
Storing and Querying Ordered XML Using a 
Relational Database System 

Igor Tatarinov* 
University of Washington 

Kevin Beyer Jayavel Shanmugasundaram* 
IBM Almaden Cornell University 

Research Center 

Stratis D. Viglas* 
University of Wisconsin 

Eugene Shekita Chun Zhang* 
IBM Almaden University of Wisconsin 

Research Center 

ABSTRACT 
XML is quickly becoming the de facto standard for data exchange 
over the Intemet. This is creating a new set of data management 
requirements involving XML, such as the need to store and query 
XML documents. Researchers have proposed using relational 
database systems to satisfy these requirements by devising ways 
to "shred" XML documents into relations, and translate XML 
queries into SQL queries over these relations. However, a key 
issue with such an approach, which has largely been ignored in 
the research literature, is how (and whether) the ordered XML 
data model can be efficiently supported by the unordered 
relational data model. This paper shows that XML's ordered data 
model can indeed be efficiently supported by a relational database 
system. This is accomplished by encoding order as a data value. 
We propose three order encoding methods that can be used to 
represent XML order in the relational data model, and also 
propose algorithms for translating ordered XPath expressions into 
SQL using these encoding methods. Finally, we report the results 
of an experimental study that investigates the performance of the 
proposed order encoding methods on a workload of ordered XML 
queries and updates. 

1. Introduction 
The eXtensible Markup Language (XML) is quickly becoming 
the de facto standard for data exchange over the Intemet. The 
widespread adoption of XML is creating a new set of data 
management requirements, such as the need to store and query 
XML documents. Researchers have proposed using relational 
database systems to satisfy these requirements by devising ways 
to "shred" (i.e., decompose) XML documents into relations, and 
translate XML queries into SQL queries over these relations 
[1][4][7][11][13][14]. However, a key issue with such an 
approach that has largely been ignored in the research literature is 
how (and whether) the ordered XML data model can be 
efficiently supported by the unordered relational data model. 
Supporting XML's ordered data model is crucial for domains like 
content management, where document data is intrinsically ordered 
and where queries can exploit this order. For example, if 
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Shakespeare's plays are marked up and stored as XML, the 
ordering of the acts within a play is relevant, and queries can 
exploit this order by asking for the second act in a play. 

In this paper, we show that XML's ordered data model can indeed 
be efficiently supported by a relational DBMS. We propose three 
order encoding methods that can be used to represent XML order 
in the relational data model. These encoding methods are 
essentially numbering schemes that capture enough information to 
reconstruct an ordered XML document; that is, they ensure that 
the mapping from ordered XML to relations is "lossless". 

Each encoding method we propose is based on a different 
approach for achieving a lossless mapping from ordered XML to 
relations. With the Global Order encoding method, the absolute 
position of each XML element is stored as a data value. With the 
Local Order encoding method, the position of an element relative 
to its siblings is stored. Finally, the Dewey Order encoding 
method stands as a hybrid of the preceding two methods. These 
order encoding methods are general and can be used with 
different approaches for shredding XML documents into relations. 

Given these three order encoding methods, the question we would 
like to answer is: when and why does one encoding method work 
better than the other? As we shall show, the choice of the order 
encoding method has a dramatic effect on the performance of 
ordered XML queries and updates. To answer the above question 
in a systematic manner, we characterize ordered XML queries 
(specified in XPath) along three dimensions, and show that each 
dimension can be supported independently. We then present 
algorithms for translating XPath queries into SQL using the 
proposed order encoding methods. Finally, we present an 
experimental study of the three encoding methods using a 
workload of ordered XML queries and updates. 

Our results show that a relational database system can efficiently 
support most ordered XPath queries. The best performance is 
achieved with Global Order for query-mostly workloads, and with 
Dewey Order for a mix of queries and updates. Our results also 
show that in some cases machine-translated XPath queries can 
perform very poorly, requiring manual tuning for optimal 
performance. However, poor performance in those cases is not 
due to a flaw in the translation algorithm. Rather, it can be 
attributed to the fact that the relational database system does not 
understand the hierarchical structure of XML and the semantics of 
XPath queries. We discuss these limitations and outline possible 
solutions. 

In summary, this paper presents the first comprehensive study of 
how XML's ordered data model can be supported using a 
relational database system. 

The rest of the paper is organized as follows. Section 2 discusses 
related work. Section 3 describes the ordered XML data model, 
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and also describes the order-based functionality in XML query 
languages. Section 4 presents three order encoding methods, 
while Section 5 shows how they can be used with well-known 
approaches for shredding documents. Section 6 presents an 
algorithm for translating an XPath expression to SQL. Section 7 
describes our experimental results, and, finally, Section 7.6 
concludes the paper. 

2. Related Work 
Research projects such as SilkRoute [5][6] and XPERANTO 
[2][12] have proposed techniques for efficiently publishing 
relational data as XML. Commercial database products such as 
SQL Server, Oracle, and DB2 also provide support for publishing 
relational data as XML. However, support for ordered XML is not 
crucial in that application since the underlying relational data is 
not ordered. 

More closely related to this paper is the research on storing and 
querying XML documents using relational database systems. In 
that context, there have been many techniques proposed for 
"shredding" XML documents into relations and for translating 
XML queries into SQL queries over those relations 
[1][4][7][11][13][14]. The issues of updating XML data stored in 
relations [16] and indexing XML data [3][8][24] have also been 
studied. However, none of these studies provide a comprehensive 
treatment of XML order. The main goal of this paper is to 
evaluate the effect of order on all aspects of XML document 
processing: storage, reconstruction, querying, and updating. 

The problem of optimizing queries over ordered relations 
(sequences) has been studied in the context of sequence database 
systems [10]. Our work differs from this in two respects. First, 
instead of relying on an ordered data model, we treat order as a 
data value. This enables our solutions to be employed in 
commercial relational database systems optimized for the 
unordered relational data model. Second, unlike the fiat (single- 
level) ordering considered in sequence database systems, we 
consider the more general problem of nested XML order. 

Temporal databases deal with the ordered time domain, and often 
treat time as a data value in the underlying database system [15]. 
Our approach, however, deals with the more general nested 
ordering in XML documents, and focuses on order encoding 
methods for efficient evaluation of ordered XML queries. 

3. Ordered XML: Data Model, 
Query Languages and Query Dimensions 
In this section, we describe XML's ordered data model and the 
order-based functionality present in standard XML query 
languages. We then identify three dimensions of XML order that 
are key to processing queries over ordered XML documents. 

3.1 The XML Data Model 
An XML document can be viewed as a tree [19], where leaf nodes 
correspond to data values (text) and internal nodes correspond to 
XML elements. Order is a salient feature of the XML data model. 
Accordingly, an XML document tree is implicitly ordered 
according to the order of the elements in the XML document. This 
implicit ordering is referred to as document order. 

In addition to element and text nodes, an XML document tree can 
contain attribute nodes. Since attribute nodes are similar to 
element nodes without subelements, and since XML attributes are 
not ordered, we do not consider attributes in this study. An XML 
document can also have a Document Type Descriptor (DTD) [20] 

associated with it. A DTD provides schema information about 
XML documents. 

3.2 Order in XML Query Languages 
In this section, we discuss the order-based functionality in two 
XML query languages, XPath [21] and XQuery [22]. XPath is a 
relatively simple language that has been recommended by the 
World Wide Web Consortium (W3C). XQuery, that is still under 
W3C development, is a more complex language based on XPath. 

3.2.1 Order-based Functionality in XPath 
XPath is a language for speciffying navigation within an XML 
document. The result of evaluating an XPath expression on a 
given XML document is a set of nodes sorted according to 
document order. We will say that the result nodes are selected by 
an XPath expression. An XPath expression has the following 
syntax: P a t h  : :  = / S t e p l / S t e p 2 / . . . / S t e p u  where each 
XPath S t e p  is defined as follows: 

Step : := Axis : : Node-test Predicate* 

An XPath expression is evaluated sequentially, "step" by "step". 
An XPath step is applied to a single node (the context node) and 
selects a set of result nodes. Each node of the result node set is 
then used as the context node to evaluate the following step. The 
initial context node is the root of the input document. The result of 
evaluating an XPath expression is the union of nodesets selected 
by the last step. 

Within an XPath step, A x i s  specifies the "direction" in which the 
document should be navigated. XPath supports 12 axes for 
navigation. For example, if A x i s  equals c h i l d ,  the step would 
consider all child nodes of the context node. N o d e - t e s t  
specifies a simple test on the XML nodes found along the step's 
axis. The most commonly used n o d e - t e s t  examines node 
names. For example, the step c h i l d :  : t i t l e  would select 
child nodes that are titles. Another n o d e - t e s t  that is often used 
is '*', which evaluates to true for all element nodes. Hence, 
c h i l d  : : * would select all subelements of the context node. 

An XPath step can also include a sequence of predicates. The 
predicates are applied to the node set selected by the step. Only 
nodes for which all predicates evaluate to true are returned. Since 
the focus of our work is on order-based queries, we will limit 
ourselves to predicates of the form [ p o s i t i o n ( )  =n].  Such a 
predicate selects all nodes whose position (index) within the 
context node set equals n. The exact meaning of p o s i t i o n  
depends on the axis used at the step. For example, 
c h i l d :  : t i t l e  [ p o s i t i o n ( ) = 2 ]  selects the second child 
with name "title" whereas d e s c e n d a n t  : : t i t l e  
[ p o s i t i o n  ()=2] selects the second such a descendant. Our 

work is easily extended to handle more complex predicates 
involving p o s i t i o n  (). 

In addition to the syntax just described, XPath also supports an 
abbreviated syntax. For example, the name of the axis can be 
omitted, in which case it defaults to c h i l d .  Also, if a predicate 
expression evaluates to an integer value, then that value is 
considered to be the p o s i t i o n  of the node selected. Hence, the 
step t i t l e  [2] would select the second title child of the context 
node. Another commonly used abbreviation is the empty step,//, 
that selects the context node and all of its descendant nodes. For 
example, / / t i t l e  would select all title nodes anywhere in the 
input document. 
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It is important to emphasize that the result of an XPath step (or an 
entire expression) may not contain duplicates. In addition, the 
nodes in the result have to be in document order. 

3.2.2 Order-based Functionality in XQuery 
Since XQuery is based on XPath, the preceding discussion also 
applies to XQuery. Additionally, XQuery includes BEFORE and  
AFTER operators that take two node sequences (XPath 
expressions) and return the nodes from the first sequence that are 
before or after some node in the second sequence, respectively. 
Also, XQuery supports range predicates, e.g., 2 TO 5, which 
return a contiguous sequence of integers that can be used as a 
predicate to select a range of elements from a sequence. For 
example, / p l a y / a c t  [2 TO 4] should return the second, 
third, and forth a c t s  in document order. 

3.3 Evaluation Modes for XML Queries 
Neither the XPath nor the XQuery recommendations [21][22] 
specify how the nodes selected by query expressions are to be 
returned to the application. It seems reasonable to assume two 
possible scenarios (evaluation modes): 

Select mode: In this mode, the nodes in an input XML document 
are assumed to have unique identifiers (IDs). The application 
needs to identify the nodes selected by an XPath expression. 
Accordingly, the result of evaluating an XPath expression is an 
ordered set of node IDs. Given a node ID, the application should 
be able to extract the XML element corresponding to the node, if 
needed. 

Reconstruct mode: This mode combines selection and extraction. 
The XML element trees corresponding to the selected nodes are 
extracted from the input XML document. If the input document is 
stored in a shredded form, one can say that the elements 
corresponding to the selected nodes are being reconstructed, thus 
the name. The result of evaluating an XPath expression in 
reconstruct mode is an ordered set of XML elements. 

Clearly, query evaluation in select mode should be simpler than in 
reconstruct mode. However, preserving document order is 
essential in either case, as described in the following section. 

3.4 The Three Dimensions of XML Order 
We characterize the requirements for supporting XML's ordered 
data model along three dimensions: (a) evaluation of order-based 
XPath axes and functions, (b) result set ordering (inter-element 
order), and (c) ordered element reconstruction (intra-element 
order). Each of these is discussed in more detail below. 

3.4.1 Evaluation of Order-Based Axes And Functions 
Most XPath axes, e.g, c h i l d ,  can be evaluated even when the 
input document is stored without order. The following XPatb 
axes, on the other hand, explicitly require document order: 

p r e c e d i n g ,  f o l l o w i n g :  These axes select all nodes before 
(after) the context node excluding any descendants (ancestors). 

preceding- sibling, following-sibling: These 
axes select all preceding (following) sibling nodes of the context 
node. 

As far as order-based functions go, XPath provides the 
p o s i t i o n  ( ) function, as described earlier. 

3.4.2 Result Set Ordering (Inter-Element Order) 
The elements selected by an XML query must be returned in 
document order. We refer to this requirement as inter-element 
order because it enforces document order among result elements. 
Inter-element order is important in both XML query evaluation 

modes. For example, evaluating the XPath expression 
~ p l a y ~ a c t  should return a c t  node IDs (in select mode) or 
elements (in reconstruct mode) according to document order. 

3.4.3 Ordered Element Reconstruction 
(Intra-Element Order) 

In reconstruct mode, data within elements must also be returned in 
document order. We refer to this requirement as intra-element 
order because it enforces document order within result elements. 
For example, evaluating the XPath expression / p l a y / a c t  [2] 
in reconstruct mode should return the second a c t  with all its data 
and sub-elements in document order. 

4. X M L  Order  E n c o d i n g  Methods  
In order to store and query shredded XML documents using a 
relational database system, we need some mechanism to capture 
document order in the relational data model. This is 
accomplished by encoding each node's position in an XML 
document as a data value. A variety of order encoding methods 
are possible, but a valid order encoding method must allow for 
reconstruction of the original ordered XML document. In 
additional, an order encoding method should allow for translation 
of ordered XML queries and updates into efficient SQL. 

Note that the first requirement ensures a "lossless" mapping from 
XML to relations, while the second requirement is desired for 
performance reasons. Unfortunately, as we will show, there 
appears to be no single encoding method that is simultaneously 
optimal for queries and updates. Encoding methods that perform 
well on queries tend to incur more overhead on updates. 

In light of the above discussion, we focus our attention on three 
"lossless" order encoding methods that span the spectrum of 
query and update performance. The first of these encoding 
methods, Global Order, performs the best on queries. At the other 
end of the spectrum is Local Order, which performs best on 
updates. Finally, Dewey Order is a hybrid of the preceding two 
methods, which performs reasonably well on both queries and 
updates. The order encoding methods that we describe are general 
and can be applied to different approaches for shredding XML. In 
Section 5, we will illustrate this using two different approaches 
for shredding XML 

4.1 Global Order Encoding 
With Global Order, each node is assigned a number that 
represents the node's absolute position in the document. For 
example, an element's position can be encoded as the byte offset 
of its opening tag from the beginning of the document. Note that a 
node's position need not have an actual meaning such as a byte 
offset. Any numbering scheme can be used as long as it is 
consistent with document order. See Figure 1 for an illustration of 
Global Order. 

Global Order makes it easy to answer XPath queries that use order 
axes, such as following and following-sibling. 
Indeed, such queries can be translated into simple comparison 
conditions between node positions. (We will describe the 
algorithm for this translation in more detail in Section 6.) Also, 
Global Order makes it easy to handle both intra-element and inter- 
element ordering requirements because the global document order 
is readily available in the encoded values. 

If updates are to be supported with Global Order and other order 
encoding methods, performance can be improved using sparse 
numbering. With sparse numbering, deletion of an XML fragment 
does not require that remaining nodes be renumbered. 
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Additionally, gaps are left between assigned position values when 
the initial numbering is performed. As a result, insertions may not 
require renumbering to accommodate a new XML fragment. In 
the worst case, however, the number of available position values 
may be smaller than the number of nodes in the XML fragment 
being inserted. In this case, some (or all) of the elements following 
the newly inserted fragment will have to be renumbered, see 
Figure 2. 

It may seem beneficial to use real (floating-point) values instead 
of integers to represent a position. In theory, there is an infinite 
number of real values between any pair of values, so insertions 
would never require renumbering. But in reality, both real and 
integer values are represented with the same number of bits. As a 
result, there is a finite number of values between any two real 
values stored in the computer and using real values instead of 
integers does not provide any benefit. 

Poor insertion performance is thus a potential weakness of Global 
Order, which we confirm experimentally in Section 7. We now 
describe another order encoding method that can handle insertions 
more efficiently. 

4.2 Local (Sibling) Order Encoding 
With Local Order, each node is assigned a number that represents 
its relative position among its siblings (see Figure 1). To see that 
Local Order is sufficient to recreate document order, note that 
combining a node's position with that of its ancestors yields a 
path vector that uniquely identifies the absolute position of the 
node within the document. In other words, such a path vector 
provides global node ordering. 

As shown in Figure 2, the advantage of Local Order is the low 
overhead incurred by updates. Only the following siblings of the 
new node may need to be renumbered. As with Global Order, 
sparse numbering can improve performance of updates. However, 
the low overhead of insertions comes at the cost of evaluating 
ordered XML queries. With Local Order, order axes like 
f o l l o w i n g  and p r e c e d i n g  are difficult to evaluate since no 
global order information is available. In the next section, we 
describe a hybrid scheme that strikes a balance between the 
advantages and weaknesses of Global and Local Order. 

4.3 Dewey Order Encoding 
Dewey Order is based on Dewey Decimal Classification 
developed for general knowledge classification [9]. With Dewey 
Order, each node is assigned a vector that represents the path from 
the document's root to the node. Each component of the path 
represents the local order of an ancestor node, as illustrated in 
Figure 1. Dewey Order is "lossless" because each path uniquely 
identifies the absolute position of the node within the document. 

Since Dewey paths provide global node ordering, query 
processing in Dewey Order is similar to that in Global Order. In 

Figure 1. Illustration of Order Encoding Methods 
terms of overhead incurred by Updates, Dewey Order represents 
the middle ground between Global and Local Order. Only the 
following siblings and their descendants may need to be 
renumbered, as shown in Figure 2. 

Even though Dewey Order combines many of the advantages of 
Global Order and Sibling Order, one of its potential disadvantages 
is the extra space required to store paths from the root to each 
node. In Section 6.2.1, we will describe a UTF-8 [23] based 
representation that can help minimize this overhead. 

4.4 Same-Sibling (Partial) Order Encoding 
It may seem possible to use the following variation of Local 
Order. Instead of assigning each node a number according to its 
position among siblings, only the siblings with the same tag name 
are considered. We refer to this method as Same-Sibling Order. 
Unfortunately, Same-Sibling Order alone is not sufficient to 
recreate document order because it does not define a total order 
between all siblings (only partial order is defined). Hence, Same- 
Sibling Order can only be used in conjunction with an order 
encoding method that defines a total order among nodes, such as 
one of the three described above. Despite its shortcomings, Same- 
Sibling Order can be beneficial on queries that select the n-th sub- 
element with a certain tag name (e.g., ~ p l a y ~ a c t  [2 ] ). 

5. Shredding Ordered XML into Relations 
In this section, we describe how our three order encoding methods 
can be used with well-known approaches for shredding XML 
documents into relations. We consider two cases: when the 
schema of input documents is unknown (the schema-less case), 
and when the schema is known (the schema-aware case). 

5.1 The Schema-less Case 
In many applications, the schema of input documents is unknown. 
The Edge shredding approach has been proposed recently to 
handle this case [7]. A single relation, the Edge table, is used to 
store an entire document. When preserving document order is not 
an issue, the Edge table is defined as follows: 

Edge(id, parent_id, name, value) 

Each Edge tuple represents a node in the XML document tree. 
The i d  column corresponds to the node's ID and also serves as 
the primary key of the relation. The p a r e n t _ i d  column 
provides a "link" (i.e., foreign key) to the node's parent. The 
name column is used to store the tag name of element nodes, the 
v a l u e  column is used for text values of text nodes. 

Instead of the tag name, the path from the root to an element node 
can be stored, e.g., ~ p l a y ~ a c t .  In order to reduce storage 
requirements, a separate relation (the Path table) can be used to 
store paths and their identifiers [14][25]. The name column of 
Edge can then be replaced with a p a t h _ i d  column. A Path 
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Figure 2. The worst case renumbering scenarios for Global, Local, and Dewey order encodings. 

table will typically be small since it only records unique paths 
rather than all path instances. 

Storing paths instead of tag names can greatly simplify query 
processing. For example, to find all nodes that satisfy the XPath 
expression / p l a y / a c t / s c e n e ,  a single join of the Edge and 
Path tables can be used to identify the result tuples. Without a 
Path table, 3 self-joins of the Edge table would be required. 

5.1.1 Storing Order Information 
When document order needs to be preserved, order information 
must be stored along with document structure and data. 
Depending on the order encoding method used, the basic Edge 
approach has to be adapted as follows: 

Global Order: If node IDs are assigned according to document 
order, then document order will be preserved. As will be seen 
shortly, it is also beneficial to add a column to store the ID of the 
last descendant of a node ( e n d _ d e s e  £d). The Edge table can 
then be defined as follows: 

Edge(id, parent_id, end_dese_id, path_id, value) 

Local Order: Since the relative position of a node among its 
siblings does not uniquely identify a node in a document, unique 
node IDs still need to be assigned (that do not have to follow 
document order). A new column needs to be added to represent 
the position of a node among its siblings (the sibling index of a 
node, s I n d e x ) :  

Edge(id, parent_id, sIndex, path_id, value) 

Dewey Order: A Dewey path represents both order and ancestor 
information. As a result, with Dewey Order, Edge is especially 
simple: Edge(dewey, path_id, value). 

Since the length of a node's Dewey path is unknown a priori, the 
dewey column has to be stored as a variable-length byte string. 

5.2 The Schema-aware Case 
When an XML Schema (or DTD) is available, more efficient 
shredding techniques based on Inlining can be used [l 1]. With 
Inlining, child elements that can occur at most once are stored as 
one or more columns in the same relation as their parent. A new 
relation is created only for child elements that can occur multiple 
times. For example, suppose a schema specifies that a p l a y  can 
have at most one t i t l e ,  but can have an arbitrary number of 
ac t s .  In that case, t i t l e  would be inlined as a column in the 
relation for p l a y ,  while a c t s  would be stored in a separate 
relation that is linked to the p l a y  relation using a foreign key. 

One advantage of Inlining is the possibility of more efficient 
navigation from an element to its subelements. For example, in 
the Edge approach, retrieving a subelement of a given element 
requires a self-join of the Edge relation. With Inlining, the 
subelement may be immediately available if the subelement is 
stored in the same tuple as the parent element. As a consequence, 

reconstruction of a stored XML element is more efficient as well. 
Another advantage of Inlining is physical partitioning of data. 
Instead of storing entire documents in a single Edge table, Inlining 
shreds XML documents into a set of tables according to the 
document schema. As a result, queries tend to access less data, 
which leads to better performance (see Section 7). 

It is straightforward to adapt Inlining to work with Global, Local, 
or Dewey Order. As with Edge shredding, an additional column is 
added to every relation to encode document order. Note that there 
is no need to have a separate column for storing the order 
information of inlined elements, since the position of such 
elements can be determined from the position of their parent 
element and the document schema. 

6. Translating Ordered XML Queries 
and Updates into SQL 
We now describe algorithms for translating ordered XML queries 
and updates into SQL queries based on the three order encoding 
methods discussed earlier. We will start with the algorithm for 
Global Order. Since essentially the same algorithm can be used 
for both Edge and Inlining shredding, we focus on Edge shredding 
and then outline how it can be extended for Inlining. 

6.1 Query Translation for Global Order 
The algorithm for translating an ordered XPath query into SQL is 
shown in Figure 3. (We will discuss extensions for ordered 
XQuery fimctions and updates shortly.) We first describe the 
algorithm at a high level, and then provide additional details. In 
the interest of space, we mainly focus on the translation of 
ordered axes, omitting the details of how a sequence of unordered 
child steps can be combined into a single predicate on the Path 
table [14][25]. 

As shown, the algorithm in Figure 3 initially generates the SQL 
fragment to select the root elements of the stored XML documents 
(lines 4-6). Then, using the root elements as the initial context 
nodes, the algorithm generates the SQL fragments for each "step" 
of the XPath query being translated in order to produce new 
context nodes (line 8). The context nodes produced by the last 
step constitute the query result (lines 10-11). 

The SQL fragments generated by the algorithm for the root nodes 
and for each step are represented using "with clauses" (also 
referred to as inlined views). We use "with clauses" instead of 
nested sub-queries because they can also be used for defining 
recursion, which will be used in the query translation for Local 
Order. 

We now present the details of translating each step in an XPath 
query. An XPath step is translated to SQL by generating and 
concatenating SQL fragments for the axis of the step, the node 
test of the step, and the predicates associated with the step 
(linel5). As an example, consider the generation of the SQL 
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fragment for XPath's child axis. Let us assume that the current 
context node set is represented by the "inlined view" Qq that 
returned the i d s  and e n d  d e s c e n d a n t  i d s  of  the context 
nodes. To evaluate the child axis, we need to determine the child 
nodes of  the context nodes. This task can be performed by joining 
the p a r e n t _ i d  column of the Edge table with the i d  column of  
the context nodes (lines 19-21). 

So far, we have focused on the translation of  general XPath 
features; we now turn our attention to ordered axes and functions. 

6.1.1 Translation of f o l l o w i n g  
Recall that in order to evaluate the f o l l o w i n g  axis, we need to 
determine all the nodes that occur after the context node in 
document order (excluding the descendants of  the context node). 
This is easy to do with Global Order; we just need to select those 
nodes in the Edge table whose i d  value is greater than the 
e n d  d e s c e n d a n t  i d  value of  the context node (lines 22-24). 
The p r e c e d i n g  axis can be evaluated similarly. 

6.1.2 Translation of f o l  l o w i n g -  s i b l  i n g  
To evaluate the f o l l o w i n g - s i b l i n g  axis, we need to 
determine all the sibling nodes of  the context node that occur after 
the context node. We can achieve solve this problem by selecting 
the nodes in the Edge table that (a) have an i d  value that is 
greater than i d  value of  the context node, and (b) have the same 
p a r e n t _ i d  value the context node (lines 25-27). The 
p r e c e d i n g - s  i b l  i n g  axis can be evaluated similarly. 

6.1.3 Translation of Position-based Predicates 
Consider the following XPath expression involving a position 
based predicate: / p l a y / a c t / s c e n e  [2] .  A naive way of  
translating this into SQL is to use a subquery and the "count" 
function to find the number of  s c e n e  nodes occurring before the 
context s c e n e  node, and then select only those nodes for which 
the subquery returns one. Clearly, this approach is likely to be 
very inefficient since the subquery is evaluated for each context 
s c e n e  node. Fortunately, SQL'99 has an efficient "rank" 
function, originally proposed as an OLAP extension. We now 
show that the "rank" function can be used to evaluate position- 
based predicates in XML queries (the performance advantages of  
the rank approach are studied in Section 7). 

Lines 51-56 in Figure 3 show the SQL fragment to translate 
position-based predicates using rank. Essentially, the rank clause 
is applied to the context nodes to give them a position (lines 32- 
37), and only those context nodes that satisfy the position-based 
predicate are selected (line 37). The rank clause has two parts. 
The PARTITION BY part is applied to the context nodes to 
partition them based on the p a r e n t _ i d  (thus, sibling s c e n e s  
in ~ a c t ~ p l a y ~ s c e n e [ 2 ]  will be in the same partition). 
Within each partition, the ORDER BY part is used to map a 
sparse ordering into a dense one (thus, all sibling s c e n e s  will be 
ordered starting from one: 1, 2, ... and so on). Given the dense 
numbering, the desired position can then be selected (in our 
example, T . p o s  = 2 on line 37). 

If  position-based predicates are used often and updates are rare, it 
is beneficial to add an additional column to store dense same- 
sibling ( s s I n d e x )  order information (see Section 4.4). As a 
result, ranking nodes would be unnecessary and a simple selection 
could be used. Note, however, with dense ordering every update 
(insert or delete) has to be followed by node renumbering. 

6.1.4 Translation of XQuery Operators 
The BEFORE and AFTER operators of  XQuery are similar to 
p r e c e d i n g  and f o l l o w i n g  axes of  XPath, and can be 
translated similarly. The range selection operator, e.g., [2 to 5], 
can be handled similarly to position-based predicates, except that 
the final selection condition will be a range predicate instead o f  an 
equality predicate. 

6.1.5 Enforcing Inter- and Intra-Element Order 
In order to ensure that the results of  an XPath expression are in 
document order (inter-element order), we can simply sort the 
result nodes on Global Order ID. Reconstructing the content of  
these nodes, including that of  their descendants, in document 
order (intra-element order) is slightly more complex. First, we 
identify all of  the descendants of  the selected nodes by retrieving 
the nodes whose i d  value lies between the i d  and 
e n d _ d e s c e n d a n t _ i d  of  a context node (line 16). We then 
sort all of  these nodes based on the i d s  of  the context node and 
the corresponding descendant node (line 17). 

Note that in general, we need to sort by the 2d of  the context node 
in addition to the i d  of  the descendant nodes. This is because the 
context nodes could have an overlapping set of  descendants. For 
example, consider the XPath expression / / s p e e c h .  This could 
return a set of  context nodes such that speech s l  could be a 
descendant of  another speech s2.  To establish intra-element 
document order, we need to ensure that all of  s l ' s  descendants 
immediately follow s l ,  and similarly all of  s 2 ' s  descendants 
immediately follow s2.  Merely sorting on the i d  of  the 
descendants of  s l  and s2  will result in an interleaving of  their 
descendants. This problem is avoided by including the i d  of  the 
context node as an extra sort field. Note, however, that i f  the 
XPath expression is such that there is no chance of  overlapping 
descendants, e.g., /act/play/scene/speech, then, sorting 
on the i d  of  the descendant nodes only is sufficient. 

For the purposes of  this study, we do not consider adding XML 
tags to the ordered results (i.e., our goal is to return a stream of  
tuples in document order). A constant space tagger such as the 
one proposed in [ 12] can be used to add XML tags to the output 
data on-the-fly. 

6.1.6 Translating XML Updates 
Since XPath and XQuery do not yet provide support for updates, 
we use the update extensions proposed in [16]. We consider only 
inserts and deletions because these operations affect order 
(specifically, we do not consider modifications to XML data 
values). Insertions are specified using two parts. The first part is 
an XPath expression that selects a set of  context nodes, and the 
second part is the XML element to be inserted after the selected 
context nodes. Deletions are specified as an XPath expression, 
whereby all the selected nodes are deleted. 

It is easy to see that deletions can be handled by evaluating the 
associated XPath expression (as in the case of  queries), and then 
deleting the selected nodes. In particular, there is no need for 
renumbefing if sparse numbering is used. Insertions, on the other 
hand, are subtler because the nodes following the inserted XML 
may need to be renumbered in order to maintain the global 
ordering (see Section 4 for more details). In this context, two 
general methods of  executing inserts seem feasible. In the first 
conservative method, a query is first executed to find out i f  there 
is a conflict and renumbefing is necessary (note that this query 
can be combined with the XPath query for selecting the context 
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1 q = i; // global WITH subquery count 
2 func translateXPath(xPath) { 
3 // retrieve root node info 
4 sql = "WITH Qi (id, parent_id, end_descendant_id) AS ( 
5 SELECT id, parent_id, end_descendant_id 
6 FROM Edge WHERE parent_id = -I); 
7 // translate each step 
8 for (i=l; i <= length(xPath) ; i++) { sql += translateStep(xPath[i]); } 
9 // assume result elements need to be reconstructed 

I0 sql += "SELECT E.* FROM Edge E, Qq as Q WHERE E.id >= Q.id AND E.id <= Q.end_descendant_id 
Ii ORDER BY Q.id, E.id; 
12 return sql; 
13 } 
14 fune translateStep (step) { 

15 return translateAxis(step.axis) + translateNodeTest(step.nodeTest)+ translatePredicates(step) ; 
iG } 
17 func translateAxis (axis) { 
18 switch kind(axis) { 

19 CHILD: sql = "WITH Qq÷1 (id, parent_id, end_descendant_id) AS ( 
20 SELECT E.id, E.parent_id, E.end_descendant_id 
21 FROM Edge E, Qq as Q WHERE E.parent_id = Q.id)"; 
22 FOLLOWING: sql = "WITH Qq,1 (id, parent_id, end_descendant id) AS ( 
23 SELECT E.id, E.parent id, E.end_descendant id 
24 FROM Edge E, Qq as Q WHERE E.id > Q.end descendant_id)"; 
25 FOLLOWING-SIBLING: sql = "WITH Qq,~ (id, parent_id, end_descendant_~d) AS ( 
26 SELECT E.id, E.parent_id, E.end descendant_id 
27 FROM Edge E, Qq as Q WHERE E.id> Q.id AND E.parent_id = Q.parent_id)"; 
28 
29 } 
30 func translatePredicate (predicate) { 
31 switch kind(predicate) { 

32 [n] : sql ="WITH Qq÷1 (id, parent_id, end_descendant_id) AS ( 
33 SELECT T.id, T.parent_id, T.end_descendant id 
34 FROM (SELECT Q.id, Q.parent_id, Q.end_descendant_id, 
35 RANK OVER (PARTITION BY Q.parent_id ORDER BY Q.id) pos 
36 FROM Qq Q) as T 
37 WHERE T.pos = n)"; 
38 ... 
39 q++; return sql; 
40 } 

Figure 3. The XPath-toSQL Transaltion Algorithm for Edge with Global Order. 

nodes). If there is a conflict, the nodes following the context 
nodes are renumbered. 

The second method is more optimistic. It can be used only with 
dense numbering or when a single node is being inserted. Given 
that global order information is unique for each node, a constraint 
can be defined in the relational database system. As a result, a 
query to detect the need for renumbefing is not necessary, and a 
new XML node can be inserted right away. If the relational 
database system detects a duplicate order value, an error is 
reported. At this point, the algorithm backs down to the 
conservative method: renumbering is performed and the new data 
is inserted. Clearly, if conflicts are rare the optimistic approach 
should be advantageous. The probability of a conflict will depend, 
however, on the algorithm that is used for sparse numbering and 
the insert pattern. We evaluate the relative performance of the 
conservative and optimistic strategies in Section 7. 

6.2 Query Translation for Dewey Order 
We now describe the translation algorithm for Dewey Order. The 
key insight here is that Dewey Order can essentially be treated as 
a Global Order (and use the same translation algorithm) if we can 
enforce certain properties on Dewey paths. Also, since Dewey 
Order encodes parent and descendant information implicitly in the 
Dewey path, there is no need to explicitly store these values as in 
the case of Global Order; rather these values can be derived from 
the Dewey path. We now discuss these two issues in more detail. 

6.2.1 Enforcing Global Order using Dewey Paths 
In order to enforce global (document) ordering using Dewey 
paths, we need to ensure that the result of a comparison between 
two Dewey paths is consistent with document order. This will 
ensure that Dewey Order can be used just like Global Order in 
"order by" and "comparison" operators in SQL. It turns out, 
however, that a simple concatenation of the components of the 
Dewey path using a separator such as "." does not work. Indeed, 
consider two Dewey paths "1.2" and "10.2". A comparison of 
these Dewey paths will indicate that "10.2" occurs before "1.2" 
(because '0'  occurs before '.'). Clearly, this answer is not 
consistent with document order. 

The above problem can be overcome by allocating afixed number 
of bytes for each component of a Dewey path. In our example, the 
paths would be represented as "00001.00002" and 
"00010.00002". This simple approach, however, may result in too 
much storage overhead because the number of bytes allocated for 
each component is dependent on the largest number of sub- 
elements that can occur under an element. If each element has a 
small number of sub-elements on average, storage requirements 
will be unjustifiably high. 

In order to address this issue, we use UTF-8 encoding [23] as an 
efficient way to represent Dewey paths. In UTF-8, a variable 
number of bytes are used to encode different integer values. 
Smaller values use a smaller number of bytes. For example, if the 
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value is smaller than 27=128, it is encoded with a single byte 
0xxxxxxx where x represents a bit used for value encoding. The 
values between 27 and 211 are encoded with two bytes 110xxxxx 
10xxxxxx, and so on. To represent an entire Dewey path with 
UTF-8, each component of the path is encoded in UTF-8 and then 
concatenated. This enables two Dewey paths to be compared as 
simple byte strings, without incurring a large space overhead. 

6.2.2 Inferring parent_id in Dewey 
Recall that in the query translation algorithm for Global Order, we 
used the parent_id and end_descendant_id values that 
were stored explicitly. Dewey Order eliminates the need to 
explicitly store these values because they are implicitly encoded 
in a Dewey path. Specifically, the p a r e n t _ i d  of a node with 
Dewey path dp is just p r e f i x  (dp) ,  where p r e f i x  (dp) is a 
function that removes the last Dewey component of dp. Similarly, 
the end  d e s c e n d a n t  i d  of a node with Dewey path dp can 
be calculated from the following expression: dp II x '  F F ' .  
This expression appends an "all-ones" byte, x '  F F ' ,  as the last 
component of the new Dewey path, which represents the 
maximum possible descendant id .  (Note, x '  FF '  cannot be used 
in a valid UTF-8 encoding.) We have implemented p r e f i x  ( ) as 
a user-defined function in the relational database system. This 
function, along with the UTF-8 encoding, allows using the Global 
Order query translation algorithm for Dewey Order. 

The conservative and optimistic insertion algorithms described for 
Global Order also apply to Dewey Order. However, in case of 
conflicts, fewer nodes need to be renumbered in the Dewey Order 
case (see Section 4 for more details). 

6.3 Query Translation for Local Order 
The translation algorithm for Local Order is different from the 
one for Global Order and Dewey Order because of the lack of 
global order information. Some features, however, share the same 
translation. We will describe the common features first, and then 
illustrate the key differences between the algorithms. 

Order axes like following-sibling and preceding- 
sibling and ordered functions like [n] and [m TO n] can be 
the handled in the same way as Global Order and Dewey Order. 
Indeed, the evaluation of these axes and functions only requires an 
ordering among the sibling nodes. 

The more challenging aspect of the translation using Local Order 
is for "global" axes and operators, such as f o l l o w i n g ,  
p r e c e d i n g ,  BEFORE and AFTER. Because of the local scope of 
the numbering, these primitives cannot be directly implemented 
using a comparison of order values. Instead, the following 
technique can be used. Consider the evaluation of the 
f o l l o w i n g  axis on a context node. We first determine all the 
ancestors of the context node. Let us call the set of ancestors anc.  
We then compute all of anc ' s  f o l l o w i n g - s i b l i n g s ,  as 
described above, to get a n c _ s i b .  Finally, we compute the 
descendants of a n c _ s  i b  to get the desired result. 

The main challenge of this technique lies in computing the 
ancestors and descendants. Consider the problem of computing 
the ancestors of a context node. With fully specified XPaths, like 
/ p l a y / a c t / s c e n e ,  this problem is easy. However, with more 
complex XPath expressions, such as / / s p e e c h ,  and without 
knowledge of the XML schema, the problem is much harder since 
it is not clear how deep the context node is in the XML hierarchy. 
Therefore, we need to employ recursion to compute all of its 
ancestors. Similarly, computing descendants also needs recursion. 

We use SQL's least fix-point recursion (using "with clauses") to 
compute ancestors and descendants. It is easy to extend the above 
algorithm for f o l l o w i n g  to other related primitives such as 
preceding, BEFORE and AFTER. 

We now turn our attention to inter-element order. With only local 
order information available, a global numbering has to be 
computed to ensure inter-element order. We do this by 
concatenating the local order information along the path from the 
root to the context node, essentially building a Dewey path "on 
the fly". The computed Dewey paths can then be used in a SQL 
"order by" clause to ensure inter-element order. Computing the 
Dewey paths can require SQL recursion if the depth of the context 
nodes is unknown. 

Note that intra-element order always requires recursion to 
compute the descendants of context nodes. In addition, Dewey 
paths need to be computed in order to sort the descendant nodes in 
document order. Although query evaluation is more complex with 
Local Order, updates are simpler because fewer nodes need to be 
renumbered (see Section 4). Both conservative and optimistic 
insertion methods can be used with Local Order. 

6.4 Query Translation in Inlining 
So far, we have focused on the Edge shredding approach in 
describing our translation algorithm. Essentially the same 
algorithm can be used for the Inlining shredding approach, but 
with two key extensions. First, in the Inlining method, the XML 
data can be spread across multiple tables. Therefore, in evaluating 
ordered axes like following, following-sibling, 
AFTER, etc., we may need to access a set of tables (instead of just 
accessing the Edge table). This set of tables is determined using 
the XML document schema. Similarly, when performing ordered 
XML element reconstruction, data may need to be accessed from 
multiple descendant tables. In this case, we union these results 
together and later order them using the efficient "sorted outer- 
union" method proposed in the literature [ 12]. 

The second difference in the translation algorithm for Inlining is 
regarding Local Order. Unlike the Edge case, selecting the set of 
ancestors, descendants, and computing Dewey-like paths "on the 
fly" does not require recursion (unless the schema is itself 
recursive). This is because the XML schema gives sufficient 
information about the depth and position of nodes in the XML 
tree; consequently, regular (non-recursive)joins are sufficient. 

One disadvantage of Inlining is that an optimistic insertion 
algorithm cannot be used easily. Since data is partitioned across 
multiple tables, a simple "unique" constraint such as the one used 
to detect order conflicts in a single Edge table, cannot be defined. 

7. Experimental  Results 
We now describe the results of a comprehensive experimental 
study designed to evaluate and compare the performance of the 
three order encoding techniques proposed in this paper. For the 
experiments, we used the freely available Shakespeare's plays 
dataset [ 18]. We chose this dataset because it represents a realistic 
scenario where XML document order is important. Also, this 
dataset includes document schema, which allowed us to 
experiment with both the Edge and Inlining shredding approaches. 
The dataset contains 37 documents, conforming to a single 
schema [18]. In our experiments, we scaled up this dataset by 5x 
and 10x to create a more sizeable data workload. Most of our 
experiments are presented using the 5x dataset, but we also 
illustrate the scalability properties of our approaches using the 10x 
dataset (which contains 100MB of ordered XML). 
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Table h Storage reqs. of the 3 encoding methods (5x dataset) 
Edge Inlining 

Order scheme (898,445 tuples) (888,900 tuples) 
Table size Index size Table size Index size 

Global 52.1 MB 57.9 MB 44.1 MB 28.9 MB 
Local 52.1 MB 87.9 MB 47.7 MB 36.8 MB 

Dewey 48.9 MB 38.7 MB 44.5 MB 15.8 MB 

All experiments were run on an 866MHz Pentium III processor 
with 1GB of physical memory running Windows 2000. We used 
IBM DB2 Version 7.1 for our experiments. For most of our 
experiments, the database buffer and sort area were both set to 
200 MB, which was enough for the entire data set to fit in 
memory. (We used a smaller, 10M buffer in Section 7.7). In order 
to ensure consistency, each test query was executed 6 times with 
the performance results of the first run discarded. A 95% 
confidence interval was computed to estimate error. Since the 
estimated error was small (<10%), confidence intervals are not 
shown in the graphs. 

7.1 Storage Requirements 
The storage requirements for the three order encoding methods 
using both Edge and Inlining shredding are shown in Table 1. The 
two shredding approaches produce almost the same number of 
tuples because most elements occur multiple times within their 
parent element (according to the DTD), which makes the elements 
non-inlinable. The set of indexes that we created was determined 
through careful analysis of the query plans generated by DB2's 
optimizer. The size of the path table (for the Edge case) is not 
shown since the table has only 57 tuples, which equals the number 
of unique paths in the input documents. 

7.2 Test Queries 
The test queries that we used are shown in Table 2. We chose 
these queries for the following reasons. Q1 evaluates 
reconstruction performance on the entire document set. Q2 
evaluates recursive (//) XPath queries. Q3 is very similar to Q2 
but does not use recursion. The rest of the queries were chosen to 
test key aspects of order-based fimctionality in XPath and 
XQuery. The test queries were translated to SQL using the 
algorithm described in Section 6. 

As discussed earlier, an XPath query can be executed in two 
modes. In select mode, the result contains only the IDs of the 
nodes satisfying the XPath expression. In reconstruct mode, 
nodes satisfying the XPath expression are identified and then their 
corresponding elements are reconstructed from database tuples. 
Since one of the goals of this paper is to study the overhead of 
preserving document order, we consider both ordered and 
unordered versions of the select mode. On the other hand, since 
most applications will probably expect order within an element to 

be preserved, we consider only the ordered reconstruction mode. 
We now turn our attention to the performance results. 

7.3 Unordered Selection 
XPath requires the result of a query to be in document order. 
However, it is still useful to know the cost of evaluating 
unordered XPath expressions in order to infer the overhead of 
preserving document order. Figure 4 (left) shows the performance 
of the three order encoding methods for unordered selection, 
using Edge shredding. Figure 5 (left) shows the corresponding 
results for Inlining. Clearly, Global Order results in the best 
performance on all queries, except Q5. Note that Q5 is a rather 
unusual query, which selects the second child node of a s c e n e  
no matter what the name of the child node is. Such a query can be 
evaluated efficiently if (dense) local order information is available 
(as with Local and Dewey Order). However, since Global Order 
does not have this information, it performs relatively poorly. 

The Edge results for Q7 and Q9 show that Local Order is a poor 
choice for queries that use "global" axes and fimctions. Recall that 
Q7 selects s p e e c h e s  following the second a c t ,  whereas Q9 
selects s p e e c h e s  before the second a c t .  Both queries require 
global order information. Recreating global order from local order 
requires recursion (see Section 6.3), which is why Local Order 
performs poorly on these two queries. Interestingly, Q7 and Q9 
perform rather well with Local Order and Inlining. This rather 
surprising result can be explained as follows. Under Inlining, the 
schema of the dataset is available to the query translator. The 
schema information can be used to determine the set of tables 
with the nodes that can occur before/after the context nodes. As a 
result, translation into more efficient SQL queries is possible. 

As shown, the higher cost of comparing Dewey paths makes it 
slightly slower than Global Order. On Q8, however, Dewey Order 
is significantly slower. This query requires a join on parent_id 
(to find following siblings). Recall that with Dewey Order, 
p a r e n t _ i d  is determined by applying the p r e f i x  () user- 
defined function on the i d  of a child (see Section 6.2.2). Thus, 
the join on p a r e n t  i d  is of the form: p r e f i x ( d l )  = 
p r e f i x  (d2) .  Because of the use of two user-defined fimctions, 
this comparison significantly limits the SQL optimizer's options. 
A simple way to improve Dewey Order on such queries is to add a 
column recording the Dewey path of a node's parent, although 
this modification would lead to higher storage requirements. 

7.4 Ordered Selection 
Recall that with ordered selection, SQL queries return a set of 
node IDs in document order. The middle charts in Figure 4 and 
Figure 5 show the results of our ordered selection experiments. 
Comparing the results for ordered selection with those for 
unordered selection, we can ascertain the overhead of preserving 

Query 

QI 
Q2 
Q3 
Q4 
Q5 
Q6 
Q7 
Q8 
Q9 

Table 2: 

Query definition 

Test queries. 

Node count Edge tuple 
c o u n t  

/play 
/play/act//speech 
/play/act/scene/speech 
/play/act/scene/speech[2] 
/play/act/scene/*[2] 
/play/act/scene/speech[l TO 3] 
/play/act[2]/following::speech 
/play/act/scene/speech/speaker/following-sibling::line[2] 
//act/scene/speech BEFORE /play/act[2] 

185 
154,755 
154,665 

3,65C 
3,740 

11,030 
91,90C 
85,445 
30,215 

898,445 
856,880 
853,850 

20,620] 
3,76C 

76,57C 
506,615 

85,445 
172,37C 

Inlining tuple count 

733,760 
699,035 
696,095 

16,910 
3,755 

65,375 
412,775 

85,445 
141,680 
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Figure  5. ln l in ing  results  for unordered  select ion (left),  ordered 

document order. With Global and Dewey Order, this overhead is 
quite small. Indeed, in these methods, sorting on the node IDs is 
sufficient to return results in document order. 

With Local Order, however, global ordering has to be generated 
"on the fly" which, in the case of Edge, requires recursion (see 
Section 6.3). As a result, the performance of Local Order with 
Edge is rather poor. Note, however, that Local Order performs 
reasonably well with Inlining. With Inlining, the set of tables that 
need to be joined to recreate global order can be determined from 
the query and the XML schema. As a result, recursion is not 
necessary (see Section 6.4). 

7.5 Reconstruction 
In reconstruct mode, entire XML fragments need to be extracted 
from the database in document order. Our initial results with 
Global Order and Edge were extremely poor because the DB2 
optimizer does not understand containment queries well. As a 
result, the optimizer picked poor execution plans for Global Order 
and Edge, and we had to "tune" our SQL queries to make it 
choose better plans. More will be said about this problem shortly. 
For the results in Figure 4 (right), we used tuned SQL queries, 
since they are a better measure of Global Order's inherent 
performance. 

The results shown in the charts on the right of Figure 4 and Figure 
5 indicate that Global Order results in the best performance on all 
queries except Q5. Again, Dewey Order is slightly slower than 
Global Order due to the higher cost of comparing Dewey paths. 
Local Order results in noticeably lower performance, especially 
with Edge, which is caused by use of recursion. Local Order with 
Inlining does not require recursion (Section 6.4), but still suffers 
the high overhead of generating a global order on the fly (through 
sorting on a set of columns instead of a single column). 

7. 5.1 Performance Problems with Global Order and Edge 
Our initial reconstruction results with Global Order and Edge 
were simply disastrous, as shown in Figure 6. In this set of 
experiments, we used the original lx dataset without scaling 

selection (middle)  and reconstruct ion  (right) .  5x dataset .  

because of the large running times. As shown, five out of nine test 
queries initially took more than forty seconds to complete. Q3 was 
especially slow, taking 35 minutes to complete. 

An interesting thing to note, however, is that even though Q2 and 
Q3 are similar, Q3 was initially 400 times slower than Q2! If 
anything, Q2 should have been slower than Q3 because it is based 
on a more complex XPath expression that includes " / / " ?  The 
crucial difference here lies in the SQL generated for Q2 and Q3. 
In particular, since Q2 has potentially overlapping descendants, it 
has to be ordered by the id of the context nodes in addition to the 
id of the descendants (see Section 6.1.5). On the other hand, Q3 
cannot have overlapping descendants, and hence is ordered only 
by the id of its descendants. 

The query plans for Q2 and Q3 reveal why Q3 ran so much 
slower than Q2 (see Figure 7 and Figure 8). The plan for Q2 joins 
the Path and Edge tables to find s p e e c h  tuples. Then Edge 
tuples that are contained in each s p e e c h  are retrieved. Finally, 
the result is sorted on (Q. s p e e c h _ i d ,  E. £d) to group the 
subelements contained in each s p e e c h .  The plan for Q3, on the 
other hand, avoids sorting by scanning the entire Edge table 
through an index (on E. id)  and checking every tuple for 
containment within a s p e e c h .  

Either plan can be used for Q3. So why did the optimizer choose 
the wrong plan for Q3? The DB2 optimizer based its decision on 
the cardinality estimate of the following containment predicate: 
E.id _> Q.speech_id AND E . i d  _< Q.speech end desc_id 

The optimizer grossly overestimated the cardinality of this 
predicate and consequently, the amount of data that needed to be 
sorted. To avoid what it thought was an expensive sort, the 
optimizer chose the plan in Figure 8 for Q3 when it should have 
chosen the plan in Figure 7. 

Our "solution" to this problem was to trick the DB2 optimizer into 
picking the plan in Figure 7 for Q3. This was accomplished by 
replacing the single E. i d  column in the ORDER BY clause of 
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Figure 6. Intial and "tuned" reconstruction 
performance of Global Order with Edge, Ix dataset. 

Q3 with (Q. s p e e c h _ i d ,  E. id). This forced the sort to be 
done after the final join, which eliminated the plan in Figure 8 as 
an option. Clearly, the extra ORDER BY column does not affect 
tuple ordering. This "tuning" trick was also used on other queries 
that "confiased" the optimizer. 

A more general solution is, of course, needed. A recent study [24] 
concluded that a multi-predicate merge join should be used to 
evaluate containment predicates like the one above. The problem 
is that, without knowing the hierarchical structure of the data, it is 
impossible to produce a reasonable cardinality estimate for 
containment predicates. As a result, the optimizer will not be able 
to decide when to use a multi-predicate merge join. One could 
argue that a multi-predicate merge join should always be used to 
evaluate containment predicates. However, it is easy to construct 
examples where a multi-predicate merge join performs worse than 
a nested-loop join on containment predicates. 

Interestingly, we did not experience the performance problems of 
Global Order with Dewey Order. It turns out there is no "deep" 
reason for this. The containment predicate with Dewey Order is 
somewhat different than with Global Order. Specifically, Dewey 
Order requires the following containment predicate: 
E.dewey < pref ix(O.dewey) I I0xFF (see Section 6.2.2). 
Note that the right side of this condition is an expression. DB2 
uses a completely different algorithm for cardinality estimation of 
expression-based conditions. This algorithm happens to produce a 
low estimate causing the better plan to be chosen by the 
optimizer. In fact, when we modified our Global Order queries to 
include the following condition: E.end_descendant_id <= 
Q.end_descendant_id+0,  we observed the same dramatic 
improvement as with the "tuned" queries. 

The message to take away from this section is that, because of 
costing issues, relational optimizers probably have to be extended 
to understand XML data before they can be truly effective for 
querying XML documents. 

7.6 Insert Performance 
We now compare the insert performance of the three encoding 
methods under Edge, using both conservative and optimistic 
insertion techniques (see Section 6.1.6). We used the insertion 
query where a node is inserted after the second a c t  of a single 
p l a y  (Hamlet); that is, the XPath selection query was 
/ p l a y / a c t  [2]. Two cases are possible. In the first case, the 
insertion creates no numbering conflicts, and the new element can 
be immediately inserted. In the second case, the insertion creates a 
numbering conflict, and requires that some existing nodes be 
renumbered before the new node can be inserted. 

The performance of the optimistic and conservative methods 
(with and without conflicts) is shown in Table 3. Clearly, the 

Figure 7. The initial query plan Q2. Figure 8. The initial query plan for Q3. 

optimistic implementation is much faster in the no-conflict case, 
since it does not perform conflict detection. Further, the two 
implementations performed similarly when a conflict was present 
(and renumbefing is required). Thus, the optimistic 
implementation seems to be a better choice for inserts. 

Comparing insertion performance across the order encoding 
methods, we notice that Local Order resulted in the best overall 
performance because it has the least renumbering cost (see 
Section 4.2). Global and Dewey Order show comparable 
performance in the no-conflict case, but Dewey Order is much 
faster when there is a conflict. This is because a smaller number 
of nodes have to be renumbered for Dewey Order as compared to 
Global Order. 

7.7 Reducing the Buffer Size 
To evaluate the performance of an RDBMS on a data set that is 
larger than the buffer size, we reduced the buffer and the sort area 
to 10M each. We observed that the running times of most 
selection queries increased by a relatively small amount (<25%) 
whereas the running times for reconstruction queries increased by 
a factor of 2 to 5 [17]. Global Order was still the most efficient 
order encoding method and Dewey Order was the second best. 
The performance of Local Order degraded more than that of the 
other two methods because Local Order resorts to sorting very 
often. We also observed that Inlining is more robust than Edge 
with a smaller buffer. The performance advantage of Inlining over 
Edge is more pronounced in that case. 

7.8 Comparison with a Main-Memory XPath 
Processor 

We used Microsoff's MSXML to compare the performance of a 
main-memory XPath processor with the performance of our DB2 
implementation. With MSXML, an XML document has to be 
parsed and converted to a DOM tree before XPath queries can be 
evaluated. Once the DOM tree has been built, MSXML was up to 
a factor of 2 faster than DB2 in evaluating most queries [17]. This 
is because a DOM tree is a ordered, main-memory tree structure. 
As a result, the ordered axes of XPath can be evaluated without 
sorting. DB2, however, was 25% faster on Q2 (which includes '//') 
because it could use the path table to find matching nodes faster. 

On the surface, these results may seem negative, but we believe 
that they should actually be viewed positively. The results show 
that a general-purpose RDBMS, which can scale to arbitrarily 

Table 3: Insert performance. 

Order scheme Conservative Optimistic 
No Conflict Conflict No Conflict Conflict 

Global l l6 .2ms 2511.9ms 22.9ms 2720.2ms 
Local 103.8 ms 176.3 ms 23.0 ms 115.9 ms 

Dewey 137.0ms 1303.6ms 32.4ms 1331.1 ms 
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large document collections, can offer performance in the same 
ballpark as a specialized, main-memory XPath processor, which 
can process only a single document at a time. Moreover, the 
RDBMS does not incur the overhead of  parsing a document each 
time. In our experiments, we found that parsing overhead was 
often an order of  magnitude more expensive than XPath 
processing. 

Summary of Experimental Results 
Our experimental results point to the following conclusions: 

1. Relational database systems can support ordered XML 
queries efficiently. Our experiments show that relatively complex 
ordered XML queries can be evaluated over 100MB of data in 2-3 
seconds. Even reconstructing the entire XML dataset from the 
shredded tuples (which has been shown to be expensive even for 
unordered reconstruction [5][7][12]) only takes on the order of  
30-45 seconds. 

2. Global Order is best for query-mostly workloads, while 
Dewey Order is best for a mix of  queries and updates. The global 
numbering provided by Global Order makes it efficient for most 
queries. Dewey Order is slightly less efficient than Global Order 
due to the higher cost of  comparing Dewey paths. Dewey Order 
has a smaller update overhead, however, which makes it a better 
option when updates are frequent. 

3. Schema information makes Local Order a viable alternative. 
When schema information is available, there is no need to issue 
(inefficient) recursive queries in order to create a global 
numbering from Local Order. So the performance of  Local Order 
is comparable (though not at the same level) as Global and Dewey 
Order. Given Local Order's excellent update characteristics, it 
may thus be a viable option in update-intensive environments. 

4. The relational optimizers need to understand the 
hierarchical structure of  XML. The relational optimizer 
sometimes made wrong estimations, and consequently chose bad 
plans, when dealing with containment queries. While we were 
able to "hand tune" the relational optimizer to make it pick 
reasonable plans, a better (and more general) solution is to extend 
the optimizer to support the hierarchical XML data. 

8. Conclusion 
Order is a salient feature of  the XML data model, yet it has been 
largely overlooked in previous on using a relational database 
system to store and query XML documents. Managing ordered 
XML data using the unordered relational model presents new 
challenges. In this paper, we showed that XML's  ordered data 
model can be efficiently supported by a relational database 
system. We described three general order encoding methods 
(Global Order, Local Order, and Dewey Order) for representing 
XML order in the relational data model, and showed how they can 
be used to preserve document order during XML query 
processing. We also described algorithms to translate ordered 
XML queries into SQL for each order encoding method under two 
well-known approaches for shredding XML documents into 
relations (Edge [7] and lnlining [ 13]). 

The results of  an experimental study were presented to evaluate 
the performance of  the three order encoding methods on a real-life 
data set. Ordered XPath and XQuery queries were used to 
measure query performance, while XML element insertions were 
used to measure update performance. Our results show that a 
relational database system can efficiently support most ordered 
XML queries. Our experiments also showed that Global Order 

performs best on query-mostly workloads, while Dewey Order 
performs best on a mix of  queries and updates. 

Finally, our experiments showed that, in some cases, current 
relational optimizers have difficulty in accurately estimating the 
cost of  XML query processing. This leads to very poor plan 
choices on some XML queries. The problem is that relational 
optimizers do not understand XML's  hierarchical structure. 
Extending relational optimizers to understand XML hierarchies is 
an interesting direction for fi~ture work. 
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