
id

a
jo

nk
v@

id
a

163Relaxation?
 Is this a relaxation?

 Yes

 Facts disappear from states…

▪ 𝑆′ = s ∩ included 𝑠 ∈ 𝑆

 But also from precond/goal requirements!

▪ If 𝑎𝑖 could be executed in 𝑠,
transform(𝑎𝑖) can be executed in 𝑠 ∩ included

▪ If 𝛾′ is the state transition function given transformed actions, then

𝛾′ transform 𝑎𝑖 , 𝑠 ∩ included = 𝛾 𝑎𝑖 , 𝑠 ∩ included

▪  executable action sequences are preserved

▪ If 𝑔 ⊆ 𝑠, then 𝑔 ∩ included ⊆ 𝑠 ∩ included

▪ So: Solutions are preserved (but new solutions may arise)

164

jo
nk

v@
id

a
jo

nk
v@

id
a

164BW4: State Transition Graph
 New reachable state transition graph:

 Current state: Everything on the table, hand empty, all blocks clear

▪ Abstract state: s0 =

 Goal state: A on B on C on D

▪ Abstract goal: s64 =

 Sufficiently few states

to quickly compute

optimal costs

▪ Cost is at least 2:

Shortest path s0  s64

Note: Redundant edges

are omitted for clarity

(multiple actions with the same effect)

Optimal cost of a relaxation



admissible heuristic

165

jo
nk

v@
id

a
jo

nk
v@

id
a

165BW4: Subproblem 2

 Subproblem 2: Some facts related to B

 Current state: Everything on the table, hand empty, all blocks clear

▪ Abstract state:

 Goal state:

A on B on C on D

▪ Abstract goal:

 Find a path,
compute its cost

As in 𝒉𝒎, use multiple subproblems!

166

jo
nk

v@
id

a
jo

nk
v@

id
a

166BW4: Subproblem 3
 Subproblem 3: Only consider (facts…

 Also yields a cost

As in 𝒉𝒎, take the maximum of these costs  admissible heuristic

Pattern Database Heuristics:

State Representation

168

jo
nk

v@
id

a
jo

nk
v@

id
a

168PDB Heuristics: State Variables
 For PDB heuristics, a state variable representation is useful

 Typically:

▪ Reduces the number of facts

▪ Provides more information about which states are actually reachable!

 Model problems using the state variable representation,

or let planners convert automatically from predicate representation

169

jo
nk

v@
id

a
jo

nk
v@

id
a

169PDB Heuristics: State Variables (2)
 Example: Blocks world with 4 blocks

 states (reachable and unreachable)

in the standard predicate representation

 But in all states reachable from "all-on-table" (all "normal" states):

▪ Block A is:

▪ Held in the gripper

▪ Clear – at the top of a tower (possibly a tower of one block)

▪ Below B

▪ Below C, or

▪ Below D

▪ Equivalently: Exactly one of these facts is true in every reachable state (mutex!)

▪

▪  Remove those facts,
introduce state variable ∈

170

jo
nk

v@
id

a
jo

nk
v@

id
a

170PDB Heuristics: State Variables (3)
 Example, continued

 states (reachable and unreachable) in predicate representation

 states (reachable and unreachable) in state variable representation:

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

The state variable translation

is not part of the PDB heuristic!

Using state variables is useful

because PDBs work better

with fewer ”irrelevant states”

in the state space…

…so we can model using state variables,

or let the planner rewrite the problem

from PDDL predicates.

Provides more structure: Obvious that A can't be under B and under C

Useful when ignoring facts: Ignore where A is, care about where B is

171

jo
nk

v@
id

a
jo

nk
v@

id
a

171PDB Heuristics: Rewriting the Problem
 Rewriting works as before

 Suppose the pattern is

 Rewrite the goal

▪ Suppose that the original goal is expressed as
Original:

▪ Abstract:

 Rewrite actions, removing some preconds / effects

▪ no longer requires

▪ still requires

 …

aboveA ∈ { clear, B, C, D, holding }

aboveB ∈ { clear, A, C, D, holding }

aboveC ∈ { clear, A, B, D, holding }

aboveD ∈ { clear, A, B, C, holding }

posA ∈ { on-table, other }

posB ∈ { on-table, other }

posC ∈ { on-table, other }

posD ∈ { on-table, other }

hand ∈ { empty, full }

172

jo
nk

v@
id

a
jo

nk
v@

id
a

172PDB Heuristics: Gripper Example
 A common restricted

gripper domain:

 One robot with

two grippers

 Two rooms

 All 𝑛 balls originally in

the first room

 Objective: All balls in

the second room

Compact state variable representation:
∈

∈

2 * 4n states, some unreachable – which ones?

Standard predicate representation: 24𝑛+4 = 42𝑛+2

Possible patterns:

 4 abstract states

 8 abstract states

 4n abstract states

 4log(n) abstract states

…

Pattern Database Heuristics:

Computation

174

jo
nk

v@
id

a
jo

nk
v@

id
a

174PDB Heuristics: Databases!
 Because we keep few state variables:

 Many real states map to the same abstract state

  Every abstract state may be encountered many times during search

  Cache calculated costs

 Dijkstra efficiently finds optimal paths from all abstract states

  Precalculate all heuristic values for each pattern

 Store in a look-up table – a database

175

jo
nk

v@
id

a
jo

nk
v@

id
a

175PDB Heuristics: Calculating (1)
 1: Find all abstract states reachable from the abstract initial state

aboveA=clear,

aboveB=clear,

aboveC=clear,

aboveD=clear,

posA=on-table,

posB=on-table,

posC=on-table,

posD=on-table,

hand=empty

[Illustration only; not the same problem]

176

jo
nk

v@
id

a
jo

nk
v@

id
a

176PDB Heuristics: Calculating (2)
 2: Find all reachable abstract goal states

▪ Real goal =

▪ Abs. goal =

▪ Abs. goal states= ,

,

,

177

jo
nk

v@
id

a
jo

nk
v@

id
a

177PDB Heuristics: Calculating (3)
 3: Compute the database

 For every reachable abstract state,

find a cheapest path to any abstract goal state

 Can be done with backward search

from the set of reachable abstract goal states, using Dijkstra

178

jo
nk

v@
id

a
jo

nk
v@

id
a

178

Abstract goal states

PDB Heuristics: Calculating (4)
st

ac
k
(A

,B
)

………

179

jo
nk

v@
id

a
jo

nk
v@

id
a

179

Abstract goal states

PDB Heuristics: Databases

…and so on

for all reachable

abstract states

This database represents an admissible heuristic!

Given a real state:

Find the unique abstract state that matches; return its precomputed cost

180

jo
nk

v@
id

a
jo

nk
v@

id
a

180PDB Heuristics: Complexity
 Database:

 Stores one cost for every abstract state s

▪ Cost is optimal within the relaxed problem

▪ Cost is admissible for the “real” problem

 For the database to be computable in polynomial time:

 As problem instances grow,

the pattern can (only) grow to include a logarithmic number of variables

 Problem size 𝑛, maximum number of values for a state variable 𝑑
number of pattern variables: 𝑂 log𝑛 ,

number of abstract states for the pattern: 𝑂 𝑑log 𝑛 = 𝑂(𝑛log 𝑑)

 Dijkstra is polynomial in the number of states

How are PDBs used
when solving the original planning problem?

Step 1: Using a single pattern

182

jo
nk

v@
id

a
jo

nk
v@

id
a

182PDB Heuristics in Forward Search (1)
 Step 1: Automatically generate a planning space abstraction

 A pattern, a selection of state variables to consider

 Choosing a good abstraction is a difficult problem!

▪ Different approaches exist…

 Step 2: Calculate the pattern database

 As already discussed

183

jo
nk

v@
id

a
jo

nk
v@

id
a

183PDB Heuristics in Forward Search (2)
 Step 3: Forward search in the original problem

 For each new successor state 𝑠1, calculate heuristic value ℎ𝑝𝑑𝑏(𝑠1)

▪ Example: 𝑠1

▪ Convert this to an abstract state

▪ Example: 𝑠1
′

▪ Use the database to quickly look up ℎ𝑝𝑑𝑏(𝑠1) =

the cost of reaching the nearest abstract goal from 𝑠1
′

aboveB = holding, aboveD = A, posB = other, posD = on-table  cost n1

aboveB = holding, aboveD = A, posB = other, posD = other  cost n2

…

How can PDB heuristics
become more informative?

185

jo
nk

v@
id

a
jo

nk
v@

id
a

185Accuracy for a Single PDB Heuristic
 How close to h*(n) can an admissible PDB-based heuristic be?

 Assuming polynomial computation:

▪ Each abstraction can have at most O(log n) variables/groups

▪ h(n) ≤ cost of reaching the most expensive subgoal of size O(log n)

 But still, log(n) grows much slower than n

▪  For any given pattern, asymptotic accuracy is (often) 0

▪ As before, practical results can be better!

Significant differences compared to hm heuristics!

Subgoal size is not constant but grows with problem size

On the other hand, does not consider all subgoals of a particular size

Decides state variables in advance – for ℎ𝑚, facts are chosen on each level

186

jo
nk

v@
id

a
jo

nk
v@

id
a

186Improving PDBs
 How to increase information?

 Can't increase the size of a pattern beyond logarithmic growth…

 Can use multiple abstractions / patterns!

 For each abstraction, compute a separate pattern database

 Each such cost is an admissible heuristic

▪ So the maximum over many different abstractions

is also an admissible heuristic

 What is the new level of accuracy?

 Still 0… asymptotically

 But this can still help in practice!

187

jo
nk

v@
id

a
jo

nk
v@

id
a

187Additive PDB Heuristics (1)
 To improve further:

 Define multiple patterns

 Sum the heuristic values given by each pattern

 As in hadd, this could lead to overestimation problems

 Some of the effort necessary to reach the goal is counted twice

 To avoid this and create an admissible heuristic:

 Each fact should be in at most one pattern

 Each action should affect facts in at most one pattern

  Additive pattern database heuristics

188

jo
nk

v@
id

a
jo

nk
v@

id
a

188

p1 p2

Additive PDB Heuristics (2)
 BW: Is ={facts in even rows}, ={facts in odd rows} additive?

 No: pickup(B) affects {aboveB,posB} in , {hand} in

aboveD

posA

pickup(B)

posB

One potential problem:

Both patterns could use pickup(B) in their optimal solutions

 sum counts this twice! This is what we're trying to avoid…

aboveB

posD

aboveC

aboveA

hand

posC

aboveA ∈ { clear, B, C, D, holding }

aboveB ∈ { clear, A, C, D, holding }

aboveC ∈ { clear, A, B, D, holding }

aboveD ∈ { clear, A, B, C, holding }

posA ∈ { on-table, other }

posB ∈ { on-table, other }

posC ∈ { on-table, other }

posD ∈ { on-table, other }

hand ∈ { empty, full }

189

jo
nk

v@
id

a
jo

nk
v@

id
a

189Additive PDB Heuristics (3)
 BW: Is , additive?

▪ No: affects in , in

▪ True for all combinations of

 An additive PDB heur. could use one of these:

▪

▪

▪ …

 Can't have two separate patterns

both of which include an

▪ Those will be directly connected by some unstack action

aboveA aboveBunstack(A,B)

aboveC

aboveD

unstack(A,C)

unstack(A,D)

This formulation of the

Blocks World is

"connected in the wrong way"

for this approach

to work well

190

jo
nk

v@
id

a
jo

nk
v@

id
a

190Additive PDB Heuristics (4)
 "Separating" patterns in the Gripper domain:

∈
∈
∈

Are these a problem?

191

jo
nk

v@
id

a
jo

nk
v@

id
a

191Additive PDB Heuristics (5)
 No problem: We don't have to use all variables in patterns!

For each pattern we chose one variable

Then we have to include all actions affecting it

The other variables those actions affect [used()] don't have to be part of any pattern!

192

jo
nk

v@
id

a
jo

nk
v@

id
a

192Additive PDB Heuristics (6)
 Notice the difference in structure!

Gripper: No pair of loc() facts has a direct connection through an action

BW: Every pair of aboveX facts has a direct connection through an action

193

jo
nk

v@
id

a
jo

nk
v@

id
a

193Additive PDB Heuristics (7)
 When every action affects facts in at most one pattern:

 The subproblems we generated are completely disjoint

▪ They achieve different aspects of the goal

▪ Optimal solutions must use different actions

The heuristic never tries to generate
optimal plans for –

we have not included it in any pattern

194

jo
nk

v@
id

a
jo

nk
v@

id
a

194Additive PDB Heuristics (8)
 Avoids the overestimation problem we had with hadd

This cannot happen

when every action affects facts

in at most one pattern

 The abstractions

are additive

 Adding costs

from multiple heuristics

yields an

admissible heuristic!

To achieve p: Heuristic uses A1

To achieve q: Heuristic uses A2

Sum of costs is 2 – optimal cost is 1, using A3

195

jo
nk

v@
id

a
jo

nk
v@

id
a

195Additive PDB Heuristics (9)
 Can be taken one step further…

 Suppose we have several sets of additive abstractions:

▪ Can calculate an admissible heuristic from each additive set,

then take the maximum of the results

as a stronger admissible heuristic

p1 p2 p3 p4

4 patterns satisfying

additive constraints

p5 p6 p7 p8

5 patterns satisfying

additive constraints

p9

Sum 

admissible heuristic ℎ𝑝𝑑𝑏
1 (𝑠)

Sum 

admissible heuristic ℎ𝑝𝑑𝑏
2 (𝑠)

Max 

admissible heuristic ℎ𝑝𝑑𝑏
3 𝑠 = max(ℎ𝑝𝑑𝑏

1 𝑠 , ℎ𝑝𝑑𝑏
2 𝑠)

196

jo
nk

v@
id

a
jo

nk
v@

id
a

196Additive PDB Heuristics (10)
 How close to h*(n) can an additive PDB-based heuristic be?

 For additive PDB heuristics with a single sum,

asymptotic accuracy as problem size approaches infinity…

 In Gripper:

 In state sn there are n balls in room1, and no balls are carried

 Additive PDB heuristic ℎ𝑎𝑑𝑑
𝑃𝐷𝐵 𝑠𝑛 :

▪ One singleton pattern for each ball location variable loc(ballk)

▪ For each pattern, the optimal cost is 2

▪ pick(ball,room1,gripper1): loc(ball)=room1  loc(ball)=gripper1

▪ drop(ball,room2,gripper1): loc(ball)=gripper1  loc(ball)=room2

▪ ℎ𝑎𝑑𝑑
𝑃𝐷𝐵 𝑠𝑛 = sum for n balls = 2n

 Real cost:

▪ Use both grippers: pick, pick, move(room1,room2), drop, drop, move(room2,room1)

▪ Repeat n/2 times, total cost ≈ 6n/2 = 3n

 Asymptotic accuracy 2n/3n = 2/3

197

jo
nk

v@
id

a
jo

nk
v@

id
a

197Additive PDB Heuristics (11)
 How close to h*(n) can an additive PDB-based heuristic be?

 For additive PDB heuristics with a single sum,

asymptotic accuracy as problem size approaches infinity:

 Only achieved if the planner finds the best combination of abstractions!

 This is a very difficult problem in itself!

h+ (too slow!) h2 Additive PDB

Gripper 2/3 0 2/3

Logistics 3/4 0 1/2

Blocks world 1/4 0 0

Miconic-STRIPS 6/7 0 1/2

Miconic-Simple-ADL 3/4 0 0

Schedule 1/4 0 1/2

Satellite 1/2 0 1/6

jonas.kvarnstrom@liu.se – 2017

Heuristics part IV

200

jo
nk

v@
id

a
jo

nk
v@

id
a

200Landmark Heuristics (1)
Landmark:

”a geographic feature used by explorers and others

to find their way back or through an area”

201

jo
nk

v@
id

a
jo

nk
v@

id
a

201Landmark Heuristics (2)
Landmarks in planning:

Something you must pass by/through in every solution to a specific planning problem

Fact Landmark for s:

A fact that is not true in s,

but must be true at some point

in every solution starting in s

…

Assume we are currently in state s…

Formula Landmark for s:

A formula that is not true in s,

but must be true at some point

in every solution starting in s

∧

…

202

jo
nk

v@
id

a
jo

nk
v@

id
a

202Landmark Heuristics (3)

 Usually many paths lead

from s to a goal state

▪ Few states are shared

among all paths

▪ Many facts occur

along all paths

Not ”we must reach the

landmark state”!

Instead ”we must reach

some state that satisfies

the fact/formula landmark”

Facts and formulas, not states! Why?

203

jo
nk

v@
id

a
jo

nk
v@

id
a

203Landmark Heuristics (4)
Landmarks in planning:

Something you must pass by/through in every solution to a specific planning problem

Fact Landmark for s:

A fact that is not true in s,

but must be true at some point

in every solution starting in s

Action Landmark for s:

An action that must be used

in every solution starting in s

…but not ! (Why?)

…so the effects of

action landmarks

are fact landmarks,

and so are their

preconds

(except those facts

that are already true

in s)

Assume we are currently in state s…

204

jo
nk

v@
id

a
jo

nk
v@

id
a

204Landmark Heuristics (5)
 Generalization:

 Disjunctive action landmark {𝑎1, 𝑎2, 𝑎3} for state 𝑠

▪ Every solution starting in state s and reaching a goal

must use at least one of these actions

 From action to fact:

▪ Every fact in ځ eff 𝑎 |𝑎 ∈ landmark − 𝑠 is a fact landmark for 𝑠

 From fact to action:

▪ If 𝑝 is a fact landmark,

then 𝑎 ∈ 𝐴 | 𝑝 ∈ eff 𝑎 is a disjunctive action landmark for s

▪ Not necessarily minimal:

Some of the actions may not be required

(removing an action can still result in a disjunctive A.L.)

206

jo
nk

v@
id

a
jo

nk
v@

id
a

206

Current planning problem, P

Initial state does not include atom A

Modified planning problem, P’

Removed all actions

that add atom A

Finding Landmarks: General Technique
 One general technique for discovering landmarks:

If this problem (P’) is unsolvable……then every solution to P

must use one of the removed actions

 Action set is a disj. act. landmark

 Atom A is a fact landmark

Test:

Delete relaxation of P’ is

unsolvable,

or hm(s0) = ∞, or …

 P’ is unsolvable

Unsolvable when removing a set of actions

 some action in the set must be used  disjunctive action landmark!

207

jo
nk

v@
id

a
jo

nk
v@

id
a

207Finding Landmarks: General Technique (2)
 This technique is very general

 Applicable to any planning problem, any atom

 General techniques tend to be widely applicable but slow…

208

jo
nk

v@
id

a
jo

nk
v@

id
a

208Verifying Landmarks (1)
 How difficult is it to verify that an action is an action landmark,

in the general case?

 Suppose we can verify this

 Then given any STRIPS problem P, we can determine if it has a solution:

▪ Add a new action:

▪

▪ If is an action landmark, then it is needed in order to solve the problem

 the original problem was unsolvable

 As difficult as solving the planning problem (PSPACE-complete)

Porteous et al (2001): On the Extraction, Ordering, and Usage of Landmarks in Planning

209

jo
nk

v@
id

a
jo

nk
v@

id
a

209Verifying Landmarks (2)
 How difficult is it to verify that a fact is a fact landmark,

in the general case?

 Suppose we can verify this

 Then given any STRIPS problem P, we can determine if it has a solution:

▪ Add a new fact:

▪ (false in the initial state)

▪ Add new action:

▪

▪ If is a fact landmark,

then was necessary  the original problem was unsolvable

 Again , as difficult as solving the planning problem

But of course there are special cases…

211

jo
nk

v@
id

a
jo

nk
v@

id
a

211Means-Ends Analysis (1)
 Discover landmarks using means-ends analysis

The goals are (obviously) fact landmarks,

except those true in the current state:

is a landmark,

is not true in the current state

we must cause with an action

All actions causing require

which is not true in the current state
 is a landmark!

ctions causing require

but s true in the current state

 is not necessarily a landmark

212

jo
nk

v@
id

a
jo

nk
v@

id
a

212Means-Ends Analysis (2)
 Formally:

 Discovering landmarks through means-ends analysis





 𝑎 ∈ 𝐴 | 𝑝 ∈ (𝑎)

ረ
𝑎∈𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑟𝑠

pre(𝑎)

 ∪

Add those facts

that are preconditions of all actions

achieving the known landmark p

and that are not true

in the current state

213

jo
nk

v@
id

a
jo

nk
v@

id
a

213Means-Ends Analysis (3)
 Weakness of means-ends analysis:

 Suppose the goal is , initial state is

 Processing for landmark A:

 Processing for landmark X:

Action

effect

precond

Action

effect

precond

𝐗, 𝐘, 𝐙 ∩ 𝐕,𝐖, 𝐗 = {𝐗}
 Discover landmark

Action

effect

precond

Action

effect

precond

𝐏,𝐐 ∩ 𝑹, 𝑺 = ∅
 No landmarks,

"stop" processing

Maybe all actions achieving P require Z,

and all actions achieving R also require Z

Weakness: We do not check this! Why?

Checking interactions across branches  full backward-chaining

 complexity as in full plan generation…

214

jo
nk

v@
id

a
jo

nk
v@

id
a

214Domain Transition Graphs (1)
 General concept: domain transition graphs

 Assume we use a state variable representation

▪ Each variable has a domain, a set of possible values

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

 For each state variable:

▪ Add a node for each value

▪ Add an edge

for each action changing the value

Example:

aboveA

215

jo
nk

v@
id

a
jo

nk
v@

id
a

215Landmarks from DTGs
 Suppose:

 In the current state,

 In the goal,

 Then

is a landmark

216

jo
nk

v@
id

a
jo

nk
v@

id
a

216

 Assume a problem 𝑃, and a relaxed problem 𝑃′

 Suppose 𝑓 is a fact landmark for a 𝑃′

 Then 𝑓 is a fact landmark for the original problem as well!

 Similarly for action landmarks, etc.

Solutions for

relaxed problem 𝑃′

Landmarks and Relaxation

Solutions for

original problem 𝑃

All these solutions

pass through

states satisfying 𝑓

All these solutions

must also pass through

states satisfying 𝑓

217

jo
nk

v@
id

a
jo

nk
v@

id
a

217Landmarks
 Many other techniques exist…

 Beyond the scope of the course

 Also, can sometimes find or approximate necessary orderings

 We must achieve holding(A), then holding(B)

219

jo
nk

v@
id

a
jo

nk
v@

id
a

219Example
 Example Problem:

 Truck t transports object o

within road network A/B/C/D

 Airplane p transports object

between airports C/E

 Goal: Object at E

 Domain transition graph

for location of object:

Karpas & Richter: Landmarks – Definitions, Discovery Methods and Uses

220

jo
nk

v@
id

a
jo

nk
v@

id
a

220Landmarks as Subgoals (1)
 Use of landmarks:

 As subgoals: Try to achieve each landmark in succession,

using inferred landmark orderings

▪ Example from Karpas & Richter: Landmarks – Definitions, Discovery Methods and Uses

221

jo
nk

v@
id

a
jo

nk
v@

id
a

221Landmarks as Subgoals (2)

Already true

when we start

Two landmarks could be "first" (all predecessors achieved)
Current goal: ∨ (disjunctive!)

222

jo
nk

v@
id

a
jo

nk
v@

id
a

222Landmarks as Subgoals (3)
Suppose we begin by achieving t-at-B:

Simple planning problem,

results in a single action -- drive(t, B)

Current goal: o-in-T or p-at-C

223

jo
nk

v@
id

a
jo

nk
v@

id
a

223Landmarks as Subgoals (4)
Suppose we continue by achieving o-in-T:

Simple planning problem,

results in a single action -- load-truck(o,t,B)

224

jo
nk

v@
id

a
jo

nk
v@

id
a

224Landmarks as Subgoals (5)
 Sometimes very helpful, but:

 There are still choices to be made – backtrack points!

 Optimizing for one part of the overall goal at a time:

▪ Can’t see the whole picture

▪ Can miss opportunities:

Cheapest solution here  more expensive solution later

▪ Can be incomplete:

Cheapest solution here  impossible to solve later

226

jo
nk

v@
id

a
jo

nk
v@

id
a

226Landmarks for Heuristics: Intro
 Use of landmarks:

 As a basis for non-admissible heuristic estimates

in standard forward state space search

 Pioneered by LAMA, which is:

▪ The winner of the sequential satisficing track of the 2008/2011 competitions

 If LAMA-2011 had participated in IPC-2014 (the latest competition):

▪ Would have been 12th of 21 planners

 But LAMA is part of the following planners from the 2014 competition:

▪ IBaCoP2, 1st place in the sequential satisficing track

▪ IBaCoP, 2nd place in the sequential satisficing track

▪ ArvandHerd, 1st place in the sequential multi-core track

▪ IBaCoP, 2nd place in the sequential multi-core track

227

jo
nk

v@
id

a
jo

nk
v@

id
a

227

All discovered landmarks,

minus those that are

accepted as achieved

(has become true after

predecessors are achieved!)

Plus those we can show will

have to be re-achieved

Landmark Counts and Costs (1)
 LAMA counts landmarks:

 Identifies a set of landmarks that still need to be achieved

after reaching state s through path (action sequence) π

▪ L(s,π) = (L \ Accepted(s,π)) ∪ ReqAgain(s,π)

Not admissible: One action may achieve multiple landmarks!

228

jo
nk

v@
id

a
jo

nk
v@

id
a

228Landmark Counts and Costs (2)
 The LAMA heuristic combines:

 The number of landmarks still to be achieved in a state

 FF heuristics (relaxed planning graph)

 Searches for low-cost plans

▪ But we also want to find plans quickly!

▪ Heuristics estimate both:

▪ Cost of actions required to reach the goal

▪ Cost of the search effort required to reach the goal

 Search strategy:

▪ First, greedy best-first (create a solution as quickly as possible)

▪ Then, repeated weighted A* search with decreasing weights

 Iteratively improve the plan – anytime planning!

229

jo
nk

v@
id

a
jo

nk
v@

id
a

229Landmark Counts and Costs (3)
 Other uses of landmarks:

 As a basis for admissible heuristic estimates

 Idea: The cost of each action is divided across the landmarks it achieves

 Simplified example:

▪ Suppose there is a action of cost ,

that achieves both and

▪ Suppose no other action can achieve these landmarks

▪ One can then let (for example)
and

 The sum of the cost of remaining landmarks

is then an admissible heuristic

▪ Must decide how to split costs across landmarks

▪ Optimal split can be computed polynomially,

but is still expensive

230

jo
nk

v@
id

a
jo

nk
v@

id
a

230Landmarks: Modified Problem
 Landmarks as a basis for a modified planning problem

 Add new predicates ”achieved-landmark-n”

▪ Concretely:

 An action achieving a landmark

makes the corresponding predicate true

▪ 

 The goal requires all such predicates to be true

▪

 Any other heuristic can be applied to the modified problem!

▪ ℎ1(𝑠): What is the cost
of achieving

h1() =

jonas.kvarnstrom@liu.se – 2017

Search Techniques

233

jo
nk

v@
id

a
jo

nk
v@

id
a

233Helpful Actions and Completeness
 Recall FF’s helpful actions

 ≈ Actions chosen in the first level

of the relaxed planning graph

when computing the heuristic

 FF uses these to prune the tree

in Enforced Hill Climbing

 Leads to incompleteness

 May search for a long time,

exhaust the search space,

then start over using complete search

 ”Helpful actions” are more likely to be helpful

 But skipping the other actions completely is too strict!

 Fast Downward: Prioritize helpful actions (”preferred successors”)

state-level 0 state-level 1action-level 1

garbage

clean

asleep

garbage

clean

asleep

dinner

wrapped

carry

roll

cook

wrap

…more levels

clean

234

jo
nk

v@
id

a
jo

nk
v@

id
a

234Dual Queues
 Dual queues (”open lists”):

One for ordinary successors, one for preferred successors

 In each expansion step:

▪ Pick the best action from the preferred queue

▪ Expand it (create successors); place each successor in the appropriate queue

▪ Pick the best action from the non-preferred queue

▪ Expand it (create successors); and place each successor in the appropriate queue

 Fewer preferred successors than non-preferred

▪ Takes less time to reach a node in the preferred queue  we prefer these

 If we ”misclassified” an action as non-helpful:

▪ We don’t have to exhaust the ”preferred part” of the search space

before we can ”recover”

235

jo
nk

v@
id

a
jo

nk
v@

id
a

235Boosted Dual Queues
 Boosted Dual Queues:

 Used in later versions of Fast Downward and LAMA

 Whenever progress is made (better h-value reached):

▪ Expand 1000 preferred successors

 If progress is made again within these 1000 successors:

▪ Add another 1000, accumulating

▪ (Progress made after 300  keep expanding 1700 more)

 After reaching the preferred successor limit:

▪ Expand a node from the non-preferred queue

 Still complete

▪ More aggressive than ordinary dual queues

▪ Less aggressive than pure pruning

237

jo
nk

v@
id

a
jo

nk
v@

id
a

237Deferred Evaluation
 Standard best-first search:

 Remove the "best" (most promising) state from the priority queue

 Check whether it satisfies the goal

 Generate all successors

 Calculate their heuristic values

 Place in priority queue (”open list”)

 Potentially faster: Deferred Evaluation (Fast Downward, …)

 Remove the "best" state from the priority queue

 Check whether it satisfies the goal

 Calculate its heuristic value (only one!)

 Generate all successors

 Place in priority queue using the parent's heuristic value

Typically takes most of the time

Takes less time, but less accurate heuristic – "one step behind"

Often faster but lower-quality plans

jonas.kvarnstrom@liu.se – 2017

Parameter Optimization and
Portfolio Planners

A general technique – not limited to state-space search!

239

jo
nk

v@
id

a
jo

nk
v@

id
a

239Parameter Optimization (1)
 Some planners have many parameters to tweak

 In early planning competitions, domains were known in advance

▪ Participants could manually adapt their ”domain-independent” planners…

 Somewhat exaggerated quote from IPC-2008 results:

▪ if domain name begins with “PS” and part after first letter is “SR”:

use algorithm 100

▪ else if there are 5 actions, all with 3 args, and 12 non-ground predicates:

use algorithm −1000

▪ else if all predicates ground and 10th/11th domain name letters “PA”:

use algorithm −1004

▪ else if there are 11 actions and action name lengths range from 5 to 28:

use algorithm 107

 From 2008, this was no longer allowed

▪ Planners were handed in

▪ Then the organizers ran the planners – also on previously unknown domains

240

jo
nk

v@
id

a
jo

nk
v@

id
a

240Parameter Optimization (2)
 How about automatically learning parameters?

 One specific form of learning in planning – others exist

 Experimental application to Fast Downward

▪ Optimization for speed: 45 params, 2.99 * 1013 possible configurations

▪ Optimization for quality: 77 params, 1.94 * 1026 possible configurations

 Example parameters:

▪ Heuristics used:

hmax = h0, hm, hadd, hFF, hLM (landmarks), hLA (admissible landmarks), goal count, …

▪ Method used to combine heuristics: Max, sum, selective max (learns which

heuristic to use per state), tie-breaking, Pareto-optimal, alternation

▪ Preferred operators used or not, for each heuristic

▪ Like FF's helpful actions, but used for prioritization, not pruning

▪ Search strategy combinations: Eager best-first, lazy best-first, EHC

▪ …

 Parameter learning framework ParamILS used

241

jo
nk

v@
id

a
jo

nk
v@

id
a

241Parameter Optimization (3): Results
 Under the diagonal = faster

than default configuration

 For 540 small

training instances:

▪ Very good results

▪ To be expected – parameters

tuned for these specific problems!

 For 270 larger test instances:

▪ From the same domains

▪ Performance still improves

Unsolvable in 900 seconds

by the default configuration

242

jo
nk

v@
id

a
jo

nk
v@

id
a

242Parameter Optimization (4): Results
 Results from the satisficing track of IPC-2011

 Two versions of FD-autotune competed, adapted to older domains

 Some were reused in this competition, most were new

D
ar

ke
r

=
 b

e
tt

e
r!

243

jo
nk

v@
id

a
jo

nk
v@

id
a

243Portfolio Planning (1)
 Observation:

 Different planners seem good in different domains!

D
ar

ke
r

=
 b

e
tt

e
r!

244

jo
nk

v@
id

a
jo

nk
v@

id
a

244

All problems

Solved in 900s by A

Portfolio Planning (2)
 Further analysis would show:

 Even if two planners solve equally many problems in one domain,

they may solve different problems

 Also, planners often return plans quickly or not at all

Solved in 450s by

planner A

All problems

In 900s by B

Solved in 450s

by planner B

All problems

Solved by

running A

for 450s,

then running

B for 450s

245

jo
nk

v@
id

a
jo

nk
v@

id
a

245

All problems

Solved in 900s by A

Portfolio Planning (3)
 The competition has a fixed time limit

 Can benefit from splitting this across multiple algorithms!

  Portfolio planning

Solved in 450s by

planner A

All problems

In 900s by B

Solved in 450s

by planner B

All problems

Solved by

running A

for 450s,

then running

B for 450s

246

jo
nk

v@
id

a
jo

nk
v@

id
a

246Portfolio Planning (4)
 Fast Downward Stone Soup: Learning

 Which configurations to use

 How much time to assign to each one

 Given test examples from older domains

Configurations

learned for

sequential optimal

planning

247

jo
nk

v@
id

a
jo

nk
v@

id
a

247Portfolio Planning (5)
 Results from IPC-2011:

248

jo
nk

v@
id

a
jo

nk
v@

id
a

248Portfolio Planning (6)
 Results from IPC-2014:

 Sequential SatisficingTrack

▪ #1: IBaCoP -- portfolio planner, 12 planners, 150 seconds per planner

▪ ARVAND (Nakhost, Valenzano, and Xie 2011)

▪ FD-AUTOTUNE 1 & 2 (Fawcett et al. 2011)

▪ FD STONE SOUP (FDSS) 1 & 2 (Helmert et al. 2011)

▪ LAMA 2008 & 2011 (Richter, Westphal, and Helmert 2011)

▪ PROBE (Lipovetzky and Geffner 2011)

▪ MADAGASCAR (Rintanen 2011)

▪ RANDWARD (Olsen and Bryce 2011)

▪ YAHSP2-MT (Vidal 2011)

▪ LPG-TD (Gerevini et al. 2004)

▪ #2: IBaCoP2 -- portfolio planner

▪ Before the competition: Extracted interesting properties of planning problems;

used ML to learn which planners were most likely to solve them

▪ At the competition: Used the learned model to classify new problems;

applied the 5 planners that seemed most useful (360 seconds each)

