
 Version 2019/11/25

TDDD43 - Lab Exercises for Theme NoSQL
Notice: Please make sure you have read the whole lab compendium before you start to work on the server from NSC.

Description and Aim
In this lab you will work on the Tetralith1 set up which is the largest HPC cluster from the National
Supercomputer Centre (NSC). You are supposed to solve an XPath query answering problem using
the Hadoop system on Tetralith, by first generating the index structure of the given XML data (section
1.1) and then writing an XPath query in Java following Apache Hadoop 2.7.02 (section 1.2). Finally
you need to compile your code and run the program on Tetralith (section 2). After completing this
lab, you should have basic knowledge on the programming environment and the programming
techniques of Hadoop.

1. XPath query answering
The task consists of two parts. In the first part, you will learn how to parse the XML file. In the second
part, you will learn how to write a Java program using MapReduce based on Hadoop.

1.1 Parsing the XML file and storing the index structure in text files.
We begin with building the path-based mapping together with the dewey encoding for the given XML
data. The XML data can be downloaded at:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/BIOMD0000000009.xml

The following paper describes how to use dewey encoding (a detailed example is available at the
end of this section shown in Figure 1):

https://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/StoringAndQueryingOrderedXMLUsing
ARelationalDatabaseSystem.pdf

In this exercise, we will use the dewey encoding to store the positions of the nodes, (i.e. every node
in the XML tree will be assigned a unique dewey_pid). For each unique path of the XML tree, you
need to generate three text files: one for the tags (tag file), one for the texts (text file), and one for
the attributes and values (attribute file). Tag files consist of the pairs of the tag names together with
their dewey_pids with the format as follows.

...
1.1.3.4 tagname1
1.1.3.5 tagname2
...

Text file has a similar structure, with pairs of text values together with the dewey_pids.
Attribute file consists of the triple with the format as follows.

...
1.1.3.4 attributename1 attributevalue1
1.1.3.5 attributename2 attributevalue2
…

To generate the files, you will use the standard XML event-based parser SAX (read about it, if you
are not familiar with it already). Two Java files are prepared for you to be completed. The files can
be downloaded at:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/XMLCounter.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/ReadXMLFile.java
Your task is to add the content to the functions in XMLCounter.java, such as startElement,
endElement. In order to generate the paths and the dewey code, you might need data structures
such as Stack and Vector. To complete this task you may use any Java IDE such as Eclipse.
1 Tetralith: https://www.nsc.liu.se/systems/tetralith/
2 Apache Hadoop 2.7.0: https://hadoop.apache.org/docs/r2.7.0/

 Version 2019/11/25

Figure 1: Dewey order mapping Example

1.2 XPath query evaluation
(You can also start to do section 2.1 and 2.2, then get back to this section.)

The purpose of this part is to use the MapReduce programming model to evaluate the following
XPath query. Consider the following XPath query over the given XML data:

//reaction[listOfProducts/speciesReference[contains(@species,
"P_KK")]]/listOfReactants/speciesReference/@species

 Version 2019/11/25

Intuitively, the query asks for the reactant species of the reactions which consist of a product species
contain the substring ‘P_KK’.

The query can be evaluated by first retrieving the attribute file (file01) with the path:

//reaction/listOfProducts/speciesReference

and another attribute file (file02) with the path:

//reaction/listOfReactants/speciesReference

To simplify the task, you do not need to implement the pattern matching steps of the paths. From
the example XML data we know there is only one path containing:

“reaction/listOfProducts/speciesReference” (resp.“reaction/listOfReactants/speciesReference”).

Thus from all the files you have generated in the last task, there is one attribute file (file01) for the
first path and one (file02) for the second path. You need to remember the file names and give them
as input parameters for the execution of the program.

Note that the files contain all the products (resp. reactants) from all the reactions. Now we need to
conduct a join operation on both data sets by grouping the products and reactants from the same
reaction. Therefore, the join attribute is the dewey_pid of the path //reaction. Given a dewey_pid (id)
from file01 or file02, we can easily obtain the dewey_pid of //reaction by removing the last two digits
from id. For instance, if the dewey_pid from file01 is 1.1.3.4, then the dewey_pid of //reaction would
be 1.1.

The join operation is realized by the following two map tasks:

In map task 1 (works on the first part of the query
[listOfProducts/speciesReference[contains(@species,"P_KK")]]), you need to take a triple from
file01, check whether the attribute name is “species” and the attribute value contains the string
“P_KK”. If this is true, retrieve the prefix of the current dewey_pid and send it as the key to the reduce
task.

In map task 2 (works on the second part /listOfReactants/speciesReference/@species), what you
need to do is similar to Map task 1.

The function in the reduce task is then straightforward.

We prepared the necessary Java files for you to fill up the contents. The files are available at:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/TextPair.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMain.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMapper1.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMapper2.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinReducer.java

You will need all the files to complete the task. From the above files, TextPair.java and
JoinMain.java are complete and you should not change them. Your task is to complete the other
three files.

There are two Mappers and each one of them sends the intermediate <key, value> pairs to the
reduce task, where the pairs with the same key are sent to the same reduce task. At the reducer
side, there should be mechanism to identify for a received data pair, which Mapper does it come
from. The solution is to tag the pairs in the Mapper side with some distinct number.

This kind of join operation is known as Reduce-side Join.

 Version 2019/11/25

2. Running Java Hadoop Program on Tetralith
2.1 Working on Tetralith
The Tetralith server is available at tetralith.nsc.liu.se (log in using your NSC accounts).

To log in Tetralith, please use the following command in the terminal from a computer in the lab
rooms:

• ssh -X username@tetralith.nsc.liu.se where username is your NSC
username (not the LiU one), -X indicates forwarding function of ssh which is used for
running graphics applications remotely. When you logout the server, if the logout is hung,
please use ctrl-c to terminate the connection.

• You can use Emacs for coding remotely by running emacs & in the terminal after you
connect to tetralith or program locally, then use scp to copy your files to Tetralith.

• [username@tetralith1 ~]$ emacs &
• scp LOCAL_FILE username@tetralith.nsc.liu.se:

We will use a non-interactive way to run the program on Tetralith. So each time when you want to
run your java program, you need to submit your batch job. After that, the job will enter the scheduling
queue, where it may have to wait a while until nodes are available to tun the job. We use sbatch
command to submit the batch job and squeue command to monitor your submitted job. You may
also use scancel command to cancel a job.

• [username@tetralith1 ~]$ sbatch run.q
• [username@tetralith1 ~]$ squeue -u username
• [username@tetralith1 ~]$ scancel JOBID

The Tetralith uses Slurm for scheduling. Once you submit a job, the job will be assigned an ID. After
the job is finished, you will see a slurm-ID.out file returned, which includes the output information
of the job script.

We provide a script named compile.sh to compile your java code and a script named run.q to
run the program. Please read the scripts carefully before you change it. For compiling your java
code, you don’t have to submit the job for scheduling. You can simply run the script as follows.

• [username@tetralith1 ~]$./compile.sh

Notice: NSC reserves 6 compute nodes for the two lab sessions in TDDD43 which means other jobs
on Tetralith will not use these nodes during our lab sessions. To use the reservations, you can use
following commands.

• [username@tetralith1 ~]$ listreservations
Reservations available to user:username / project(s):snic2019-7-77
tddd43-2019-12-03 from 2019-12-03T10:15:00 to 2019-12-03T13:00:00 (project:snic2019-7-77)
tddd43-2019-12-10 from 2019-12-10T10:15:00 to 2019-12-10T13:00:00 (project:snic2019-7-77)
devel from NOW to INF (everyone)

• [username@tetralith1 ~]$ export SBATCH_RESERVATION=tddd43-2019-
12-DD

• [username@tetralith1 ~]$ export SBATCH_RESERVATION=devel (Outside
of lab time)

For those of you may be involved in multiple projects on Tetralith, you have to specify which one to
use when submitting a job using sbatch.

• [username@tetralith1 ~]$ sbatch -A snic2019-7-77 run.q

 Version 2019/11/25

2.2 Running Word Count Example on Hadoop
Step 1: Log in to Tetralith server.

Step 2: There is an example for how to run Word Count program with Hadoop on Tetralith. The path
for the example is /software/sse/manual/spark/examples/hadoop/2_java_wordcount_1.0/. You can
copy this folder to your home folder by using cp command.

Step 3: Before you run the program on Hadoop, you need to first compile the code by running the
script compile.sh. The script is used to Compile WordCount.java and create a jar as shown in
Figure 3.

Step 4: After the jar file is created, you can use sbatch to submit the job. Then you can use squeue
-u USER_NAME to check your job. Once the job is finished, you can find a returned file named
slurm-ID.out.

Figure 2: Steps to run word count program

Step 1

Step 2

Step 3

Step 4

 Version 2019/11/25

Figure 3: compile.sh for word count program

Figure 4: run.q script for word count program

In run.q as shown in Figure 4, there are a number of commands that are used to interact with HDFS.

hadoop fs -mkdir <FOLDER_NAME> -make a folder on HDFS

hadoop fs -mkdir -p <FOLDER_NAME> <FOLDER_NAME> -make multiple folders

hadoop fs -test -d <FOLDER_NAME> -if the path is a directory, return 0

hadoop fs -rm -r <FOLDER_NAME> -deletes the directory and any content under it recursively

hadoop fs -put <localsrc> ... <dst> -copy single src, or multiple srcs from local to HDFS

hadoop fs -cat <FOLDER_ON_HDFS> [local] -copy HDFS path to stdout

 Version 2019/11/25

2.3 Running XPath evaluation program on Hadoop
After you have achieved correct results for section 1.1 and have written correct code for section 1.2,
you can prepare to run your program on Hadoop. To compile the Java code and to run the program
are similar to step 3 and step 4 in section 2.2, respectively. Indeed, you have to change some details
in the two scripts, compile.sh and run.q.

Figure 5 shows the XPath query result in Oxygen, you are supposed to obtain the same 20 records
in your program.

Figure 5: XPath query result in Oxygen

Hand in:
To demonstrate the lab, please e-mail a lab report containing all code you have written for both
section 1.1 and section 1.2, and also include a file to show the result of your program.

