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NoSQL: Motivation

30, 40 years history of well-established database technology, all in vain? Not at
all! But both setups and demands have drastically changed:

main memory and CPU speed have exploded, compared to the time when
System R (the mother of all RDBMS) was developed

at the same time, huge amounts of data are now handled in real-time

both data and use cases are getting more and more dynamic

social networks (relying on graph data) have gained impressive momentum

full-texts have always been treated shabbily by relational DBMS
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NoSQL: Facebook (Architechture)

Memcached

distributed memory caching system
caching layer between web and database servers
based on a distributed hash table (DHT)

HipHop for PHP

developed by Facebook to improve scalability
compiles PHP to C++ code, which can be better optimized
PHP runtime system was re-implemented

Cassandra

developed by Facebook for inbox searching
data is automatically replicated to multiple nodes
no single point of failure (all nodes are equal)

Hadoop/Hive

implementation of Google’s MapReduce framework
performs data-intensive calculations
(initially) used by Facebook for data analysis
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NoSQL: Facebook (Components)

Varnish
→ HTTP accelerator, speeds up dynamic web sites

Haystack
→ object store, used for storing and retrieving photos

BigPipe
→ web page serving system; serves parts of the page (chat, news feed, ...)

Scribe
→ aggregates log data from different servers
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NoSQL: Facebook

hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html

Architecture: Hadoop Cluster

21 PB in Data Warehouse cluster, spread across 2000 machines:

1200 machines with 8 cores, 800 machines with 16 cores

12 TB disk space per machine, 32 GB RAM per machine

15 map-reduce tasks per machine

Workload

daily: 12 TB of compressed data, and 800 TB of scanned data

25,000 map-reduce jobs and 65 million files per day

Fang Wei-Kleiner 27. November 2012 Page 5



Advanced databases and data models 2012 4. NoSQL 4.1. Motivation

NoSQL: Facebook

HBase

Hadoop database, used for e-mails, IM and SMS

has recently replaced MySQL, Cassandra and few others

built on Google’s BigTable model

Conclusion

classical database solutions have turned out to be completely insufficient

heterogeneous software architecture is needed to match all requirements
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NoSQL: Not only SQL

RDBMS are still a great solution for centralized, tabular data sets

NoSQL gets interesting if data is heterogeneous and/or too large

most NoSQL projects are open source and have open communities

code bases are up-to-date (no 30 years old, closed legacy code)

they are subject to rapid development and change

cannot offer general-purpose solutions yet, as claimed by RDBMS
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NoSQL: Not only SQL

www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

10 Things: Five Advantages

Elastic Scaling → scaling out: distributing data instead of buying bigger
servers

Big Data → opens new dimensions that cannot be handled with RDBMS

Goodbye DBAs (see you later?) → automatic repair, distribution, tuning, ...

Economics → based on cheap commodity servers and less costs per
transaction/second

Flexible Data Models → non-existing/relaxed data schema, structural
changes cause no overhead
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NoSQL: Not only SQL

www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

10 Things: Five Challengees

Maturity → still in pre-production phase, key features yet to be
implemented

Support → mostly open source, start-ups, limited resources or credibility

Administration → require lot of skill to install and effort to maintain

Analytics and Business Intelligence → focused on web apps scenarios,
limited ad-hoc querying

Expertise → few number of NoSQL experts available in the market
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NoSQL: Concepts

nosql-database.org

Definition

Next Generation Databases mostly addressing some of the points: being
non-relational, distributed, open source and horizontally scalable. The original
intention has been modern web-scale databases. The movement began early
2009 and is growing rapidly. Often more characteristics apply as: schema-free,
easy replication support, simple API, eventually consistent/BASE (not ACID), a
huge data amount, and more.

–Stefan Edlich
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NoSQL: Concepts

Scalability: system can handle growing amounts of data without losing
performance.

Vertical Scalability (scale up)

add resources (more CPUs, more memory) to a single node
using more threads to handle a local problem

Horizontal Scalability (scale out)

add nodes (more computers, servers) to a distributed system
gets more and more popular due to low costs for commodity hardware
often surpasses scalability of vertical approach
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition Tolerance
Brewer [ACM PODC’2000]: Towards Robust Distributed Systems

Consistency

after an update, all readers in a distributed system see the same data

all nodes are supposed to contain the same data at all times

Example

single database instance will always be consistent

if multiple instances exist, all writes must be duplicated before write
operation is completed
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition Tolerance
Brewer [ACM PODC’2000]: Towards Robust Distributed Systems

Availability

all requests will be answered, regardless of crashes or downtimes

Example

a single instance has an availability of 100% or 0%, two servers may be
available 100%, 50%, or 0%

Partition Tolerance

system continues to operate, even if two sets of servers get isolated

Example

system gets partitioned if connection between server clusters fails

failed connection won’t cause troubles if system is tolerant
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NoSQL: Concepts
CAP Theorem: Consistency, Availability, Partition Tolerance
Brewer [ACM PODC’2000]: Towards Robust Distributed Systems

Theorem

(Gilbert, Lynch SIGACT’2002): only 2 of the 3 guarantees can be given in a
shared-data system

(Positive) consequence: we can concentrate on two challenges
ACID properties needed to guarantee consistency and availability
BASE properties come into play if availability and partition tolerance is
favored
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NoSQL: Concepts

ACID: Atomicity, Consistency, Isolation, Durability

Atomicity → all operations in the transaction will complete, or none will

Consistency → before and after transactions, database will be in a
consistent state

Isolation → operations cannot access data that is currently modified

Durability → data will not be lost upon completion of a transaction
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NoSQL: Concepts

BASE: Basically Available, Soft State, Eventual Consistency
Fox et al. [SOSP’1997]: Cluster-Based Scalable Network Services

Basically Available → an application works basically all the time (despite
partial failures)

Soft State → is in flux and non-deterministic (changes all the time)

Eventual Consistency → will be in some consistent state (at some time in
future)
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NoSQL: Techniques

Basic techniques (widely applied in NoSQL systems)

distributed data storage, replication (how to distribute the data which is
partition tolerant?) → Consistent hashing

eventual consistency → Vector clock

distributed query strategy (horizontal scalibility) → MapReduce
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NoSQL: Consistent Hashing

Consistent Hashing
Karger et al. [ACM STOC’1997], Consistent Hashing and Random Trees

Task

find machine that stores data for a specified key k

trivial hash function to distribute data on n nodes: h(k, n) = k mod n

if number of nodes changes (n ± 1), all data will have to be redistributed!

Challenge

minimize number of nodes to be copied after a configuration change

incorporate hardware characteristics into hashing model
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NoSQL: Consistent Hashing

Basic idea

arrange the nodes in a ring and
each node is in charge of the hash
values in the range between its
neighbor node

include hash values of all nodes in
hash structure

calculate hash value of the key to
be added/retrieved

choose node which occurs next
clockwise in the ring
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NoSQL: Consistent Hashing

include hash values of all nodes in
hash structure

calculate hash value of the key to
be added/retrieved

choose node which occurs next
clockwise in the ring

if node is dropped or gets lost,
missing data is redistributed to
adjacent nodes (replication issue)
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NoSQL: Consistent Hashing

if a new node is added, its hash
value is added to the hash table

the hash realm is repartitioned, and
hash data will be transferred to new
neighbor
→ no need to update remaining
nodes!
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NoSQL: Consistent Hashing

Consistent Hashing
Karger et al. [ACM STOC’1997], Consistent Hashing and Random Trees

a replication factor r is introduced: not only the next node but the next r
nodes in clockwise direction become responsible for a key

number of added keys can be made dependent on node characteristics
(bandwidth, CPU, ...)

nifty details are left to the implementation
(e.g.: DeCandia et al. [2007], Dynamo: Amazon’s Highly Available Key-value Store
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NoSQL: Logical time

Logical Clocks
Challenge

recognize order of distributed events and potential conflicts

most obvious approach: attach timestamp (ts) of system clock to each
event e → ts(e)

→ error-prone, as clocks will never be fully synchronized
→ insufficient, as we cannot catch causalities (needed to detect conflicts)
Clock Consistencies
strong consistency (causality): if ts(e1) < ts(e2), then e1→ e2
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NoSQL: Vector clock
[book] G. Coulouris et al. Distributed Systems: Concepts and Design, 5th Edition

A vector clock for a system of N nodes is an array of N integers.

Each process keeps its own vector clock, Vi , which it uses to timestamp
local events.

processes piggyback vector timestamps on the messages they send to one
another, and there are simple rules for updating the clocks:

VC1: Initially, Vi [j ] = 0, for i , j = 1, 2, . . .N
VC2: Just before pi timestamps an event, it sets Vi [i ] := Vi [i ] + 1
VC3: pi includes the value t = Vi in every message it sends
VC4: When pi receives a timestamp t in a message, it sets
Vi [j ] := max(Vi [j ], t[j ]), for j = 1, 2, . . . ,N
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NoSQL: Vector clock

VC1: Initially, Vi [j ] = 0, for i , j = 1, 2, . . .N

VC2: Just before pi timestamps an event, it sets Vi [i ] := Vi [i ] + 1

VC3: pi includes the value t = Vi in every message it sends

VC4: When pi receives a timestamp t in a message, it sets
Vi [j ] := max(Vi [j ], t[j ]), for j = 1, 2, . . . ,N
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NoSQL: Vector clock
Properties:

V = V ′ iff V [j ] = V ′[j ] for j = 1, 2, . . .N

V ≤ V ′ iff V [j ] ≤ V ′[j ] for j = 1, 2, . . .N

V < V ′ iff V ≤ V ′ and V 6= V ′

two events e and e′: that e → e′ ⇔ V (e) < V (e′)
→ Conflict detection!
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NoSQL: Techniques

MapReduce Framework Dean, Ghemawat [OSDI’2004]: MapReduce: Simplified Data

Processing on Large Clusters

developed by Google to replace old, centralized index structure

supports distributed, parallel computing on large data sets

inspired by (...not equal to...) the map and fold functions in functional

programming: no side effects, deadlocks, race conditions

divide-and-conquer paradigm: Map recursively breaks down a problem into
sub-problems and distributes it to worker nodes; Reduce receives and
combines the sub-answers to solve the problem
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NoSQL: Techniques

MapReduce: Functions
Input & Output: each a set of key/value pairs.
Programmer specifies two functions:

map(in key, in value) → list(out key, intermed value):
processes input key/value pair, produces set of intermediate pairs

reduce(out key, list(intermed value))→ list(out value):
combines all intermediate values for a particular key, produces a set of
merged output values (usually just one)

Fang Wei-Kleiner 27. November 2012 Page 28



Advanced databases and data models 2012 4. NoSQL 4.3. Techniques

NoSQL: MapReduce of Word Count
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NoSQL: MapReduce: Summary

programmer can focus on map/reduce code

framework cares about parallelization, fault tolerance, scheduling, ...

often based on a custom file system, which is optimized for distributed
access (Google: GFS, Hadoop: HDFS)

MapReduce framework can be written for different environments: shared
memory, distributed networks, ...

used in a wide range of scenarios: distributed search (grep), creation of
word indexes, sorting distributed data, count page links,...

Fang Wei-Kleiner 27. November 2012 Page 30



Advanced databases and data models 2012 4. NoSQL 4.4. Systems

NoSQL: Systems

Selected Categories
nosql-databases.org

Document Stores

Key-Value Stores

Column Stores

Graph Databases

Object Databases

→ no taxonomy exists that all parties agree upon
→ might look completely different some years later
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NoSQL: Key-value stores

also called: associative arrays, hash tables/maps

keys are unique, values may have arbitrary type

focus: high scalability (more important than consistency)

traditional solution: BerkeleyDB, started in 1986

revived by Amazon Dynamo in 2007 (proprietary)

recent solutions: Redis, Voldemort, Tokyo Cabinet, Memcached

→ (very) limited query facilities; usually get(key) and put(key, value)
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NoSQL: Key-value stores

Amazon Dynamo
DeCandia et al. [ACM SIGOPS’2007], Dynamo: Amazon’s Highly Available Key-value Store

most important requirement: reliability

runs tens of thousands of servers (mostly commodity hardware)

one of several databases used at Amazon → components fail continuously

use of relational databases would lead to inefficiencies and limit scale and
availability

Concepts

replication and partitioning via consistent hashing

consistency facilitated by object versioning, based on vector clocks
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NoSQL: Key-value stores

Amazon Dynamo
DeCandia et al. [ACM SIGOPS’2007], Dynamo: Amazon’s Highly Available Key-value Store

Arguments against RDBMS

complex querying and management functionality is not needed

systems with ACID properties have poor availability

Consequences

operations are limited to one key/value pair at a time: no cross-references,
no multiple updates, no isolation guarantees

services are only used internally by Amazon → no security layers needed

optimistic replication scheme (“always writable”)
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NoSQL: Key-value stores

Amazon Dynamo
DeCandia et al. [ACM SIGOPS’2007], Dynamo: Amazon’s Highly Available Key-value Store
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NoSQL: Key-value stores

Redis

in-memory database, sponsored by VMWare

written in ANSI C, bindings in numerous other languages

replication: master-slave; slaves can write and may have other slaves

persistence: snapshots (asynchronous transfer from main-memory to disk)

keys may be of other type than string: lists, (sorted) sets, hashes

databases supports high level operations: intersection, union, difference

performance: very fast, no notable difference between read and write

not suitable for querying data (limited to value retrievals)
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NoSQL: Key-value stores

Project Voldemort
project-voldemort.com/design.php

developed for LinkedIn network

database API: get(key), put(key, value), delete(key)

no filters, no joins, no key constraints, no triggers, ...

Reasoning

only efficient queries are supported, predictable performance

service-orientation often disallows foreign key constraints

data can be easily distributed
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NoSQL: BigTable

BigTable
Chang et al. [OSDI’2006], Bigtable: A Distributed Storage System for Structured Data

Motivation

scale of Google services is too large for RDBMSs

key/value model is too limiting to represent complex scenarios

Definition

“Sparse, distributed, persistent multidimensional sorted map.”

multidimensional: allows for nested data structures (a map of maps)

sortedness: helpful property in distributed environments

Fang Wei-Kleiner 27. November 2012 Page 38



Advanced databases and data models 2012 4. NoSQL 4.4. Systems

NoSQL: BigTable

BigTable
Chang et al. [OSDI’2006], Bigtable: A Distributed Storage System for Structured Data

Building Blocks

Google File System: raw storage (stores persistent data)

SSTable: file type, storing immutable, ordered key/value string pairs

MapReduce: simplifies large-scale data processing (used to read data)

Lock Service (Chubby): distributed lock manager (master election)

Scheduler: schedules jobs onto machines
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NoSQL: BigTable

BigTable: Google File System
Ghemawat et al. [SOSP’2003], The Google File System

provided as userspace library (not as kernel extension)

distributed file system, consisting of single master and numerous chunks

master nodes store all meta data (file name, size, ...) and reference chunks

shadow masters jump in if master fails (also provide read operations)

chunk nodes store file contents; files are split into 64 MB large chunks

main operations: read and append (rare overwritings or compressions)

chunks are replicated several times (min. 3 times) to avoid fallouts
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NoSQL: BigTable

BigTable
Chang et al. [OSDI’2006], Bigtable: A Distributed Storage System for Structured Data

Rows: row name is a reversed URL (why would you store a reversed URL?)

Columns: contents: page contents; anchor: links to stored web page

Timestamps: multiple versions per homepage
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NoSQL: BigTable

BigTable: Column Families
→ assembles columns of the same type
(e.g.: multiple anchors)
Rows

keys are arbitrary strings (up to
64KB, usually 10-100 bytes)

data is lexicographically ordered by
row keys

row range is dynamically partitioned
to tablets
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NoSQL: Hadoop

Hadoop
hadoop.apache.org

software framework for reliable, scalable, distributed computing

inspired by Google’s papers on MapReduce, BigTable, and GFS

deployed by large companies (e.g. Yahoo!, Facebook, Baidu, IBM)

Components

1 Hadoop Distributed File System (HDFS): counterpart of GFS

2 HBase: counterpart of BigTable

3 Job and Task Trackers: distribute MapReduce jobs received by clients

4 Hadoop Common: core routines, infrastructure
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NoSQL: Not only SQL

Conclusion

NoSQL solutions have become essential in distributed environment

RDBMS are still prevailing (often known as the only alternative)

Choosing a Database
Before you go for a database system/paradigm, clarify for yourself...

1 Which features are needed? Robust storage vs. realtime results vs. querying

2 What limits are most critical? Memory vs. performance vs. bandwidth

3 How large your data will get? Mega- vs. giga- vs. tera- vs. ...bytes
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