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NoSQL: Motivation 

30, 40 years history of well-established database 
technology, all in vain? Not at all! But both setups and 
demands have drastically changed: 
 

 main memory and CPU speed have exploded, compared to the 
time when System R (the mother of all RDBMS) was developed 

 at the same time, huge amounts of data are now handled in 
real-time 

 both data and use cases are getting more and more dynamic 
 social networks (relying on graph data) have gained impressive 

momentum 
 full-texts have always been treated shabbily by relational DBMS 



NoSQL: Facebook (Statistics) 
royal.pingdom.com/2010/06/18/the-software-behind-facebook 

 

 500 million users 

 570 billion page views per month 

 3 billion photos uploaded per month 

 1.2 million photos served per second 

 25 billion pieces of content (updates, comments) shared every month 

 50 million server-side operations per second 

 2008: 10,000 servers; 2009: 30,000, … 

☞ One RDBMS may not be enough to keep this going on! 



NoSQL: Facebook (Architechture) 

Memcached 
 distributed memory caching system 

 caching layer between web and database servers 

 based on a distributed hash table (DHT) 

 HipHop for PHP 
 developed by Facebook to improve scalability 

 compiles PHP to C++ code, which can be better optimized 

 PHP runtime system was re-implemented 



NoSQL: Facebook (Architechture) 

 Cassandra 
 developed by Facebook for inbox searching 

 data is automatically replicated to multiple nodes 

 no single point of failure (all nodes are equal) 

 Hadoop/Hive 
 implementation of Google's MapReduce framework 

 performs data-intensive calculations 

 (initially) used by Facebook for data analysis 



NoSQL: Facebook (Components) 

 Varnish 
 HTTP accelerator, speeds up dynamic web sites 

 Haystack 
 object store, used for storing and retrieving photos 

 BigPipe 
 web page serving system; serves parts of the page (chat, news 

feed, ...) 

 Scribe 
 aggregates log data from different servers 



NoSQL: Facebook 
hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-

hadoop.html 
  

 Architecture: Hadoop Cluster 
 21 PB in Data Warehouse cluster, spread across 2000 machines: 

 1200 machines with 8 cores, 800 machines with 16 cores 

 12 TB disk space per machine, 32 GB RAM per machine 

 15 map-reduce tasks per machine 

Workload 
 daily: 12 TB of compressed data, and 800 TB of scanned data 

 25,000 map-reduce jobs and 65 millions files in HDFS 



NoSQL: Facebook 
 
  

 Conclusion 
 classical database solutions have turned out to be completely 

insufficient 

 heterogeneous software architecture is needed to match all 
requirements 



NoSQL: Not only SQL 

 

 

 RDBMS are still a great solution for centralized, tabular data sets 

 NoSQL gets interesting if data is heterogeneous and/or too large 

 most NoSQL projects are open source and have open communities 

 code bases are up-to-date (no 30 years old, closed legacy code) 

 they are subject to rapid development and change 

 cannot offer general-purpose solutions yet, as claimed by RDBMS 



NoSQL: Not only SQL 
www.techrepublic.com/blog/10things/10-things-you-should-know-

about-nosql-databases/1772 
  

10 Things: Five Advantages 
 Elastic Scaling  scaling out: distributing data on commodity 

clusters instead of buying bigger servers 

 Big Data  opens new dimensions that cannot be handled with 
RDBMS 

 Goodbye DBAs (see you later?)  automatic repair, distribution, 
tuning, ... 

 Economics  based on cheap commodity servers and less costs 
per transaction/second 

 Flexible Data Models  non-existing/relaxed data schema, 
structural changes cause no overhead 



NoSQL: Not only SQL 
www.techrepublic.com/blog/10things/10-things-you-should-know-

about-nosql-databases/1772 
  

10 Things: Five Challenges 
 Maturity  still in pre-production phase, key features yet to be 

implemented 

 Support  mostly open source, start-ups, limited resources or 
credibility 

 Administration  require lot of skill to install and effort to maintain 

 Analytics and Business Intelligence  focused on web apps 
scenarios, limited ad-hoc querying 

 Expertise  few NoSQL experts available in the market 



NoSQL: Concepts 
nosql-database.org 

 NoSQL Definition: 
Next Generation Databases mostly addressing some of the 
points: being non-relational, distributed, open source 
and horizontally scalable. The original intention has been 
modern web-scale databases. The movement began early 
2009 and is growing rapidly. Often more characteristics 
apply as: schema-free, easy replication support, simple 
API, eventually consistent/BASE (not ACID), a huge 
data amount, and more. 

      - Stefan Edlich 



NoSQL: Concepts 

Scalability: system can handle growing amounts of data 
without losing performance. 

 Vertical Scalability (scale up) 
 add resources (more CPUs, more memory) to a single node 

 using more threads to handle a local problem 

 Horizontal Scalability (scale out) 
 add nodes (more computers, servers) to a distributed system 

 gets more and more popular due to low costs for commodity 
hardware 

 often surpasses scalability of vertical approach 



NoSQL: Concepts 

CAP Theorem: Consistency, Availability, Partition 
Tolerance 
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems 

Theorem  
(Gilbert, Lynch SIGACT'2002): 
only 2 of the 3 guarantees  
can be given in a shared-data  
system. 

 



NoSQL: Concepts 

CAP Theorem: Consistency, Availability, Partition 
Tolerance 
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems 

 Consistency 
 after an update, all readers in a distributed system see the same 

data 

 all nodes are supposed to contain the same data at all times 

 Example 
 single database instance will always be consistent 

 if multiple instances exist, all writes must be duplicated before write 
operation is completed 

 



NoSQL: Concepts 

CAP Theorem: Consistency, Availability, Partition 
Tolerance 
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems 

 Availability 
 all requests will be answered, regardless of crashes or downtimes 

 Example 
 a single instance has an availability of 100% or 0%, two servers 

may be available 100%, 50%, or 0% 



NoSQL: Concepts 

CAP Theorem: Consistency, Availability, Partition 
Tolerance 
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems 

 Partition Tolerance 
 system continues to operate, even if two sets of servers get 

isolated 

 Example 
 system gets partitioned if connection between server clusters fails 

 failed connection won't cause troubles if system is tolerant 



NoSQL: Concepts 

CAP Theorem: Consistency, Availability, Partition 
Tolerance 
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems 

 (Positive) consequence: we can  
concentrate on two challenges 

 ACID properties needed to  
guarantee consistency and  
availability 

 BASE properties come into play if  
availability and partition tolerance  
is favored 



NoSQL: Concepts 

ACID: Atomicity, Consistency, Isolation, Durability 
 Atomicity  all operations in the transaction will 

complete, or none will 

 Consistency  before and after transactions, database 
will be in a consistent state 

 Isolation  operations cannot access data that is 
currently modified 

 Durability  data will not be lost upon completion of a 
transaction 



NoSQL: Concepts 

BASE: Basically Available, Soft State, Eventual 
Consistency 
Fox et al. [SOSP'1997]: Cluster-Based Scalable Network 
Services 

 Basically Available  an application works basically all 
the time (despite partial failures) 

 Soft State  is in flux and non-deterministic (changes all 
the time) 

 Eventual Consistency  will be in some consistent state 
(at some time in future) 



NoSQL: Concepts 

CAP Theorem: Consistency, Availability, Partition 
Tolerance 
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems 

 (Positive) consequence: we can  
concentrate on two challenges 

 ACID properties needed to  
guarantee consistency and  
availability 

 BASE properties come into play if  
availability and partition tolerance  
is favored 



NoSQL: Techniques 

 

Basic techniques (widely applied in NoSQL systems) 

 distributed data storage, replication (how to distribute the 
data which is partition tolerant?)  Consistent hashing 

 distributed query strategy (horizontal scalability)  
MapReduce 

 eventual consistency  Vector clock 



NoSQL: Systems 

Selected Categories from nosql-databases.org 

 Key-Value Stores 

 Document Stores 

 (Wide) Column Stores 

 Graph Databases 

 Object Databases 

 no taxonomy exists that all parties agree upon 

 might look completely different some years later 



NoSQL: Systems 

 Key-Value Stores 
 simple common baseline: maps or dictionaries, storing keys and 

values 

 also called: associative arrays, hash tables/maps 

 keys are unique, values may have arbitrary type 

 focus: high scalability (more important than consistency) 

 traditional solution: BerkeleyDB, started in 1986 

 revived by Amazon Dynamo in 2007 (proprietary) 

 recent solutions: Redis, Voldemort, Tokyo Cabinet, Memcached 

 (very) limited query facilities; usually get(key) and put(key, 
value) 



NoSQL: Systems 

 Document Stores 
 basic entities (tuples) are documents 

 schema-less storage  

 document format depends on implementation: XML, JSON, YAML, 
binary data, … 

 more powerful than key/value stores: offers query and indexing 
facilities 

 first document store (commercial): LotusDB, developed in 1984 

 recent solutions: CouchDB and MongoDB (free), SimpleDB 
(commercial) 



NoSQL: Systems 

 (Wide) Column Stores 
 tight coupling of column data 

     But single tuples are spread across multiple files/pages 

 efficient for calculating aggregations, accessing single 
columns 

 space saving for dense or identical column data 

 Column Stores implementations: MonetDB, Sybase, Vertica 

Wide Column Stores implementations: BigTable, HBase, 
Cassandra 



NoSQL: Systems 

 Graph Databases 
 based on the property graph model 

 stored as directed adjacency lists 

 vertices: entities  

 edges: similar to relations in RDBMSs 

 majority of graph databases are schema free 

 prominent use cases: location-based services (LBS), social 
networks, shortest paths, … 

 examples: Neo4J, GraphDB, FlockDB, DEX, InfoGrid, 
OrientDB 



NoSQL: Systems 

 Object Databases 
 hot research topic in the 1990s 

 inspired by the success of object-oriented languages 

 requirement: make objects persistent with minimum effort 

 basic entities (tuples) are objects 

 early solutions: GemStone, Objectivity/DB, Versant, Caché 

 new impetus by Open Source movements (most popular: 
db4o) 

 standardization efforts: SQL:1999, ODMG, Native Queries, 
LINQ 

 query language: OQL (very similar to SQL) 



NoSQL: Not only SQL 

Conclusion 
 NoSQL solutions have become essential in distributed environment 

 RDBMS are still prevailing (often known as the only alternative) 

Choosing a Database 

Before you go for a database system/paradigm, clarify for 
yourself... 
1. Which features are needed? Robust storage vs. real-time results vs. 

querying 

2. What limits are most critical? Memory vs. performance vs. bandwidth 

3. How large your data will get? Mega- vs. giga- vs. tera- vs. ...bytes 
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Compute Nodes 

 

 Compute node – processor, main memory, cache and 
local disk. 

 Organized into racks. 

 Intra-rack connection typically gigabit speed. 

 Inter-rack connection slower by a small factor. 
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Distributed File System 

 Files are very large, read/append. 

 They are divided into chunks. 
 Typically 64MB to a chunk. 

 Chunks are replicated at several compute-nodes. 

 A master  (possibly replicated) keeps track of all locations 
of all chunks. 
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Racks of Compute Nodes 

File 

Chunks 
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3-way replication of 
files, with copies on 
different racks. 

Source: J. D. Ullman invited talk EDBT 2011 



Implementations 

 

 GFS  (Google File System – proprietary). 

 HDFS  (Hadoop Distributed File System – open source). 

 CloudStore  (Kosmix File System – open source). 
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The New Stack 
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Distributed File System 

Map-Reduce, e.g. 
Hadoop 

Object Store (key-value 
store), e.g., BigTable, 

Hbase, Cassandra 

SQL Implementations, 
e.g., PIG (relational 

algebra), HIVE 

Source: J. D. Ullman invited talk EDBT 2011 



MapReduce Overview 

 Sequentially read a lot of data  
Map: Extract something you care about  

 
 Group by key: Sort and Shuffle  

 
 Reduce: Aggregate, summarize, filter or transform  
Write the result  

 

Outline stays the same, map and reduce change to 
fit the problem  
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Map step 
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Reduce step 
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More specifically 

 Input: a set of key/value pairs  
 Programmer specifies two methods: 
 Map(k, v)  <k’,v’>*  
 Takes a key value pair and outputs a set of key value pairs 

(input: e.g., key is the filename, value is the text of the 
document;) 

 There is one Map call for every (k,v) pair  
 Reduce(k’, <v’>*)  <k’, v’’>*  
 All values v’ with same key k’ are reduced together and 

processed in v’ order  
 There is one Reduce function call per unique key k’  
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Word Count 

 

We have a huge text document  

 Count the number of times each distinct word appears in 
the file  

 
 Sample application: Analyze web server logs to find 

popular URLs  
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Word Count using MR 

map(key, value):  

// key: document name; value: text of the document  

   for each word w in value:  

      emit(w, 1)  

reduce(key, values):  

// key: a word; value: an iterator over counts  

   result = 0  

   for each count v in values:  

      result += v  

   emit(key, result)  

44 



Map-Reduce Pattern 
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Map 
tasks 

Reduce 
tasks 

Input 
from 
DFS 

Output 
to DFS 

“key”-value 
    pairs 



Map-Reduce environment 

 

Map-Reduce environment takes care of:  
 Partitioning the input data  

 Scheduling the program’s execution across a set of 
machines 

 Performing the group by key step 

 Handling machine failures  
Managing required inter-machine communication  
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MapReduce Implementation Details 

 The user program forks a Master controller process and 
some number of Worker processes at different compute 
nodes.  
 Normally, a Worker handles either Map tasks (a Map worker) or 

Reduce tasks (a Reduce worker), but not both. 

 The Master creates some number of Map tasks and some 
number of Reduce tasks 
 These numbers being selected by the user program.  

 These tasks will be assigned to Worker processes by the Master. 
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MapReduce Implementation Details 

 The Master keeps track of the status of each Map 
and Reduce task (idle, executing at a particular 
Worker, or completed).  

 A Worker process reports to the Master when it 
finishes a task, and a new task is scheduled by the 
Master for that Worker process. 
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MapReduce Implementation Details 

 Each Map task is assigned one or more chunks of the input file(s) and 
executes on it the code written by the user. 

 The Map task creates a file for each Reduce task on the local disk of 
the Worker that executes the Map task. 

 The Master is informed of the location and sizes of each of these files, 
and the Reduce task for which each is destined.  

 When a Reduce task is assigned by the Master to a Worker process, 
that task is given all the files that form its input. 

 The Reduce task executes code written by the user and writes its 
output to a file that is part of the surrounding distributed file system. 
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The user program forks a  
Master controller process and 
some number of Worker  
processes  
at different compute nodes.  
 

Normally, a Worker handles either 
Map tasks (a Map worker) or  
Reduce tasks (a Reduce worker),  
but not both. 
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The Master creates some number  
of Map tasks and some number of  
Reduce tasks. 
 

These numbers being 
selected by  
the user program.  
These tasks will be 
assigned to Worker 
processes by the Master. 
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The Master keeps track of the status  
of each Map and Reduce task  
(idle, executing at  
a particular Worker,  
or completed).  
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A Worker process reports  
to the Master when  
it finishes a task, and a new 
task is scheduled by the Master  
for that Worker process. 
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Each Map task is assigned one or  
more chunks of the input file(s)  
and executes on it the code written 
by the user. 

The Map task creates a file for  
each Reduce task on the local  
disk of the Worker that execute  
the  Map task. 
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The Master is informed of the  
location and sizes of each of these  
files, and the Reduce task for  
which each is destined.  
 
When a Reduce task is assigned  
by the Master to a Worker process,  
that task is given all the files that  
form its input. 
 

The Reduce task executes  
code written by the user  
and writes its output to a  
file that is part of the  
surrounding distributed file  
system. 
 



Coping With Failures 

 

Map worker failure  
 Map tasks completed or in-progress at worker are reset to idle  

 Reduce workers are notified when task is rescheduled on another 
worker  

 Reduce worker failure  
 Only in-progress tasks are reset to idle  

Master failure  
 MapReduce task is aborted and client is notified  
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Things Map-Reduce is Good At 

Matrix-Matrix and Matrix-vector multiplication. 
 One step of the PageRank iteration was the original 

application. 

 Relational algebra operations. 
 

Many other  parallel operations. 
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Matrix-Vector Multiplication 

 Suppose we have an n x n  matrix M , whose element in row i  and 
column j  will be denoted mij.  

 Suppose we also have a vector v  of length n , whose jth element is vj. 

 Then the matrix-vector product is the vector x  of length n, whose ith  
element xi  is given by 
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Matrix-Vector Multiplication 

 The matrix M  and the vector v  each will be stored in a file 
of the DFS. We assume that the row-column coordinates 
of each matrix element will be discoverable, either from its 
position in the file, or because it is stored with explicit 
coordinates, as a triple (i, j, mij).  

We also assume the position of element vj  in the vector v  
will be discoverable in the analogous way. 
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Matrix-Vector Multiplication 

 The Map Function:  
 Each Map task will take the entire vector  v and a chunk of the 

matrix M.  

 From each matrix element mij it produces the key-value pair (i, 
mijvj). Thus, all terms of the sum that make up the component xi of 
the matrix-vector product will get the same key. 

 

 The Reduce Function:  
 A Reduce task has simply to sum all the values associated with a 

given key i. The result will be a pair (i, xi). 
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Relational Algebra 

 Selection 

 Projection 

 Union, Intersection, Difference 

 Natural join 

 Grouping and Aggregation 

 

 A relation can be stored as a file in a distributed file 
system. The elements of this file are the tuples of the 
relation. 
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Union 

 Suppose relations R  and S  have the same schema.  

 The input for the Map tasks are chunks from either R or S. 

 The Map tasks don’t really do anything except pass their 
input tuples as key-value pairs to the Reduce tasks.  
 The latter need only eliminate duplicates. 

 The Map Function:  
 Turn each input tuple t  into a key-value pair (t, t). 

 The Reduce Function:  
 Associated with each key t  there will be either one or two values. 

Produce output (t, t) in either case. 
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Intersection 

 Suppose relations R  and S  have the same schema.  

 The input for the Map tasks are chunks from either R or S. 

 

 The Map Function:  
 Turn each input tuple t  into a key-value pair (t, t). 

 The Reduce Function:  
 If key t  has value list [t, t], then produce (t, t). Otherwise, produce 

(t, NULL). 
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Difference 

 Suppose relations R  and S  have the same schema.  

 The input for the Map tasks are chunks from either R or S. 

 The Map Function:  
 For a tuple t  in R , produce key-value pair (t, R), and for a tuple t  in 

S , produce key-value pair (t, S). Note that the intent is that the 
value is the name of R or S, not the entire relation. 

 The Reduce Function:  
 For each key t , do the following. 

 If the associated value list is [R], then produce (t, t). 
 If the associated value list is anything else, which could only be 

[R, S],[S,R], or [S], produce (t, NULL). 
65 



Natural join 

 Joining R (A,B) with S (B,C). 

 We must find tuples that agree on their B  components. 

 The Map Function:  
 For each tuple (a, b) of R, produce the key-value pair (b, (R, a)).  

 For each tuple (b, c) of S, produce the key-value pair (b, (S, c)). 

 The Reduce Function:  
 Each key value b will be associated with a list of pairs that are either of the 

form (R, a) or (S, c).  

 Construct all pairs consisting of one with first component R and the other 
with first component S, say (R, a) and (S, c). The output for key b is (b, 
[(a1, b, c1), (a2, b, c2), . . .]),  

 that is, b associated with the list of tuples that can be formed from an R-
tuple and an S-tuple with a common b value. 
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Grouping and Aggregation 

R(A,B,C) 

Select SUM(B) From R Group by A 
 

 The Map Function:  
  For each tuple (a, b, c) produce the key-value pair (a, b). 

 The Reduce Function:  
 Each key a represents a group. Apply SUM to the list [b1, b2, . . . , 

bn] of b-values associated with key a. The output is the pair (a, x), 
where x = b1  + b2  + . . .  + bn. 
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   Thank you! 
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