
Version 12/5/2017

Lab exercises for theme NoSQL

Aim

After completing this lab you should have the basic knowledge on programming environment

and the programming techniques of Hadoop. In the first part of the lab you will go through the

tutorial on the WordCount example at Apache website. After the first part of the lab you will be

familiar with the programming environment of Hadoop system. In the second part of the lab you

will solve the XPath query answering problem using the Hadoop system, by first generating the

index structure of the given XML data and then writing the XPath query in Java over the Hadoop

system.

1. WordCount v1.0

The first task is to go through the Hadoop tutorial that can be found at:

http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Example:_WordCount_v1.0

The Hadoop server at NSC is:

heffa.nsc.liu.se (denoted later as heffa)

You will be able to log in heffa using SSH from any lab computer or your personal computer.

Use your student account at NSC to log in (NOTE: Please apply for an NSC account as soon as

possible since manual steps are involved). You will be working with the Linux system. After you

are logged in, type

whereis hadoop

to find out where the hadoop executable and the libs are installed. You will see the following

message:

hadoop: /usr/bin/hadoop /usr/lib/hadoop /etc/hadoop /usr/share/man/man1/hadoop.1.gz

/usr/bin/Hadoop is the path for the executable and you should always give this path when

calling the hadoop command.

/usr/bin/hadoop replaces bin/hadoop in the tutorial

hdfs replaces bin/hdfs

To copy files from your local machine to heffa you need to use commands like scp,

rsync, etc. Here is an example with scp:

scp filename username@heffa.nsc.liu.se:~

(will move filename to your home folder on heffa)

Note that the command above will move the file on heffa but NOT on the hdfs. To do so

you need to use hdfs dfs command as below:

http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
http://hadoop.apache.org/docs/r2.6.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
mailto:username@heffa.nsc.liu.se:~

Version 12/5/2017

hdfs dfs –put -f filename ./input

(assuming your current folder is where filename is, the command will move filename in

the input folder (which should be created in advance))

The input and output files have to reside under hdfs but not your code!

Now you should be able to follow the tutorial and run the WordCount program in Hadoop. (hint:

the output data directory should not exist before you run the program. Otherwise a “directory

already exists” error message will be returned).

2. XPath query answering using Hadoop

In this part you will learn how to write your own application using Hadoop. The task consists of

two steps.

2.1 Parsing the XML file and storing the index structure in text files.

We begin with building the path-based mapping together with the dewey encoding for the given

XML data. The XML data can be downloaded at:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/BIOMD0000000009.xml

This paper describes how to use dewey encoding (very detailed example is available at the

end of the file):

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/StoringAndQueryingOrderedXML

UsingARelationalDatabaseSystem.pdf

In this exercise we will use the dewey encoding to store the positions of the nodes, (i.e. every

node in the XML tree will be assigned a unique dewey_pid). For each unique path of the XML

tree, you need to generate three text files: one for the tags (tag file), one for the texts (text file),

and one for the attributes and values (attribute file). Tag files consist of the pairs of the tag names

together with its dewey_pid with the format:

 ...

1.1.3.4 tagname1

1.1.3.5 tagname2

...

Text file has the similar struture, with pairs of text values together with the dewey_pid.

Attribute file consists of the triple with the format of

 ...

1.1.3.4 attributename1 attributevalue1

1.1.3.5 attributename2 attributevalue2

...

To generate the files you will use the standard XML event-based parser SAX (read about it, if

you are not familiar with it already). Two Java files are prepared for you to be completed. The

files can be downloaded under:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/XMLCounter.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/ReadXMLFile.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/BIOMD0000000009.xml
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/StoringAndQueryingOrderedXMLUsingARelationalDatabaseSystem.pdf
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/StoringAndQueryingOrderedXMLUsingARelationalDatabaseSystem.pdf
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/XMLCounter.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/ReadXMLFile.java

Version 12/5/2017

Your task is to add the content to the functions in XMLCounter.java such as startElement,

endElement, etc. In order to generate the paths and the dewey code, you might need the data

structures such as Stack and Vector. To complete this task you may use any Java IDE such as

Eclipse.

2.2 XPath query evaluation

The purpose of this part is to use the MapReduce programming model to evaluate the following

XPath query. Consider the following XPath query over the given XML data:

//reaction[listOfProducts/speciesReference[contains(@species,
"P_KK")]]/listOfReactants/speciesReference/@species

Intuitively, the query asks for the reactant species of the reactions which consist of a product

species contain the substring ‘P_KK’.

The query can be evaluated by first retrieving the attribute file (file01) with the path:

*/reaction/ListOfProducts/speciesReference
and another attribute file (file02) with the path:

*/reaction/ListOfReactants/speciesReference

To simplify the task, you do not need to implement the pattern matching steps of the paths. From

the example XML data we know there is only one path contains

“reaction/ListOfProducts/speciesReference”

(resp.“reaction/ListOfReactants/speciesReference”). Thus from all the files you have

generated in the last task, there is one attribute file (file01) for the first path and one (file02) for

the second path. You need to remember the file names and give them as input parameters for the

execution of the program.

Note that the files contain all the products (resp. reactants) from all the reactions. Now we need

to conduct a join operation on both data sets by grouping the products and reactants from the

same reaction. Therefore, the join attribute is the dewey_pid of the path */reaction. Given a

dewey_pid (id) from file01 or file02, we can easily obtain the dewey_pid of */reaction by

removing the last two digits from id. For instance, if the dewey_pid from file01 is

1.1.3.4

then the dewey_pid of */reaction would be

1.1

The join operation is realized by the following two map tasks:

Map task 1 (works on the first part of the query

[listOfProducts/speciesReference[contains(@species,"P_KK")]]): Take a triple from file01,

check whether the attribute name is “species” and the attribute value contains the string “P_KK”.

If this is true, retrieve the prefix of the current dewey_pid and send it as the key to the reduce

task.

Map task 2 (works on the second part /listOfReactants/speciesReference/@species): Similar to

Map task 1.

Version 12/5/2017

The function in the reduce task is then straightforward.

We prepared the necessary Java files for you to fill up the contents. The files are available at:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/TextPair.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMain.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMapper1.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMapper2.java

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinReducer.java

You will need all the files to complete the task. From the above files, TextPair.java and

JoinMain.java are complete and you should not change them. Your task is to complete the other

three files.

There are two Mappers and each one of them sends the intermediate <key, value> pairs to the

reduce task, where the pairs with the same key are sent to the same reduce task. At the reducer

side, there should be mechanism to identify for a received data pair, which Mapper does it come

from. The solution is to tag the pairs in the Mapper side with some distinct number.

This kind of join operation is known as Reduce-side Join.

Compiling & running:

Under /usr/lib/hadoop and /usr/lib/hadoop-mapreduce you will find the jar

files serving as lib files of hadoop system. Main jar files are hadoop-common.jar in

/usr/lib/hadoop and hadoop-mapreduce-client-core.jar in latter.

To compile source code, you could use the following command:

javac -cp /usr/lib/hadoop/hadoop-common.jar:/usr/lib/hadoop-

mapreduce/hadoop-mapreduce-client-core.jar -d YOUR_CLASS_PATH *.java

or compile as WordCount program in the tutorial assuming environment variables are set.

/usr/bin/hadoop com.sun.tools.javac.Main *.java

Then create a jar file and execute it similarly to what you did in the Word Count example. Look

at the JoinMain.java for the number and sequence of the program arguments.

Console output & Debugging:

To debug your code you can use regular System.out statements. An example how to access their

output in Hadoop environment can be found here:

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/debug_example_wordcount_1.0.zip

You can run the following using your application ID:
yarn logs -applicationId application_1506513566622_0010

Hand in:

To demonstrate the lab, please e-mail a lab report containing all code you have written for both

part 2.1 and part 2.2 and also include a file of what it displays when it's run.

http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/TextPair.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMain.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMapper1.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinMapper2.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/code/JoinReducer.java
http://www.ida.liu.se/~TDDD43/themes/themeNOSQLlabs/debug_example_wordcount_1.0.zip

Version 12/5/2017

model

. . .

listOfReactions

listOfSpecies listOfRules

listOfParameters

. . .

reaction
reaction

reaction reaction

sbml

annotation

kineticLaw

listOfProducts

listOfReactants

speciesReference

speciesReference

speciesReference

. . .

1

1.1

1.1.1

1.1.4

1.1.3 1.1.2

1.1.1.1

1.1.1.2 1.1.1.3
1.1.1.4

1.1.1.1.1

1.1.1.1.2
1.1.1.1.3

1.1.1.1.4

1.1.1.1.2.1
.3

1.1.1.1.1.2

1.1.1.1.1.1

@level 2
@metaid _770249
@version 4

@species KKK

@speciesE1

@speciesE1_KKK

The content of the attribute file for the sbml path:
1 level 2
1 metaid _770249
1 version 4

The content of the tag file for the sbml path:
1 sbml

The content of the text file for the sbml path:
(empty since thete is no text for the element with this path)

The content of the attribute file for the sbml/model/listOfReactions/reaction/listOfReactants/speciesReference path:
1.1.1.1.1.1 species KKK
1.1.1.1.1.2 species E1

 … continue with the other attributes with this path

The content of the tag file for the sbml/model/listOfReactions/reaction/listOfReactants/speciesReference path:
1.1.1.1.1.1 speciesReference
1.1.1.1.1.2 speciesReference
 … continue with the other elements with this path

The content of the text file for the sbml/model/listOfReactions/reaction/listOfReactants/speciesReference path:
(empty since thete is no text for the elements with this path)

The content of the attribute file for the sbml/model/listOfReactions/reaction/listOfProducts/speciesReference path:
1.1.1.1.2.1 species E1_KKK

… continue with the other attributes with this path

The content of the tag file for the sbml/model/listOfReactions/reaction/listOfProducts/speciesReference path:
1.1.1.1.2.1 speciesReference

 … continue with the other elements with this path

The content of the text file for the sbml/model/listOfReactions/reaction/listOfProducts/speciesReference path:
(empty since thete is no text for the elements with this path)

.
. . .

Dewey order mapping example

