
Storing and Querying Ordered XML Using a
Relational Database System

Igor Tatarinov*
University of Washington

Kevin Beyer Jayavel Shanmugasundaram*
IBM Almaden Cornell University

Research Center

Stratis D. Viglas*
University of Wisconsin

Eugene Shekita Chun Zhang*
IBM Almaden University of Wisconsin

Research Center

ABSTRACT
XML is quickly becoming the de facto standard for data exchange
over the Intemet. This is creating a new set of data management
requirements involving XML, such as the need to store and query
XML documents. Researchers have proposed using relational
database systems to satisfy these requirements by devising ways
to "shred" XML documents into relations, and translate XML
queries into SQL queries over these relations. However, a key
issue with such an approach, which has largely been ignored in
the research literature, is how (and whether) the ordered XML
data model can be efficiently supported by the unordered
relational data model. This paper shows that XML's ordered data
model can indeed be efficiently supported by a relational database
system. This is accomplished by encoding order as a data value.
We propose three order encoding methods that can be used to
represent XML order in the relational data model, and also
propose algorithms for translating ordered XPath expressions into
SQL using these encoding methods. Finally, we report the results
of an experimental study that investigates the performance of the
proposed order encoding methods on a workload of ordered XML
queries and updates.

1. Introduction
The eXtensible Markup Language (XML) is quickly becoming
the de facto standard for data exchange over the Intemet. The
widespread adoption of XML is creating a new set of data
management requirements, such as the need to store and query
XML documents. Researchers have proposed using relational
database systems to satisfy these requirements by devising ways
to "shred" (i.e., decompose) XML documents into relations, and
translate XML queries into SQL queries over these relations
[1][4][7][11][13][14]. However, a key issue with such an
approach that has largely been ignored in the research literature is
how (and whether) the ordered XML data model can be
efficiently supported by the unordered relational data model.
Supporting XML's ordered data model is crucial for domains like
content management, where document data is intrinsically ordered
and where queries can exploit this order. For example, if

* The work was done while the author was visiting IBM Almaden
Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD 2002, June 4-6, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06...$5.00.

Shakespeare's plays are marked up and stored as XML, the
ordering of the acts within a play is relevant, and queries can
exploit this order by asking for the second act in a play.

In this paper, we show that XML's ordered data model can indeed
be efficiently supported by a relational DBMS. We propose three
order encoding methods that can be used to represent XML order
in the relational data model. These encoding methods are
essentially numbering schemes that capture enough information to
reconstruct an ordered XML document; that is, they ensure that
the mapping from ordered XML to relations is "lossless".

Each encoding method we propose is based on a different
approach for achieving a lossless mapping from ordered XML to
relations. With the Global Order encoding method, the absolute
position of each XML element is stored as a data value. With the
Local Order encoding method, the position of an element relative
to its siblings is stored. Finally, the Dewey Order encoding
method stands as a hybrid of the preceding two methods. These
order encoding methods are general and can be used with
different approaches for shredding XML documents into relations.

Given these three order encoding methods, the question we would
like to answer is: when and why does one encoding method work
better than the other? As we shall show, the choice of the order
encoding method has a dramatic effect on the performance of
ordered XML queries and updates. To answer the above question
in a systematic manner, we characterize ordered XML queries
(specified in XPath) along three dimensions, and show that each
dimension can be supported independently. We then present
algorithms for translating XPath queries into SQL using the
proposed order encoding methods. Finally, we present an
experimental study of the three encoding methods using a
workload of ordered XML queries and updates.

Our results show that a relational database system can efficiently
support most ordered XPath queries. The best performance is
achieved with Global Order for query-mostly workloads, and with
Dewey Order for a mix of queries and updates. Our results also
show that in some cases machine-translated XPath queries can
perform very poorly, requiring manual tuning for optimal
performance. However, poor performance in those cases is not
due to a flaw in the translation algorithm. Rather, it can be
attributed to the fact that the relational database system does not
understand the hierarchical structure of XML and the semantics of
XPath queries. We discuss these limitations and outline possible
solutions.

In summary, this paper presents the first comprehensive study of
how XML's ordered data model can be supported using a
relational database system.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 describes the ordered XML data model,

204

and also describes the order-based functionality in XML query
languages. Section 4 presents three order encoding methods,
while Section 5 shows how they can be used with well-known
approaches for shredding documents. Section 6 presents an
algorithm for translating an XPath expression to SQL. Section 7
describes our experimental results, and, finally, Section 7.6
concludes the paper.

2. Related Work
Research projects such as SilkRoute [5][6] and XPERANTO
[2][12] have proposed techniques for efficiently publishing
relational data as XML. Commercial database products such as
SQL Server, Oracle, and DB2 also provide support for publishing
relational data as XML. However, support for ordered XML is not
crucial in that application since the underlying relational data is
not ordered.

More closely related to this paper is the research on storing and
querying XML documents using relational database systems. In
that context, there have been many techniques proposed for
"shredding" XML documents into relations and for translating
XML queries into SQL queries over those relations
[1][4][7][11][13][14]. The issues of updating XML data stored in
relations [16] and indexing XML data [3][8][24] have also been
studied. However, none of these studies provide a comprehensive
treatment of XML order. The main goal of this paper is to
evaluate the effect of order on all aspects of XML document
processing: storage, reconstruction, querying, and updating.

The problem of optimizing queries over ordered relations
(sequences) has been studied in the context of sequence database
systems [10]. Our work differs from this in two respects. First,
instead of relying on an ordered data model, we treat order as a
data value. This enables our solutions to be employed in
commercial relational database systems optimized for the
unordered relational data model. Second, unlike the fiat (single-
level) ordering considered in sequence database systems, we
consider the more general problem of nested XML order.

Temporal databases deal with the ordered time domain, and often
treat time as a data value in the underlying database system [15].
Our approach, however, deals with the more general nested
ordering in XML documents, and focuses on order encoding
methods for efficient evaluation of ordered XML queries.

3. Ordered XML: Data Model,
Query Languages and Query Dimensions
In this section, we describe XML's ordered data model and the
order-based functionality present in standard XML query
languages. We then identify three dimensions of XML order that
are key to processing queries over ordered XML documents.

3.1 The XML Data Model
An XML document can be viewed as a tree [19], where leaf nodes
correspond to data values (text) and internal nodes correspond to
XML elements. Order is a salient feature of the XML data model.
Accordingly, an XML document tree is implicitly ordered
according to the order of the elements in the XML document. This
implicit ordering is referred to as document order.

In addition to element and text nodes, an XML document tree can
contain attribute nodes. Since attribute nodes are similar to
element nodes without subelements, and since XML attributes are
not ordered, we do not consider attributes in this study. An XML
document can also have a Document Type Descriptor (DTD) [20]

associated with it. A DTD provides schema information about
XML documents.

3.2 Order in XML Query Languages
In this section, we discuss the order-based functionality in two
XML query languages, XPath [21] and XQuery [22]. XPath is a
relatively simple language that has been recommended by the
World Wide Web Consortium (W3C). XQuery, that is still under
W3C development, is a more complex language based on XPath.

3.2.1 Order-based Functionality in XPath
XPath is a language for speciffying navigation within an XML
document. The result of evaluating an XPath expression on a
given XML document is a set of nodes sorted according to
document order. We will say that the result nodes are selected by
an XPath expression. An XPath expression has the following
syntax: P a t h : : = / S t e p l / S t e p 2 / . . . / S t e p u where each
XPath S t e p is defined as follows:

Step : := Axis : : Node-test Predicate*

An XPath expression is evaluated sequentially, "step" by "step".
An XPath step is applied to a single node (the context node) and
selects a set of result nodes. Each node of the result node set is
then used as the context node to evaluate the following step. The
initial context node is the root of the input document. The result of
evaluating an XPath expression is the union of nodesets selected
by the last step.

Within an XPath step, A x i s specifies the "direction" in which the
document should be navigated. XPath supports 12 axes for
navigation. For example, if A x i s equals c h i l d , the step would
consider all child nodes of the context node. N o d e - t e s t
specifies a simple test on the XML nodes found along the step's
axis. The most commonly used n o d e - t e s t examines node
names. For example, the step c h i l d : : t i t l e would select
child nodes that are titles. Another n o d e - t e s t that is often used
is '*', which evaluates to true for all element nodes. Hence,
c h i l d : : * would select all subelements of the context node.

An XPath step can also include a sequence of predicates. The
predicates are applied to the node set selected by the step. Only
nodes for which all predicates evaluate to true are returned. Since
the focus of our work is on order-based queries, we will limit
ourselves to predicates of the form [p o s i t i o n () =n]. Such a
predicate selects all nodes whose position (index) within the
context node set equals n. The exact meaning of p o s i t i o n
depends on the axis used at the step. For example,
c h i l d : : t i t l e [p o s i t i o n () = 2] selects the second child
with name "title" whereas d e s c e n d a n t : : t i t l e
[p o s i t i o n ()=2] selects the second such a descendant. Our

work is easily extended to handle more complex predicates
involving p o s i t i o n ().

In addition to the syntax just described, XPath also supports an
abbreviated syntax. For example, the name of the axis can be
omitted, in which case it defaults to c h i l d . Also, if a predicate
expression evaluates to an integer value, then that value is
considered to be the p o s i t i o n of the node selected. Hence, the
step t i t l e [2] would select the second title child of the context
node. Another commonly used abbreviation is the empty step,//,
that selects the context node and all of its descendant nodes. For
example, / / t i t l e would select all title nodes anywhere in the
input document.

205

It is important to emphasize that the result of an XPath step (or an
entire expression) may not contain duplicates. In addition, the
nodes in the result have to be in document order.

3.2.2 Order-based Functionality in XQuery
Since XQuery is based on XPath, the preceding discussion also
applies to XQuery. Additionally, XQuery includes BEFORE and
AFTER operators that take two node sequences (XPath
expressions) and return the nodes from the first sequence that are
before or after some node in the second sequence, respectively.
Also, XQuery supports range predicates, e.g., 2 TO 5, which
return a contiguous sequence of integers that can be used as a
predicate to select a range of elements from a sequence. For
example, / p l a y / a c t [2 TO 4] should return the second,
third, and forth a c t s in document order.

3.3 Evaluation Modes for XML Queries
Neither the XPath nor the XQuery recommendations [21][22]
specify how the nodes selected by query expressions are to be
returned to the application. It seems reasonable to assume two
possible scenarios (evaluation modes):

Select mode: In this mode, the nodes in an input XML document
are assumed to have unique identifiers (IDs). The application
needs to identify the nodes selected by an XPath expression.
Accordingly, the result of evaluating an XPath expression is an
ordered set of node IDs. Given a node ID, the application should
be able to extract the XML element corresponding to the node, if
needed.

Reconstruct mode: This mode combines selection and extraction.
The XML element trees corresponding to the selected nodes are
extracted from the input XML document. If the input document is
stored in a shredded form, one can say that the elements
corresponding to the selected nodes are being reconstructed, thus
the name. The result of evaluating an XPath expression in
reconstruct mode is an ordered set of XML elements.

Clearly, query evaluation in select mode should be simpler than in
reconstruct mode. However, preserving document order is
essential in either case, as described in the following section.

3.4 The Three Dimensions of XML Order
We characterize the requirements for supporting XML's ordered
data model along three dimensions: (a) evaluation of order-based
XPath axes and functions, (b) result set ordering (inter-element
order), and (c) ordered element reconstruction (intra-element
order). Each of these is discussed in more detail below.

3.4.1 Evaluation of Order-Based Axes And Functions
Most XPath axes, e.g, c h i l d , can be evaluated even when the
input document is stored without order. The following XPatb
axes, on the other hand, explicitly require document order:

p r e c e d i n g , f o l l o w i n g : These axes select all nodes before
(after) the context node excluding any descendants (ancestors).

preceding- sibling, following-sibling: These
axes select all preceding (following) sibling nodes of the context
node.

As far as order-based functions go, XPath provides the
p o s i t i o n () function, as described earlier.

3.4.2 Result Set Ordering (Inter-Element Order)
The elements selected by an XML query must be returned in
document order. We refer to this requirement as inter-element
order because it enforces document order among result elements.
Inter-element order is important in both XML query evaluation

modes. For example, evaluating the XPath expression
~ p l a y ~ a c t should return a c t node IDs (in select mode) or
elements (in reconstruct mode) according to document order.

3.4.3 Ordered Element Reconstruction
(Intra-Element Order)

In reconstruct mode, data within elements must also be returned in
document order. We refer to this requirement as intra-element
order because it enforces document order within result elements.
For example, evaluating the XPath expression / p l a y / a c t [2]
in reconstruct mode should return the second a c t with all its data
and sub-elements in document order.

4. X M L Order E n c o d i n g Methods
In order to store and query shredded XML documents using a
relational database system, we need some mechanism to capture
document order in the relational data model. This is
accomplished by encoding each node's position in an XML
document as a data value. A variety of order encoding methods
are possible, but a valid order encoding method must allow for
reconstruction of the original ordered XML document. In
additional, an order encoding method should allow for translation
of ordered XML queries and updates into efficient SQL.

Note that the first requirement ensures a "lossless" mapping from
XML to relations, while the second requirement is desired for
performance reasons. Unfortunately, as we will show, there
appears to be no single encoding method that is simultaneously
optimal for queries and updates. Encoding methods that perform
well on queries tend to incur more overhead on updates.

In light of the above discussion, we focus our attention on three
"lossless" order encoding methods that span the spectrum of
query and update performance. The first of these encoding
methods, Global Order, performs the best on queries. At the other
end of the spectrum is Local Order, which performs best on
updates. Finally, Dewey Order is a hybrid of the preceding two
methods, which performs reasonably well on both queries and
updates. The order encoding methods that we describe are general
and can be applied to different approaches for shredding XML. In
Section 5, we will illustrate this using two different approaches
for shredding XML

4.1 Global Order Encoding
With Global Order, each node is assigned a number that
represents the node's absolute position in the document. For
example, an element's position can be encoded as the byte offset
of its opening tag from the beginning of the document. Note that a
node's position need not have an actual meaning such as a byte
offset. Any numbering scheme can be used as long as it is
consistent with document order. See Figure 1 for an illustration of
Global Order.

Global Order makes it easy to answer XPath queries that use order
axes, such as following and following-sibling.
Indeed, such queries can be translated into simple comparison
conditions between node positions. (We will describe the
algorithm for this translation in more detail in Section 6.) Also,
Global Order makes it easy to handle both intra-element and inter-
element ordering requirements because the global document order
is readily available in the encoded values.

If updates are to be supported with Global Order and other order
encoding methods, performance can be improved using sparse
numbering. With sparse numbering, deletion of an XML fragment
does not require that remaining nodes be renumbered.

2 0 6

3

Global Order

1 1 ~ 1 ~ 2 K ~ _ ~ / L I . , ~ I . 2 . 1 ~ 1 . 2 . 2

1 ~ 1.2.1.1

Local Order Dewey Order

Additionally, gaps are left between assigned position values when
the initial numbering is performed. As a result, insertions may not
require renumbering to accommodate a new XML fragment. In
the worst case, however, the number of available position values
may be smaller than the number of nodes in the XML fragment
being inserted. In this case, some (or all) of the elements following
the newly inserted fragment will have to be renumbered, see
Figure 2.

It may seem beneficial to use real (floating-point) values instead
of integers to represent a position. In theory, there is an infinite
number of real values between any pair of values, so insertions
would never require renumbering. But in reality, both real and
integer values are represented with the same number of bits. As a
result, there is a finite number of values between any two real
values stored in the computer and using real values instead of
integers does not provide any benefit.

Poor insertion performance is thus a potential weakness of Global
Order, which we confirm experimentally in Section 7. We now
describe another order encoding method that can handle insertions
more efficiently.

4.2 Local (Sibling) Order Encoding
With Local Order, each node is assigned a number that represents
its relative position among its siblings (see Figure 1). To see that
Local Order is sufficient to recreate document order, note that
combining a node's position with that of its ancestors yields a
path vector that uniquely identifies the absolute position of the
node within the document. In other words, such a path vector
provides global node ordering.

As shown in Figure 2, the advantage of Local Order is the low
overhead incurred by updates. Only the following siblings of the
new node may need to be renumbered. As with Global Order,
sparse numbering can improve performance of updates. However,
the low overhead of insertions comes at the cost of evaluating
ordered XML queries. With Local Order, order axes like
f o l l o w i n g and p r e c e d i n g are difficult to evaluate since no
global order information is available. In the next section, we
describe a hybrid scheme that strikes a balance between the
advantages and weaknesses of Global and Local Order.

4.3 Dewey Order Encoding
Dewey Order is based on Dewey Decimal Classification
developed for general knowledge classification [9]. With Dewey
Order, each node is assigned a vector that represents the path from
the document's root to the node. Each component of the path
represents the local order of an ancestor node, as illustrated in
Figure 1. Dewey Order is "lossless" because each path uniquely
identifies the absolute position of the node within the document.

Since Dewey paths provide global node ordering, query
processing in Dewey Order is similar to that in Global Order. In

Figure 1. Illustration of Order Encoding Methods
terms of overhead incurred by Updates, Dewey Order represents
the middle ground between Global and Local Order. Only the
following siblings and their descendants may need to be
renumbered, as shown in Figure 2.

Even though Dewey Order combines many of the advantages of
Global Order and Sibling Order, one of its potential disadvantages
is the extra space required to store paths from the root to each
node. In Section 6.2.1, we will describe a UTF-8 [23] based
representation that can help minimize this overhead.

4.4 Same-Sibling (Partial) Order Encoding
It may seem possible to use the following variation of Local
Order. Instead of assigning each node a number according to its
position among siblings, only the siblings with the same tag name
are considered. We refer to this method as Same-Sibling Order.
Unfortunately, Same-Sibling Order alone is not sufficient to
recreate document order because it does not define a total order
between all siblings (only partial order is defined). Hence, Same-
Sibling Order can only be used in conjunction with an order
encoding method that defines a total order among nodes, such as
one of the three described above. Despite its shortcomings, Same-
Sibling Order can be beneficial on queries that select the n-th sub-
element with a certain tag name (e.g., ~ p l a y ~ a c t [2]).

5. Shredding Ordered XML into Relations
In this section, we describe how our three order encoding methods
can be used with well-known approaches for shredding XML
documents into relations. We consider two cases: when the
schema of input documents is unknown (the schema-less case),
and when the schema is known (the schema-aware case).

5.1 The Schema-less Case
In many applications, the schema of input documents is unknown.
The Edge shredding approach has been proposed recently to
handle this case [7]. A single relation, the Edge table, is used to
store an entire document. When preserving document order is not
an issue, the Edge table is defined as follows:

Edge(id, parent_id, name, value)

Each Edge tuple represents a node in the XML document tree.
The i d column corresponds to the node's ID and also serves as
the primary key of the relation. The p a r e n t _ i d column
provides a "link" (i.e., foreign key) to the node's parent. The
name column is used to store the tag name of element nodes, the
v a l u e column is used for text values of text nodes.

Instead of the tag name, the path from the root to an element node
can be stored, e.g., ~ p l a y ~ a c t . In order to reduce storage
requirements, a separate relation (the Path table) can be used to
store paths and their identifiers [14][25]. The name column of
Edge can then be replaced with a p a t h _ i d column. A Path

207

, - ' , / ~ esthat ~ i
: , - ." j / ~ require ~ i

." ~ r e n u m b e r i n g /
new / ~ ~ /
element ~.f~)_ _ ~

- - / k. ",xo-='...\ node that ~_

0 (" ; [\ requires
"-/ \/ renumberi'~g ~ new/'

element ~

o o

Figure 2. The worst case renumbering scenarios for Global, Local, and Dewey order encodings.

table will typically be small since it only records unique paths
rather than all path instances.

Storing paths instead of tag names can greatly simplify query
processing. For example, to find all nodes that satisfy the XPath
expression / p l a y / a c t / s c e n e , a single join of the Edge and
Path tables can be used to identify the result tuples. Without a
Path table, 3 self-joins of the Edge table would be required.

5.1.1 Storing Order Information
When document order needs to be preserved, order information
must be stored along with document structure and data.
Depending on the order encoding method used, the basic Edge
approach has to be adapted as follows:

Global Order: If node IDs are assigned according to document
order, then document order will be preserved. As will be seen
shortly, it is also beneficial to add a column to store the ID of the
last descendant of a node (e n d _ d e s e £d). The Edge table can
then be defined as follows:

Edge(id, parent_id, end_dese_id, path_id, value)

Local Order: Since the relative position of a node among its
siblings does not uniquely identify a node in a document, unique
node IDs still need to be assigned (that do not have to follow
document order). A new column needs to be added to represent
the position of a node among its siblings (the sibling index of a
node, s I n d e x) :

Edge(id, parent_id, sIndex, path_id, value)

Dewey Order: A Dewey path represents both order and ancestor
information. As a result, with Dewey Order, Edge is especially
simple: Edge(dewey, path_id, value).

Since the length of a node's Dewey path is unknown a priori, the
dewey column has to be stored as a variable-length byte string.

5.2 The Schema-aware Case
When an XML Schema (or DTD) is available, more efficient
shredding techniques based on Inlining can be used [l 1]. With
Inlining, child elements that can occur at most once are stored as
one or more columns in the same relation as their parent. A new
relation is created only for child elements that can occur multiple
times. For example, suppose a schema specifies that a p l a y can
have at most one t i t l e , but can have an arbitrary number of
ac t s . In that case, t i t l e would be inlined as a column in the
relation for p l a y , while a c t s would be stored in a separate
relation that is linked to the p l a y relation using a foreign key.

One advantage of Inlining is the possibility of more efficient
navigation from an element to its subelements. For example, in
the Edge approach, retrieving a subelement of a given element
requires a self-join of the Edge relation. With Inlining, the
subelement may be immediately available if the subelement is
stored in the same tuple as the parent element. As a consequence,

reconstruction of a stored XML element is more efficient as well.
Another advantage of Inlining is physical partitioning of data.
Instead of storing entire documents in a single Edge table, Inlining
shreds XML documents into a set of tables according to the
document schema. As a result, queries tend to access less data,
which leads to better performance (see Section 7).

It is straightforward to adapt Inlining to work with Global, Local,
or Dewey Order. As with Edge shredding, an additional column is
added to every relation to encode document order. Note that there
is no need to have a separate column for storing the order
information of inlined elements, since the position of such
elements can be determined from the position of their parent
element and the document schema.

6. Translating Ordered XML Queries
and Updates into SQL
We now describe algorithms for translating ordered XML queries
and updates into SQL queries based on the three order encoding
methods discussed earlier. We will start with the algorithm for
Global Order. Since essentially the same algorithm can be used
for both Edge and Inlining shredding, we focus on Edge shredding
and then outline how it can be extended for Inlining.

6.1 Query Translation for Global Order
The algorithm for translating an ordered XPath query into SQL is
shown in Figure 3. (We will discuss extensions for ordered
XQuery fimctions and updates shortly.) We first describe the
algorithm at a high level, and then provide additional details. In
the interest of space, we mainly focus on the translation of
ordered axes, omitting the details of how a sequence of unordered
child steps can be combined into a single predicate on the Path
table [14][25].

As shown, the algorithm in Figure 3 initially generates the SQL
fragment to select the root elements of the stored XML documents
(lines 4-6). Then, using the root elements as the initial context
nodes, the algorithm generates the SQL fragments for each "step"
of the XPath query being translated in order to produce new
context nodes (line 8). The context nodes produced by the last
step constitute the query result (lines 10-11).

The SQL fragments generated by the algorithm for the root nodes
and for each step are represented using "with clauses" (also
referred to as inlined views). We use "with clauses" instead of
nested sub-queries because they can also be used for defining
recursion, which will be used in the query translation for Local
Order.

We now present the details of translating each step in an XPath
query. An XPath step is translated to SQL by generating and
concatenating SQL fragments for the axis of the step, the node
test of the step, and the predicates associated with the step
(linel5). As an example, consider the generation of the SQL

208

fragment for XPath's child axis. Let us assume that the current
context node set is represented by the "inlined view" Qq that
returned the i d s and e n d d e s c e n d a n t i d s of the context
nodes. To evaluate the child axis, we need to determine the child
nodes of the context nodes. This task can be performed by joining
the p a r e n t _ i d column of the Edge table with the i d column of
the context nodes (lines 19-21).

So far, we have focused on the translation of general XPath
features; we now turn our attention to ordered axes and functions.

6.1.1 Translation of f o l l o w i n g
Recall that in order to evaluate the f o l l o w i n g axis, we need to
determine all the nodes that occur after the context node in
document order (excluding the descendants of the context node).
This is easy to do with Global Order; we just need to select those
nodes in the Edge table whose i d value is greater than the
e n d d e s c e n d a n t i d value of the context node (lines 22-24).
The p r e c e d i n g axis can be evaluated similarly.

6.1.2 Translation of f o l l o w i n g - s i b l i n g
To evaluate the f o l l o w i n g - s i b l i n g axis, we need to
determine all the sibling nodes of the context node that occur after
the context node. We can achieve solve this problem by selecting
the nodes in the Edge table that (a) have an i d value that is
greater than i d value of the context node, and (b) have the same
p a r e n t _ i d value the context node (lines 25-27). The
p r e c e d i n g - s i b l i n g axis can be evaluated similarly.

6.1.3 Translation of Position-based Predicates
Consider the following XPath expression involving a position
based predicate: / p l a y / a c t / s c e n e [2] . A naive way of
translating this into SQL is to use a subquery and the "count"
function to find the number of s c e n e nodes occurring before the
context s c e n e node, and then select only those nodes for which
the subquery returns one. Clearly, this approach is likely to be
very inefficient since the subquery is evaluated for each context
s c e n e node. Fortunately, SQL'99 has an efficient "rank"
function, originally proposed as an OLAP extension. We now
show that the "rank" function can be used to evaluate position-
based predicates in XML queries (the performance advantages of
the rank approach are studied in Section 7).

Lines 51-56 in Figure 3 show the SQL fragment to translate
position-based predicates using rank. Essentially, the rank clause
is applied to the context nodes to give them a position (lines 32-
37), and only those context nodes that satisfy the position-based
predicate are selected (line 37). The rank clause has two parts.
The PARTITION BY part is applied to the context nodes to
partition them based on the p a r e n t _ i d (thus, sibling s c e n e s
in ~ a c t ~ p l a y ~ s c e n e [2] will be in the same partition).
Within each partition, the ORDER BY part is used to map a
sparse ordering into a dense one (thus, all sibling s c e n e s will be
ordered starting from one: 1, 2, ... and so on). Given the dense
numbering, the desired position can then be selected (in our
example, T . p o s = 2 on line 37).

If position-based predicates are used often and updates are rare, it
is beneficial to add an additional column to store dense same-
sibling (s s I n d e x) order information (see Section 4.4). As a
result, ranking nodes would be unnecessary and a simple selection
could be used. Note, however, with dense ordering every update
(insert or delete) has to be followed by node renumbering.

6.1.4 Translation of XQuery Operators
The BEFORE and AFTER operators of XQuery are similar to
p r e c e d i n g and f o l l o w i n g axes of XPath, and can be
translated similarly. The range selection operator, e.g., [2 to 5],
can be handled similarly to position-based predicates, except that
the final selection condition will be a range predicate instead o f an
equality predicate.

6.1.5 Enforcing Inter- and Intra-Element Order
In order to ensure that the results of an XPath expression are in
document order (inter-element order), we can simply sort the
result nodes on Global Order ID. Reconstructing the content of
these nodes, including that of their descendants, in document
order (intra-element order) is slightly more complex. First, we
identify all of the descendants of the selected nodes by retrieving
the nodes whose i d value lies between the i d and
e n d _ d e s c e n d a n t _ i d of a context node (line 16). We then
sort all of these nodes based on the i d s of the context node and
the corresponding descendant node (line 17).

Note that in general, we need to sort by the 2d of the context node
in addition to the i d of the descendant nodes. This is because the
context nodes could have an overlapping set of descendants. For
example, consider the XPath expression / / s p e e c h . This could
return a set of context nodes such that speech s l could be a
descendant of another speech s2. To establish intra-element
document order, we need to ensure that all of s l ' s descendants
immediately follow s l , and similarly all of s 2 ' s descendants
immediately follow s2. Merely sorting on the i d of the
descendants of s l and s2 will result in an interleaving of their
descendants. This problem is avoided by including the i d of the
context node as an extra sort field. Note, however, that i f the
XPath expression is such that there is no chance of overlapping
descendants, e.g., /act/play/scene/speech, then, sorting
on the i d of the descendant nodes only is sufficient.

For the purposes of this study, we do not consider adding XML
tags to the ordered results (i.e., our goal is to return a stream of
tuples in document order). A constant space tagger such as the
one proposed in [12] can be used to add XML tags to the output
data on-the-fly.

6.1.6 Translating XML Updates
Since XPath and XQuery do not yet provide support for updates,
we use the update extensions proposed in [16]. We consider only
inserts and deletions because these operations affect order
(specifically, we do not consider modifications to XML data
values). Insertions are specified using two parts. The first part is
an XPath expression that selects a set of context nodes, and the
second part is the XML element to be inserted after the selected
context nodes. Deletions are specified as an XPath expression,
whereby all the selected nodes are deleted.

It is easy to see that deletions can be handled by evaluating the
associated XPath expression (as in the case of queries), and then
deleting the selected nodes. In particular, there is no need for
renumbefing if sparse numbering is used. Insertions, on the other
hand, are subtler because the nodes following the inserted XML
may need to be renumbered in order to maintain the global
ordering (see Section 4 for more details). In this context, two
general methods of executing inserts seem feasible. In the first
conservative method, a query is first executed to find out i f there
is a conflict and renumbefing is necessary (note that this query
can be combined with the XPath query for selecting the context

209

1 q = i; // global WITH subquery count
2 func translateXPath(xPath) {
3 // retrieve root node info
4 sql = "WITH Qi (id, parent_id, end_descendant_id) AS (
5 SELECT id, parent_id, end_descendant_id
6 FROM Edge WHERE parent_id = -I);
7 // translate each step
8 for (i=l; i <= length(xPath) ; i++) { sql += translateStep(xPath[i]); }
9 // assume result elements need to be reconstructed

I0 sql += "SELECT E.* FROM Edge E, Qq as Q WHERE E.id >= Q.id AND E.id <= Q.end_descendant_id
Ii ORDER BY Q.id, E.id;
12 return sql;
13 }
14 fune translateStep (step) {

15 return translateAxis(step.axis) + translateNodeTest(step.nodeTest)+ translatePredicates(step) ;
iG }
17 func translateAxis (axis) {
18 switch kind(axis) {

19 CHILD: sql = "WITH Qq÷1 (id, parent_id, end_descendant_id) AS (
20 SELECT E.id, E.parent_id, E.end_descendant_id
21 FROM Edge E, Qq as Q WHERE E.parent_id = Q.id)";
22 FOLLOWING: sql = "WITH Qq,1 (id, parent_id, end_descendant id) AS (
23 SELECT E.id, E.parent id, E.end_descendant id
24 FROM Edge E, Qq as Q WHERE E.id > Q.end descendant_id)";
25 FOLLOWING-SIBLING: sql = "WITH Qq,~ (id, parent_id, end_descendant_~d) AS (
26 SELECT E.id, E.parent_id, E.end descendant_id
27 FROM Edge E, Qq as Q WHERE E.id> Q.id AND E.parent_id = Q.parent_id)";
28
29 }
30 func translatePredicate (predicate) {
31 switch kind(predicate) {

32 [n] : sql ="WITH Qq÷1 (id, parent_id, end_descendant_id) AS (
33 SELECT T.id, T.parent_id, T.end_descendant id
34 FROM (SELECT Q.id, Q.parent_id, Q.end_descendant_id,
35 RANK OVER (PARTITION BY Q.parent_id ORDER BY Q.id) pos
36 FROM Qq Q) as T
37 WHERE T.pos = n)";
38 ...
39 q++; return sql;
40 }

Figure 3. The XPath-toSQL Transaltion Algorithm for Edge with Global Order.

nodes). If there is a conflict, the nodes following the context
nodes are renumbered.

The second method is more optimistic. It can be used only with
dense numbering or when a single node is being inserted. Given
that global order information is unique for each node, a constraint
can be defined in the relational database system. As a result, a
query to detect the need for renumbefing is not necessary, and a
new XML node can be inserted right away. If the relational
database system detects a duplicate order value, an error is
reported. At this point, the algorithm backs down to the
conservative method: renumbering is performed and the new data
is inserted. Clearly, if conflicts are rare the optimistic approach
should be advantageous. The probability of a conflict will depend,
however, on the algorithm that is used for sparse numbering and
the insert pattern. We evaluate the relative performance of the
conservative and optimistic strategies in Section 7.

6.2 Query Translation for Dewey Order
We now describe the translation algorithm for Dewey Order. The
key insight here is that Dewey Order can essentially be treated as
a Global Order (and use the same translation algorithm) if we can
enforce certain properties on Dewey paths. Also, since Dewey
Order encodes parent and descendant information implicitly in the
Dewey path, there is no need to explicitly store these values as in
the case of Global Order; rather these values can be derived from
the Dewey path. We now discuss these two issues in more detail.

6.2.1 Enforcing Global Order using Dewey Paths
In order to enforce global (document) ordering using Dewey
paths, we need to ensure that the result of a comparison between
two Dewey paths is consistent with document order. This will
ensure that Dewey Order can be used just like Global Order in
"order by" and "comparison" operators in SQL. It turns out,
however, that a simple concatenation of the components of the
Dewey path using a separator such as "." does not work. Indeed,
consider two Dewey paths "1.2" and "10.2". A comparison of
these Dewey paths will indicate that "10.2" occurs before "1.2"
(because '0' occurs before '.'). Clearly, this answer is not
consistent with document order.

The above problem can be overcome by allocating afixed number
of bytes for each component of a Dewey path. In our example, the
paths would be represented as "00001.00002" and
"00010.00002". This simple approach, however, may result in too
much storage overhead because the number of bytes allocated for
each component is dependent on the largest number of sub-
elements that can occur under an element. If each element has a
small number of sub-elements on average, storage requirements
will be unjustifiably high.

In order to address this issue, we use UTF-8 encoding [23] as an
efficient way to represent Dewey paths. In UTF-8, a variable
number of bytes are used to encode different integer values.
Smaller values use a smaller number of bytes. For example, if the

210

value is smaller than 27=128, it is encoded with a single byte
0xxxxxxx where x represents a bit used for value encoding. The
values between 27 and 211 are encoded with two bytes 110xxxxx
10xxxxxx, and so on. To represent an entire Dewey path with
UTF-8, each component of the path is encoded in UTF-8 and then
concatenated. This enables two Dewey paths to be compared as
simple byte strings, without incurring a large space overhead.

6.2.2 Inferring parent_id in Dewey
Recall that in the query translation algorithm for Global Order, we
used the parent_id and end_descendant_id values that
were stored explicitly. Dewey Order eliminates the need to
explicitly store these values because they are implicitly encoded
in a Dewey path. Specifically, the p a r e n t _ i d of a node with
Dewey path dp is just p r e f i x (dp) , where p r e f i x (dp) is a
function that removes the last Dewey component of dp. Similarly,
the end d e s c e n d a n t i d of a node with Dewey path dp can
be calculated from the following expression: dp II x ' F F ' .
This expression appends an "all-ones" byte, x ' F F ' , as the last
component of the new Dewey path, which represents the
maximum possible descendant id . (Note, x ' FF ' cannot be used
in a valid UTF-8 encoding.) We have implemented p r e f i x () as
a user-defined function in the relational database system. This
function, along with the UTF-8 encoding, allows using the Global
Order query translation algorithm for Dewey Order.

The conservative and optimistic insertion algorithms described for
Global Order also apply to Dewey Order. However, in case of
conflicts, fewer nodes need to be renumbered in the Dewey Order
case (see Section 4 for more details).

6.3 Query Translation for Local Order
The translation algorithm for Local Order is different from the
one for Global Order and Dewey Order because of the lack of
global order information. Some features, however, share the same
translation. We will describe the common features first, and then
illustrate the key differences between the algorithms.

Order axes like following-sibling and preceding-
sibling and ordered functions like [n] and [m TO n] can be
the handled in the same way as Global Order and Dewey Order.
Indeed, the evaluation of these axes and functions only requires an
ordering among the sibling nodes.

The more challenging aspect of the translation using Local Order
is for "global" axes and operators, such as f o l l o w i n g ,
p r e c e d i n g , BEFORE and AFTER. Because of the local scope of
the numbering, these primitives cannot be directly implemented
using a comparison of order values. Instead, the following
technique can be used. Consider the evaluation of the
f o l l o w i n g axis on a context node. We first determine all the
ancestors of the context node. Let us call the set of ancestors anc.
We then compute all of anc ' s f o l l o w i n g - s i b l i n g s , as
described above, to get a n c _ s i b . Finally, we compute the
descendants of a n c _ s i b to get the desired result.

The main challenge of this technique lies in computing the
ancestors and descendants. Consider the problem of computing
the ancestors of a context node. With fully specified XPaths, like
/ p l a y / a c t / s c e n e , this problem is easy. However, with more
complex XPath expressions, such as / / s p e e c h , and without
knowledge of the XML schema, the problem is much harder since
it is not clear how deep the context node is in the XML hierarchy.
Therefore, we need to employ recursion to compute all of its
ancestors. Similarly, computing descendants also needs recursion.

We use SQL's least fix-point recursion (using "with clauses") to
compute ancestors and descendants. It is easy to extend the above
algorithm for f o l l o w i n g to other related primitives such as
preceding, BEFORE and AFTER.

We now turn our attention to inter-element order. With only local
order information available, a global numbering has to be
computed to ensure inter-element order. We do this by
concatenating the local order information along the path from the
root to the context node, essentially building a Dewey path "on
the fly". The computed Dewey paths can then be used in a SQL
"order by" clause to ensure inter-element order. Computing the
Dewey paths can require SQL recursion if the depth of the context
nodes is unknown.

Note that intra-element order always requires recursion to
compute the descendants of context nodes. In addition, Dewey
paths need to be computed in order to sort the descendant nodes in
document order. Although query evaluation is more complex with
Local Order, updates are simpler because fewer nodes need to be
renumbered (see Section 4). Both conservative and optimistic
insertion methods can be used with Local Order.

6.4 Query Translation in Inlining
So far, we have focused on the Edge shredding approach in
describing our translation algorithm. Essentially the same
algorithm can be used for the Inlining shredding approach, but
with two key extensions. First, in the Inlining method, the XML
data can be spread across multiple tables. Therefore, in evaluating
ordered axes like following, following-sibling,
AFTER, etc., we may need to access a set of tables (instead of just
accessing the Edge table). This set of tables is determined using
the XML document schema. Similarly, when performing ordered
XML element reconstruction, data may need to be accessed from
multiple descendant tables. In this case, we union these results
together and later order them using the efficient "sorted outer-
union" method proposed in the literature [12].

The second difference in the translation algorithm for Inlining is
regarding Local Order. Unlike the Edge case, selecting the set of
ancestors, descendants, and computing Dewey-like paths "on the
fly" does not require recursion (unless the schema is itself
recursive). This is because the XML schema gives sufficient
information about the depth and position of nodes in the XML
tree; consequently, regular (non-recursive)joins are sufficient.

One disadvantage of Inlining is that an optimistic insertion
algorithm cannot be used easily. Since data is partitioned across
multiple tables, a simple "unique" constraint such as the one used
to detect order conflicts in a single Edge table, cannot be defined.

7. Experimental Results
We now describe the results of a comprehensive experimental
study designed to evaluate and compare the performance of the
three order encoding techniques proposed in this paper. For the
experiments, we used the freely available Shakespeare's plays
dataset [18]. We chose this dataset because it represents a realistic
scenario where XML document order is important. Also, this
dataset includes document schema, which allowed us to
experiment with both the Edge and Inlining shredding approaches.
The dataset contains 37 documents, conforming to a single
schema [18]. In our experiments, we scaled up this dataset by 5x
and 10x to create a more sizeable data workload. Most of our
experiments are presented using the 5x dataset, but we also
illustrate the scalability properties of our approaches using the 10x
dataset (which contains 100MB of ordered XML).

211

Table h Storage reqs. of the 3 encoding methods (5x dataset)
Edge Inlining

Order scheme (898,445 tuples) (888,900 tuples)
Table size Index size Table size Index size

Global 52.1 MB 57.9 MB 44.1 MB 28.9 MB
Local 52.1 MB 87.9 MB 47.7 MB 36.8 MB

Dewey 48.9 MB 38.7 MB 44.5 MB 15.8 MB

All experiments were run on an 866MHz Pentium III processor
with 1GB of physical memory running Windows 2000. We used
IBM DB2 Version 7.1 for our experiments. For most of our
experiments, the database buffer and sort area were both set to
200 MB, which was enough for the entire data set to fit in
memory. (We used a smaller, 10M buffer in Section 7.7). In order
to ensure consistency, each test query was executed 6 times with
the performance results of the first run discarded. A 95%
confidence interval was computed to estimate error. Since the
estimated error was small (<10%), confidence intervals are not
shown in the graphs.

7.1 Storage Requirements
The storage requirements for the three order encoding methods
using both Edge and Inlining shredding are shown in Table 1. The
two shredding approaches produce almost the same number of
tuples because most elements occur multiple times within their
parent element (according to the DTD), which makes the elements
non-inlinable. The set of indexes that we created was determined
through careful analysis of the query plans generated by DB2's
optimizer. The size of the path table (for the Edge case) is not
shown since the table has only 57 tuples, which equals the number
of unique paths in the input documents.

7.2 Test Queries
The test queries that we used are shown in Table 2. We chose
these queries for the following reasons. Q1 evaluates
reconstruction performance on the entire document set. Q2
evaluates recursive (//) XPath queries. Q3 is very similar to Q2
but does not use recursion. The rest of the queries were chosen to
test key aspects of order-based fimctionality in XPath and
XQuery. The test queries were translated to SQL using the
algorithm described in Section 6.

As discussed earlier, an XPath query can be executed in two
modes. In select mode, the result contains only the IDs of the
nodes satisfying the XPath expression. In reconstruct mode,
nodes satisfying the XPath expression are identified and then their
corresponding elements are reconstructed from database tuples.
Since one of the goals of this paper is to study the overhead of
preserving document order, we consider both ordered and
unordered versions of the select mode. On the other hand, since
most applications will probably expect order within an element to

be preserved, we consider only the ordered reconstruction mode.
We now turn our attention to the performance results.

7.3 Unordered Selection
XPath requires the result of a query to be in document order.
However, it is still useful to know the cost of evaluating
unordered XPath expressions in order to infer the overhead of
preserving document order. Figure 4 (left) shows the performance
of the three order encoding methods for unordered selection,
using Edge shredding. Figure 5 (left) shows the corresponding
results for Inlining. Clearly, Global Order results in the best
performance on all queries, except Q5. Note that Q5 is a rather
unusual query, which selects the second child node of a s c e n e
no matter what the name of the child node is. Such a query can be
evaluated efficiently if (dense) local order information is available
(as with Local and Dewey Order). However, since Global Order
does not have this information, it performs relatively poorly.

The Edge results for Q7 and Q9 show that Local Order is a poor
choice for queries that use "global" axes and fimctions. Recall that
Q7 selects s p e e c h e s following the second a c t , whereas Q9
selects s p e e c h e s before the second a c t . Both queries require
global order information. Recreating global order from local order
requires recursion (see Section 6.3), which is why Local Order
performs poorly on these two queries. Interestingly, Q7 and Q9
perform rather well with Local Order and Inlining. This rather
surprising result can be explained as follows. Under Inlining, the
schema of the dataset is available to the query translator. The
schema information can be used to determine the set of tables
with the nodes that can occur before/after the context nodes. As a
result, translation into more efficient SQL queries is possible.

As shown, the higher cost of comparing Dewey paths makes it
slightly slower than Global Order. On Q8, however, Dewey Order
is significantly slower. This query requires a join on parent_id
(to find following siblings). Recall that with Dewey Order,
p a r e n t _ i d is determined by applying the p r e f i x () user-
defined function on the i d of a child (see Section 6.2.2). Thus,
the join on p a r e n t i d is of the form: p r e f i x (d l) =
p r e f i x (d2) . Because of the use of two user-defined fimctions,
this comparison significantly limits the SQL optimizer's options.
A simple way to improve Dewey Order on such queries is to add a
column recording the Dewey path of a node's parent, although
this modification would lead to higher storage requirements.

7.4 Ordered Selection
Recall that with ordered selection, SQL queries return a set of
node IDs in document order. The middle charts in Figure 4 and
Figure 5 show the results of our ordered selection experiments.
Comparing the results for ordered selection with those for
unordered selection, we can ascertain the overhead of preserving

Query

QI
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Table 2:

Query definition

Test queries.

Node count Edge tuple
c o u n t

/play
/play/act//speech
/play/act/scene/speech
/play/act/scene/speech[2]
/play/act/scene/*[2]
/play/act/scene/speech[l TO 3]
/play/act[2]/following::speech
/play/act/scene/speech/speaker/following-sibling::line[2]
//act/scene/speech BEFORE /play/act[2]

185
154,755
154,665

3,65C
3,740

11,030
91,90C
85,445
30,215

898,445
856,880
853,850

20,620]
3,76C

76,57C
506,615

85,445
172,37C

Inlining tuple count

733,760
699,035
696,095

16,910
3,755

65,375
412,775

85,445
141,680

212

10

8

6

4

2

0

10

8

6

4

2

0

15 16 16 17 10 16 70 94 76 47
- - 10 30 i

OG,oba, OG,oba,
• Loea, ,Local t ! ! G,oba,

[] Dewey -- - 6 [] Dewey - - 20 [] Dewey ~1 .
15

. 4 10

. o, r l.r i. .[L_ [r o i , i , ~ i , f , i

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Figure 4. Edge results for unordered selection (]eft), ordered selection (middle), and reconstruction (right). 5x dataset.

39
10 30] I []Global [] Global [] Global

• Local 8 • Local 25 ~ • Local

[] Dewey ~l~ 46 [] Dewey 201510 [] Dewey ~3~-[Jl--I~

r/1 r,ll r,I] o - - , "" ' ' 0 , , , rlln n_n Ill] , ,

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Figure 5. ln l in ing results for unordered select ion (left), ordered

document order. With Global and Dewey Order, this overhead is
quite small. Indeed, in these methods, sorting on the node IDs is
sufficient to return results in document order.

With Local Order, however, global ordering has to be generated
"on the fly" which, in the case of Edge, requires recursion (see
Section 6.3). As a result, the performance of Local Order with
Edge is rather poor. Note, however, that Local Order performs
reasonably well with Inlining. With Inlining, the set of tables that
need to be joined to recreate global order can be determined from
the query and the XML schema. As a result, recursion is not
necessary (see Section 6.4).

7.5 Reconstruction
In reconstruct mode, entire XML fragments need to be extracted
from the database in document order. Our initial results with
Global Order and Edge were extremely poor because the DB2
optimizer does not understand containment queries well. As a
result, the optimizer picked poor execution plans for Global Order
and Edge, and we had to "tune" our SQL queries to make it
choose better plans. More will be said about this problem shortly.
For the results in Figure 4 (right), we used tuned SQL queries,
since they are a better measure of Global Order's inherent
performance.

The results shown in the charts on the right of Figure 4 and Figure
5 indicate that Global Order results in the best performance on all
queries except Q5. Again, Dewey Order is slightly slower than
Global Order due to the higher cost of comparing Dewey paths.
Local Order results in noticeably lower performance, especially
with Edge, which is caused by use of recursion. Local Order with
Inlining does not require recursion (Section 6.4), but still suffers
the high overhead of generating a global order on the fly (through
sorting on a set of columns instead of a single column).

7. 5.1 Performance Problems with Global Order and Edge
Our initial reconstruction results with Global Order and Edge
were simply disastrous, as shown in Figure 6. In this set of
experiments, we used the original lx dataset without scaling

selection (middle) and reconstruct ion (right) . 5x dataset .

because of the large running times. As shown, five out of nine test
queries initially took more than forty seconds to complete. Q3 was
especially slow, taking 35 minutes to complete.

An interesting thing to note, however, is that even though Q2 and
Q3 are similar, Q3 was initially 400 times slower than Q2! If
anything, Q2 should have been slower than Q3 because it is based
on a more complex XPath expression that includes " / / " ? The
crucial difference here lies in the SQL generated for Q2 and Q3.
In particular, since Q2 has potentially overlapping descendants, it
has to be ordered by the id of the context nodes in addition to the
id of the descendants (see Section 6.1.5). On the other hand, Q3
cannot have overlapping descendants, and hence is ordered only
by the id of its descendants.

The query plans for Q2 and Q3 reveal why Q3 ran so much
slower than Q2 (see Figure 7 and Figure 8). The plan for Q2 joins
the Path and Edge tables to find s p e e c h tuples. Then Edge
tuples that are contained in each s p e e c h are retrieved. Finally,
the result is sorted on (Q. s p e e c h _ i d , E. £d) to group the
subelements contained in each s p e e c h . The plan for Q3, on the
other hand, avoids sorting by scanning the entire Edge table
through an index (on E. id) and checking every tuple for
containment within a s p e e c h .

Either plan can be used for Q3. So why did the optimizer choose
the wrong plan for Q3? The DB2 optimizer based its decision on
the cardinality estimate of the following containment predicate:
E.id _> Q.speech_id AND E . i d _< Q.speech end desc_id

The optimizer grossly overestimated the cardinality of this
predicate and consequently, the amount of data that needed to be
sorted. To avoid what it thought was an expensive sort, the
optimizer chose the plan in Figure 8 for Q3 when it should have
chosen the plan in Figure 7.

Our "solution" to this problem was to trick the DB2 optimizer into
picking the plan in Figure 7 for Q3. This was accomplished by
replacing the single E. i d column in the ORDER BY clause of

213

2115

8

.i6-

2 -

0

Q1 Q2 Q3

40 41 122 454

_ _ [] I n i t i a l _

BTuned

_ _

Q4 Q5 Q6 Q7 Q8 Q9

Figure 6. Intial and "tuned" reconstruction
performance of Global Order with Edge, Ix dataset.

Q3 with (Q. s p e e c h _ i d , E. id). This forced the sort to be
done after the final join, which eliminated the plan in Figure 8 as
an option. Clearly, the extra ORDER BY column does not affect
tuple ordering. This "tuning" trick was also used on other queries
that "confiased" the optimizer.

A more general solution is, of course, needed. A recent study [24]
concluded that a multi-predicate merge join should be used to
evaluate containment predicates like the one above. The problem
is that, without knowing the hierarchical structure of the data, it is
impossible to produce a reasonable cardinality estimate for
containment predicates. As a result, the optimizer will not be able
to decide when to use a multi-predicate merge join. One could
argue that a multi-predicate merge join should always be used to
evaluate containment predicates. However, it is easy to construct
examples where a multi-predicate merge join performs worse than
a nested-loop join on containment predicates.

Interestingly, we did not experience the performance problems of
Global Order with Dewey Order. It turns out there is no "deep"
reason for this. The containment predicate with Dewey Order is
somewhat different than with Global Order. Specifically, Dewey
Order requires the following containment predicate:
E.dewey < pref ix(O.dewey) I I0xFF (see Section 6.2.2).
Note that the right side of this condition is an expression. DB2
uses a completely different algorithm for cardinality estimation of
expression-based conditions. This algorithm happens to produce a
low estimate causing the better plan to be chosen by the
optimizer. In fact, when we modified our Global Order queries to
include the following condition: E.end_descendant_id <=
Q.end_descendant_id+0, we observed the same dramatic
improvement as with the "tuned" queries.

The message to take away from this section is that, because of
costing issues, relational optimizers probably have to be extended
to understand XML data before they can be truly effective for
querying XML documents.

7.6 Insert Performance
We now compare the insert performance of the three encoding
methods under Edge, using both conservative and optimistic
insertion techniques (see Section 6.1.6). We used the insertion
query where a node is inserted after the second a c t of a single
p l a y (Hamlet); that is, the XPath selection query was
/ p l a y / a c t [2]. Two cases are possible. In the first case, the
insertion creates no numbering conflicts, and the new element can
be immediately inserted. In the second case, the insertion creates a
numbering conflict, and requires that some existing nodes be
renumbered before the new node can be inserted.

The performance of the optimistic and conservative methods
(with and without conflicts) is shown in Table 3. Clearly, the

Figure 7. The initial query plan Q2. Figure 8. The initial query plan for Q3.

optimistic implementation is much faster in the no-conflict case,
since it does not perform conflict detection. Further, the two
implementations performed similarly when a conflict was present
(and renumbefing is required). Thus, the optimistic
implementation seems to be a better choice for inserts.

Comparing insertion performance across the order encoding
methods, we notice that Local Order resulted in the best overall
performance because it has the least renumbering cost (see
Section 4.2). Global and Dewey Order show comparable
performance in the no-conflict case, but Dewey Order is much
faster when there is a conflict. This is because a smaller number
of nodes have to be renumbered for Dewey Order as compared to
Global Order.

7.7 Reducing the Buffer Size
To evaluate the performance of an RDBMS on a data set that is
larger than the buffer size, we reduced the buffer and the sort area
to 10M each. We observed that the running times of most
selection queries increased by a relatively small amount (<25%)
whereas the running times for reconstruction queries increased by
a factor of 2 to 5 [17]. Global Order was still the most efficient
order encoding method and Dewey Order was the second best.
The performance of Local Order degraded more than that of the
other two methods because Local Order resorts to sorting very
often. We also observed that Inlining is more robust than Edge
with a smaller buffer. The performance advantage of Inlining over
Edge is more pronounced in that case.

7.8 Comparison with a Main-Memory XPath
Processor

We used Microsoff's MSXML to compare the performance of a
main-memory XPath processor with the performance of our DB2
implementation. With MSXML, an XML document has to be
parsed and converted to a DOM tree before XPath queries can be
evaluated. Once the DOM tree has been built, MSXML was up to
a factor of 2 faster than DB2 in evaluating most queries [17]. This
is because a DOM tree is a ordered, main-memory tree structure.
As a result, the ordered axes of XPath can be evaluated without
sorting. DB2, however, was 25% faster on Q2 (which includes '//')
because it could use the path table to find matching nodes faster.

On the surface, these results may seem negative, but we believe
that they should actually be viewed positively. The results show
that a general-purpose RDBMS, which can scale to arbitrarily

Table 3: Insert performance.

Order scheme Conservative Optimistic
No Conflict Conflict No Conflict Conflict

Global l l6 .2ms 2511.9ms 22.9ms 2720.2ms
Local 103.8 ms 176.3 ms 23.0 ms 115.9 ms

Dewey 137.0ms 1303.6ms 32.4ms 1331.1 ms

214

large document collections, can offer performance in the same
ballpark as a specialized, main-memory XPath processor, which
can process only a single document at a time. Moreover, the
RDBMS does not incur the overhead of parsing a document each
time. In our experiments, we found that parsing overhead was
often an order of magnitude more expensive than XPath
processing.

Summary of Experimental Results
Our experimental results point to the following conclusions:

1. Relational database systems can support ordered XML
queries efficiently. Our experiments show that relatively complex
ordered XML queries can be evaluated over 100MB of data in 2-3
seconds. Even reconstructing the entire XML dataset from the
shredded tuples (which has been shown to be expensive even for
unordered reconstruction [5][7][12]) only takes on the order of
30-45 seconds.

2. Global Order is best for query-mostly workloads, while
Dewey Order is best for a mix of queries and updates. The global
numbering provided by Global Order makes it efficient for most
queries. Dewey Order is slightly less efficient than Global Order
due to the higher cost of comparing Dewey paths. Dewey Order
has a smaller update overhead, however, which makes it a better
option when updates are frequent.

3. Schema information makes Local Order a viable alternative.
When schema information is available, there is no need to issue
(inefficient) recursive queries in order to create a global
numbering from Local Order. So the performance of Local Order
is comparable (though not at the same level) as Global and Dewey
Order. Given Local Order's excellent update characteristics, it
may thus be a viable option in update-intensive environments.

4. The relational optimizers need to understand the
hierarchical structure of XML. The relational optimizer
sometimes made wrong estimations, and consequently chose bad
plans, when dealing with containment queries. While we were
able to "hand tune" the relational optimizer to make it pick
reasonable plans, a better (and more general) solution is to extend
the optimizer to support the hierarchical XML data.

8. Conclusion
Order is a salient feature of the XML data model, yet it has been
largely overlooked in previous on using a relational database
system to store and query XML documents. Managing ordered
XML data using the unordered relational model presents new
challenges. In this paper, we showed that XML's ordered data
model can be efficiently supported by a relational database
system. We described three general order encoding methods
(Global Order, Local Order, and Dewey Order) for representing
XML order in the relational data model, and showed how they can
be used to preserve document order during XML query
processing. We also described algorithms to translate ordered
XML queries into SQL for each order encoding method under two
well-known approaches for shredding XML documents into
relations (Edge [7] and lnlining [13]).

The results of an experimental study were presented to evaluate
the performance of the three order encoding methods on a real-life
data set. Ordered XPath and XQuery queries were used to
measure query performance, while XML element insertions were
used to measure update performance. Our results show that a
relational database system can efficiently support most ordered
XML queries. Our experiments also showed that Global Order

performs best on query-mostly workloads, while Dewey Order
performs best on a mix of queries and updates.

Finally, our experiments showed that, in some cases, current
relational optimizers have difficulty in accurately estimating the
cost of XML query processing. This leads to very poor plan
choices on some XML queries. The problem is that relational
optimizers do not understand XML's hierarchical structure.
Extending relational optimizers to understand XML hierarchies is
an interesting direction for fi~ture work.

References
[1] P. Bohannon, J. Freire,P. Roy, J. Simeon. From XML Schema to

Relations: A Cost-based Approach to XML Storage. ICDE 2002.
[2] M. Carey et al., XPERANTO: Publishing Object-Relational Data

as XML. In Workshop on Web and Databases (WebDB), 2000.
[3] B. Cooper et al., A Fast Index for Semistructured Data. In Proc. of

VLDB Conference, 2001.
[4] A. Deutsch, M. Fernandez, D. Suciu. Storing Semistructured Data

with STORED. In Proc. of SIGMOD Conference, 1999.
[5] M.F. Fernandez, A. Morishima, D. Suciu. Efficient Evaluation of

XML Middle-ware Queries. In SIGMOD, 2001.
[6] M.F. Fernandez, et al. Publishing Relational Data as XML: The

SilkRoute Approach. IEEE Data Engineering Bulletin 24(2), 2001.
[7] D. Florescu, D. Kossmann, Storing and Querying XML Data using

an RDBMS. IEEE Data Engineering Bulletin 22(3), 1999.
[8] D.D. Kha, M. Yoshikawa, S. Uemura. An XML Indexing

Structure with Relative Region Coordinate. In ICDE 2001.
[9] Online Computer Library Center. Introduction to the Dewey

Decimal Classification.
http://www.oclc.org/oclc/fp/about/about the ddc.htm.

[10] P. Seshadri, M. Livny, R. Ramakrishnan. Sequence Query
Processing. In Prof. SIGMOD Conference, 1994.

[11] J. Shanmugasundaram et al. Relational Databases for Querying
XML Documents: Limitations and Opportunities. VLDB 1999.

[12] J. Shanmugasundaram et al. Efficiently Publishing Relational Data
as XML Documents. In VLDB 2000.

[13] J. Shanmugasundaram et al. A General Technique for Querying
XML Documents using a Relational Database System. SIGMOD
Record, September 2001.

[14] T. Shimura, M. Yoshikawa, S. Uemura. Storage and Retrieval of
XML Documents Using Object-Relational Databases. In Proc. of
DEXA Conference, 1999.

[15] R. Snodgrass, I. Ahn, A Taxonomy of Time in Databases. In Proc.
of SIGMOD Conference, 1985.

[16] I. Tatarinov, Z. G. Ives, A. Y. Halevy, D. S. Weld. Updating XML.
In Proc. of SIGMOD Conference, 2001.

[17] I. Tatarinov, et al. Storing and Querying Ordered XML using a
Relational DBMS. Tech Report, Univ. of Washington, 2002.

[18] The Plays of Shakespeare in XML.
http://www.oasis-open.org/cover/bosakShakespeare200.html.

[19] World Wide Web Consortium. Document Object Model (DOM)
Level 3 Core Specification. W3C Recommendation Sept. 2001.

[20] World Wide Web Consortium, Extensible Markup Language
(XML). W3C Recommendation, February 1998.

[21] World Wide Web Consortium. XML Path Language (XPath),
Version 1.0, W3C Recommendation, November 1999.

[22] World Wide Web Consortium. XQuery: A Query Language for
XML. W3C Working Draft, June 2001.

[23] F. Yergeau, UTF-8, A Transformation Format of ISO 10646.
Request for Comments 2279, January 1998.

[24] C. Zhang et al., On Supporting Containment Queries in Relational
Database Management Systems. In. SIGMOD 2001.

[25] M. Yoshikawa et al., XREL: A Path-Based Approach to Storage
and Retrieval of XML documents using Relational Databases. In
ACM Transactions on Internet Technology, August 2001.

215

