
TDDD43 HT2014:
Advanced databases and data models
Theme 4: NoSQL, Distributed File
System, Map-Reduce

Valentina Ivanova

ADIT, IDA, Linköping University

Slides based on slides by Fang Wei-Kleiner
DFS, Map-Reduce slides based on Material from Chapter 2 in Mining of
Massive Datasets Anand Rajaraman, Jeffrey David Ullman
http://infolab.stanford.edu/~ullman/mmds.html

http://infolab.stanford.edu/%7Eullman/mmds.html

Outline

NoSQL – Not only SQL
Motivation

Concepts

Techniques

Systems

Distributed File System, Map-Reduce

NoSQL: Motivation

30, 40 years history of well-established database
technology, all in vain? Not at all! But both setups and
demands have drastically changed:

 main memory and CPU speed have exploded, compared to the
time when System R (the mother of all RDBMS) was developed

 at the same time, huge amounts of data are now handled in
real-time

 both data and use cases are getting more and more dynamic
 social networks (relying on graph data) have gained impressive

momentum
 full-texts have always been treated shabbily by relational DBMS

NoSQL: Facebook (Statistics)
royal.pingdom.com/2010/06/18/the-software-behind-facebook

 500 million users

 570 billion page views per month

 3 billion photos uploaded per month

 1.2 million photos served per second

 25 billion pieces of content (updates, comments) shared every month

 50 million server-side operations per second

 2008: 10,000 servers; 2009: 30,000, …

☞ One RDBMS may not be enough to keep this going on!

NoSQL: Facebook (Architechture)

Memcached
 distributed memory caching system

 caching layer between web and database servers

 based on a distributed hash table (DHT)

 HipHop for PHP
 developed by Facebook to improve scalability

 compiles PHP to C++ code, which can be better optimized

 PHP runtime system was re-implemented

NoSQL: Facebook (Architechture)

 Cassandra
 developed by Facebook for inbox searching

 data is automatically replicated to multiple nodes

 no single point of failure (all nodes are equal)

 Hadoop/Hive
 implementation of Google's MapReduce framework

 performs data-intensive calculations

 (initially) used by Facebook for data analysis

NoSQL: Facebook (Components)

 Varnish
 HTTP accelerator, speeds up dynamic web sites

 Haystack
 object store, used for storing and retrieving photos

 BigPipe
 web page serving system; serves parts of the page (chat, news

feed, ...)

 Scribe
 aggregates log data from different servers

NoSQL: Facebook
hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-

hadoop.html

 Architecture: Hadoop Cluster
 21 PB in Data Warehouse cluster, spread across 2000 machines:

 1200 machines with 8 cores, 800 machines with 16 cores

 12 TB disk space per machine, 32 GB RAM per machine

 15 map-reduce tasks per machine

Workload
 daily: 12 TB of compressed data, and 800 TB of scanned data

 25,000 map-reduce jobs and 65 millions files in HDFS

NoSQL: Facebook

 Conclusion
 classical database solutions have turned out to be completely

insufficient

 heterogeneous software architecture is needed to match all
requirements

NoSQL: Not only SQL

 RDBMS are still a great solution for centralized, tabular data sets

 NoSQL gets interesting if data is heterogeneous and/or too large

 most NoSQL projects are open source and have open communities

 code bases are up-to-date (no 30 years old, closed legacy code)

 they are subject to rapid development and change

 cannot offer general-purpose solutions yet, as claimed by RDBMS

NoSQL: Not only SQL
www.techrepublic.com/blog/10things/10-things-you-should-know-

about-nosql-databases/1772

10 Things: Five Advantages
 Elastic Scaling  scaling out: distributing data on commodity

clusters instead of buying bigger servers

 Big Data  opens new dimensions that cannot be handled with
RDBMS

 Goodbye DBAs (see you later?)  automatic repair, distribution,
tuning, ...

 Economics  based on cheap commodity servers and less costs
per transaction/second

 Flexible Data Models  non-existing/relaxed data schema,
structural changes cause no overhead

NoSQL: Not only SQL
www.techrepublic.com/blog/10things/10-things-you-should-know-

about-nosql-databases/1772

10 Things: Five Challenges
 Maturity  still in pre-production phase, key features yet to be

implemented

 Support  mostly open source, start-ups, limited resources or
credibility

 Administration  require lot of skill to install and effort to maintain

 Analytics and Business Intelligence  focused on web apps
scenarios, limited ad-hoc querying

 Expertise  few NoSQL experts available in the market

NoSQL: Concepts
nosql-database.org

 NoSQL Definition:
Next Generation Databases mostly addressing some of the
points: being non-relational, distributed, open source
and horizontally scalable. The original intention has been
modern web-scale databases. The movement began early
2009 and is growing rapidly. Often more characteristics
apply as: schema-free, easy replication support, simple
API, eventually consistent/BASE (not ACID), a huge
data amount, and more.

 - Stefan Edlich

NoSQL: Concepts

Scalability: system can handle growing amounts of data
without losing performance.

 Vertical Scalability (scale up)
 add resources (more CPUs, more memory) to a single node

 using more threads to handle a local problem

 Horizontal Scalability (scale out)
 add nodes (more computers, servers) to a distributed system

 gets more and more popular due to low costs for commodity
hardware

 often surpasses scalability of vertical approach

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

Theorem
(Gilbert, Lynch SIGACT'2002):
only 2 of the 3 guarantees
can be given in a shared-data
system.

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

 Consistency
 after an update, all readers in a distributed system see the same

data

 all nodes are supposed to contain the same data at all times

 Example
 single database instance will always be consistent

 if multiple instances exist, all writes must be duplicated before write
operation is completed

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

 Availability
 all requests will be answered, regardless of crashes or downtimes

 Example
 a single instance has an availability of 100% or 0%, two servers

may be available 100%, 50%, or 0%

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

 Partition Tolerance
 system continues to operate, even if two sets of servers get

isolated

 Example
 system gets partitioned if connection between server clusters fails

 failed connection won't cause troubles if system is tolerant

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

 (Positive) consequence: we can
concentrate on two challenges

 ACID properties needed to
guarantee consistency and
availability

 BASE properties come into play if
availability and partition tolerance
is favored

NoSQL: Concepts

ACID: Atomicity, Consistency, Isolation, Durability
 Atomicity  all operations in the transaction will

complete, or none will

 Consistency  before and after transactions, database
will be in a consistent state

 Isolation  operations cannot access data that is
currently modified

 Durability  data will not be lost upon completion of a
transaction

NoSQL: Concepts

BASE: Basically Available, Soft State, Eventual
Consistency
Fox et al. [SOSP'1997]: Cluster-Based Scalable Network
Services

 Basically Available  an application works basically all
the time (despite partial failures)

 Soft State  is in flux and non-deterministic (changes all
the time)

 Eventual Consistency  will be in some consistent state
(at some time in future)

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance
Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

 (Positive) consequence: we can
concentrate on two challenges

 ACID properties needed to
guarantee consistency and
availability

 BASE properties come into play if
availability and partition tolerance
is favored

NoSQL: Techniques

Basic techniques (widely applied in NoSQL systems)

 distributed data storage, replication (how to distribute the
data which is partition tolerant?)  Consistent hashing

 distributed query strategy (horizontal scalability) 
MapReduce

 eventual consistency  Vector clock

NoSQL: Systems

Selected Categories from nosql-databases.org

 Key-Value Stores

 Document Stores

 (Wide) Column Stores

 Graph Databases

 Object Databases

 no taxonomy exists that all parties agree upon

 might look completely different some years later

NoSQL: Systems

 Key-Value Stores
 simple common baseline: maps or dictionaries, storing keys and

values

 also called: associative arrays, hash tables/maps

 keys are unique, values may have arbitrary type

 focus: high scalability (more important than consistency)

 traditional solution: BerkeleyDB, started in 1986

 revived by Amazon Dynamo in 2007 (proprietary)

 recent solutions: Redis, Voldemort, Tokyo Cabinet, Memcached

 (very) limited query facilities; usually get(key) and put(key,
value)

NoSQL: Systems

 Document Stores
 basic entities (tuples) are documents

 schema-less storage

 document format depends on implementation: XML, JSON, YAML,
binary data, …

 more powerful than key/value stores: offers query and indexing
facilities

 first document store (commercial): LotusDB, developed in 1984

 recent solutions: CouchDB and MongoDB (free), SimpleDB
(commercial)

NoSQL: Systems

 (Wide) Column Stores
 tight coupling of column data

  But single tuples are spread across multiple files/pages

 efficient for calculating aggregations, accessing single
columns

 space saving for dense or identical column data

 Column Stores implementations: MonetDB, Sybase, Vertica

Wide Column Stores implementations: BigTable, HBase,
Cassandra

NoSQL: Systems

 Graph Databases
 based on the property graph model

 stored as directed adjacency lists

 vertices: entities

 edges: similar to relations in RDBMSs

 majority of graph databases are schema free

 prominent use cases: location-based services (LBS), social
networks, shortest paths, …

 examples: Neo4J, GraphDB, FlockDB, DEX, InfoGrid,
OrientDB

NoSQL: Systems

 Object Databases
 hot research topic in the 1990s

 inspired by the success of object-oriented languages

 requirement: make objects persistent with minimum effort

 basic entities (tuples) are objects

 early solutions: GemStone, Objectivity/DB, Versant, Caché

 new impetus by Open Source movements (most popular:
db4o)

 standardization efforts: SQL:1999, ODMG, Native Queries,
LINQ

 query language: OQL (very similar to SQL)

NoSQL: Not only SQL

Conclusion
 NoSQL solutions have become essential in distributed environment

 RDBMS are still prevailing (often known as the only alternative)

Choosing a Database

Before you go for a database system/paradigm, clarify for
yourself...
1. Which features are needed? Robust storage vs. real-time results vs.

querying

2. What limits are most critical? Memory vs. performance vs. bandwidth

3. How large your data will get? Mega- vs. giga- vs. tera- vs. ...bytes

References
 http://www.inf.uni-konstanz.de/dbis/teaching/ss11/advanced-database-

technologies/

 Brewer [ACM PODC'2000]: Towards Robust Distributed Systems -
https://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

 CAP Twelve Years Later: How the "Rules" Have Changed -
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

 Lynch, Seth [ACM SIGACT'2002]: Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services

 Fox et al. [SOSP'1997]: Cluster-Based Scalable Network Services

 Dean, Ghemawat [OSDI'2004]: MapReduce: Simplified Data Processing on Large
Clusters

 Karger et al. [ACM STOC'1997], Consistent Hashing and Random Trees

 G. Coulouris et al. Distributed Systems: Concepts and Design, 5th Edition

 DeCandia et al. [ACM SIGOPS'2007], Dynamo: Amazon's Highly Available Key-
value Store

 Chang et al. [OSDI'2006], Bigtable: A Distributed Storage System for Structured
Data

 Ghemawat et al. [SOSP'2003], The Google File System

Outline

NoSQL – Not only SQL
Motivation

Concepts

Techniques

Systems

Distributed File System, Map-Reduce

Compute Nodes

 Compute node – processor, main memory, cache and
local disk.

 Organized into racks.

 Intra-rack connection typically gigabit speed.

 Inter-rack connection slower by a small factor.

33

Distributed File System

 Files are very large, read/append.

 They are divided into chunks.
 Typically 64MB to a chunk.

 Chunks are replicated at several compute-nodes.

 A master (possibly replicated) keeps track of all locations
of all chunks.

34

35

Racks of Compute Nodes

File

Chunks

36

3-way replication of
files, with copies on
different racks.

Source: J. D. Ullman invited talk EDBT 2011

Implementations

 GFS (Google File System – proprietary).

 HDFS (Hadoop Distributed File System – open source).

 CloudStore (Kosmix File System – open source).

37

The New Stack

38

Distributed File System

Map-Reduce, e.g.
Hadoop

Object Store (key-value
store), e.g., BigTable,

Hbase, Cassandra

SQL Implementations,
e.g., PIG (relational

algebra), HIVE

Source: J. D. Ullman invited talk EDBT 2011

MapReduce Overview

 Sequentially read a lot of data
Map: Extract something you care about

 Group by key: Sort and Shuffle

 Reduce: Aggregate, summarize, filter or transform
Write the result

Outline stays the same, map and reduce change to
fit the problem

39

Map step

40

Reduce step

41

More specifically

 Input: a set of key/value pairs
 Programmer specifies two methods:
 Map(k, v)  <k’,v’>*
 Takes a key value pair and outputs a set of key value pairs

(input: e.g., key is the filename, value is the text of the
document;)

 There is one Map call for every (k,v) pair
 Reduce(k’, <v’>*)  <k’, v’’>*
 All values v’ with same key k’ are reduced together and

processed in v’ order
 There is one Reduce function call per unique key k’

42

Word Count

We have a huge text document

 Count the number of times each distinct word appears in
the file

 Sample application: Analyze web server logs to find

popular URLs

43

Word Count using MR

map(key, value):

// key: document name; value: text of the document

 for each word w in value:

 emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over counts

 result = 0

 for each count v in values:

 result += v

 emit(key, result)

44

Map-Reduce Pattern

45

Map
tasks

Reduce
tasks

Input
from
DFS

Output
to DFS

“key”-value
 pairs

Map-Reduce environment

Map-Reduce environment takes care of:
 Partitioning the input data

 Scheduling the program’s execution across a set of
machines

 Performing the group by key step

 Handling machine failures
Managing required inter-machine communication

46

MapReduce Implementation Details

 The user program forks a Master controller process and
some number of Worker processes at different compute
nodes.
 Normally, a Worker handles either Map tasks (a Map worker) or

Reduce tasks (a Reduce worker), but not both.

 The Master creates some number of Map tasks and some
number of Reduce tasks
 These numbers being selected by the user program.

 These tasks will be assigned to Worker processes by the Master.

47

MapReduce Implementation Details

 The Master keeps track of the status of each Map
and Reduce task (idle, executing at a particular
Worker, or completed).

 A Worker process reports to the Master when it
finishes a task, and a new task is scheduled by the
Master for that Worker process.

48

MapReduce Implementation Details

 Each Map task is assigned one or more chunks of the input file(s) and
executes on it the code written by the user.

 The Map task creates a file for each Reduce task on the local disk of
the Worker that executes the Map task.

 The Master is informed of the location and sizes of each of these files,
and the Reduce task for which each is destined.

 When a Reduce task is assigned by the Master to a Worker process,
that task is given all the files that form its input.

 The Reduce task executes code written by the user and writes its
output to a file that is part of the surrounding distributed file system.

49

50

51

The user program forks a
Master controller process and
some number of Worker
processes
at different compute nodes.

Normally, a Worker handles either
Map tasks (a Map worker) or
Reduce tasks (a Reduce worker),
but not both.

52

The Master creates some number
of Map tasks and some number of
Reduce tasks.

These numbers being
selected by
the user program.
These tasks will be
assigned to Worker
processes by the Master.

53

The Master keeps track of the status
of each Map and Reduce task
(idle, executing at
a particular Worker,
or completed).

54

A Worker process reports
to the Master when
it finishes a task, and a new
task is scheduled by the Master
for that Worker process.

55

Each Map task is assigned one or
more chunks of the input file(s)
and executes on it the code written
by the user.

The Map task creates a file for
each Reduce task on the local
disk of the Worker that execute
the Map task.

56

The Master is informed of the
location and sizes of each of these
files, and the Reduce task for
which each is destined.

When a Reduce task is assigned
by the Master to a Worker process,
that task is given all the files that
form its input.

The Reduce task executes
code written by the user
and writes its output to a
file that is part of the
surrounding distributed file
system.

Coping With Failures

Map worker failure
 Map tasks completed or in-progress at worker are reset to idle

 Reduce workers are notified when task is rescheduled on another
worker

 Reduce worker failure
 Only in-progress tasks are reset to idle

Master failure
 MapReduce task is aborted and client is notified

57

Things Map-Reduce is Good At

Matrix-Matrix and Matrix-vector multiplication.
 One step of the PageRank iteration was the original

application.

 Relational algebra operations.

Many other parallel operations.

58

Matrix-Vector Multiplication

 Suppose we have an n x n matrix M , whose element in row i and
column j will be denoted mij.

 Suppose we also have a vector v of length n , whose jth element is vj.

 Then the matrix-vector product is the vector x of length n, whose ith
element xi is given by

59

Matrix-Vector Multiplication

 The matrix M and the vector v each will be stored in a file
of the DFS. We assume that the row-column coordinates
of each matrix element will be discoverable, either from its
position in the file, or because it is stored with explicit
coordinates, as a triple (i, j, mij).

We also assume the position of element vj in the vector v
will be discoverable in the analogous way.

60

Matrix-Vector Multiplication

 The Map Function:
 Each Map task will take the entire vector v and a chunk of the

matrix M.

 From each matrix element mij it produces the key-value pair (i,
mijvj). Thus, all terms of the sum that make up the component xi of
the matrix-vector product will get the same key.

 The Reduce Function:
 A Reduce task has simply to sum all the values associated with a

given key i. The result will be a pair (i, xi).

61

Relational Algebra

 Selection

 Projection

 Union, Intersection, Difference

 Natural join

 Grouping and Aggregation

 A relation can be stored as a file in a distributed file
system. The elements of this file are the tuples of the
relation.

62

Union

 Suppose relations R and S have the same schema.

 The input for the Map tasks are chunks from either R or S.

 The Map tasks don’t really do anything except pass their
input tuples as key-value pairs to the Reduce tasks.
 The latter need only eliminate duplicates.

 The Map Function:
 Turn each input tuple t into a key-value pair (t, t).

 The Reduce Function:
 Associated with each key t there will be either one or two values.

Produce output (t, t) in either case.

63

Intersection

 Suppose relations R and S have the same schema.

 The input for the Map tasks are chunks from either R or S.

 The Map Function:
 Turn each input tuple t into a key-value pair (t, t).

 The Reduce Function:
 If key t has value list [t, t], then produce (t, t). Otherwise, produce

(t, NULL).

64

Difference

 Suppose relations R and S have the same schema.

 The input for the Map tasks are chunks from either R or S.

 The Map Function:
 For a tuple t in R , produce key-value pair (t, R), and for a tuple t in

S , produce key-value pair (t, S). Note that the intent is that the
value is the name of R or S, not the entire relation.

 The Reduce Function:
 For each key t , do the following.

 If the associated value list is [R], then produce (t, t).
 If the associated value list is anything else, which could only be

[R, S],[S,R], or [S], produce (t, NULL).
65

Natural join

 Joining R (A,B) with S (B,C).

 We must find tuples that agree on their B components.

 The Map Function:
 For each tuple (a, b) of R, produce the key-value pair (b, (R, a)).

 For each tuple (b, c) of S, produce the key-value pair (b, (S, c)).

 The Reduce Function:
 Each key value b will be associated with a list of pairs that are either of the

form (R, a) or (S, c).

 Construct all pairs consisting of one with first component R and the other
with first component S, say (R, a) and (S, c). The output for key b is (b,
[(a1, b, c1), (a2, b, c2), . . .]),

 that is, b associated with the list of tuples that can be formed from an R-
tuple and an S-tuple with a common b value.

66

Grouping and Aggregation

R(A,B,C)

Select SUM(B) From R Group by A

 The Map Function:
 For each tuple (a, b, c) produce the key-value pair (a, b).

 The Reduce Function:
 Each key a represents a group. Apply SUM to the list [b1, b2, . . . ,

bn] of b-values associated with key a. The output is the pair (a, x),
where x = b1 + b2 + . . . + bn.

67

 Thank you!

68

	TDDD43 HT2014: �Advanced databases and data models�Theme 4: NoSQL, Distributed File System, Map-Reduce
	Outline
	NoSQL: Motivation
	NoSQL: Facebook (Statistics)�royal.pingdom.com/2010/06/18/the-software-behind-facebook
	NoSQL: Facebook (Architechture)
	NoSQL: Facebook (Architechture)
	NoSQL: Facebook (Components)
	NoSQL: Facebook�hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html�
	NoSQL: Facebook��
	NoSQL: Not only SQL
	NoSQL: Not only SQL�www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772�
	NoSQL: Not only SQL�www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772�
	NoSQL: Concepts�nosql-database.org�
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Concepts
	NoSQL: Techniques
	NoSQL: Systems
	NoSQL: Systems
	NoSQL: Systems
	NoSQL: Systems
	NoSQL: Systems
	NoSQL: Systems
	NoSQL: Not only SQL
	References
	Outline
	Compute Nodes
	Distributed File System
	Slide Number 35
	Slide Number 36
	Implementations
	The New Stack
	MapReduce Overview
	Map step
	Reduce step
	More specifically
	Word Count
	Word Count using MR
	Map-Reduce Pattern
	Map-Reduce environment
	MapReduce Implementation Details
	MapReduce Implementation Details
	MapReduce Implementation Details
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Coping With Failures
	Things Map-Reduce is Good At
	Matrix-Vector Multiplication
	Matrix-Vector Multiplication
	Matrix-Vector Multiplication
	Relational Algebra
	Union
	Intersection
	Difference
	Natural join
	Grouping and Aggregation
	Slide Number 68

