TDDD43 HT2015:
Advanced databases and data models
Theme 4: NoSQL, Distributed File

System, Map-Reduce

Valentina Ivanova
ADIT, IDA, Link6ping University

Slides based on slides by Fang Wei-Kleiner

DFS, Map-Reduce slides based on Material from Chapter 2 in Mining of
Massive Datasets Anand Rajaraman, Jeffrey David Uliman

Linképing University

http://www.mmds.org/

Outline

INoSQL — Not only SQL
] Motivation
1 Concepts
] Techniques
] Systems

I Distributed File System
I Map-Reduce

Linképing University

NoSQL: Motivation

30, 40 years history of well-established database
technology, all in vain? Not at all! But both setups and
demands have drastically changed:

-] main memory and CPU speed have exploded, compared to the
time when System R (the mother of all RDBMS) was developed

]l at the same time, huge amounts of data are now handled In
real-time

] both data and use cases are getting more and more dynamic

 social networks (relying on graph data) have gained impressive
momentum

 full-texts have always been treated shabbily by relational DBMS

Linképing University

NoSQL: Facebook (Statistics)
royal.pingdom.com/2010/06/18/the-software-behind-facebook

500 million users

570 billion page views per month

3 billion photos uploaded per month

1.2 million photos served per second

25 billion pieces of content (updates, comments) shared every month
50 million server-side operations per second

2008: 10,000 servers; 2009: 30,000, ...

= One RDBMS may not be enough to keep this going on!

O 00000 D0

Linképing University

NoSQL: Facebook (Architechture)

J Memcached

] distributed memory caching system
[caching layer between web and database servers
] based on a distributed hash table (DHT)

- HipHop for PHP

] developed by Facebook to improve scalability
1 compiles PHP to C++ code, which can be better optimized

- PHP runtime system was re-implemented

Linképing University

NoSQL: Facebook (Architechture)

] Cassandra

] developed by Facebook for inbox searching
] data is automatically replicated to multiple nodes
J no single point of failure (all nodes are equal)

1 Hadoop/Hive

- implementation of Google's MapReduce framework
J performs data-intensive calculations

1 (initially) used by Facebook for data analysis

Linképing University

NoSQL: Facebook (Components)

] Varnish

J HTTP accelerator, speeds up dynamic web sites

J Haystack

] object store, used for storing and retrieving photos
1 BigPipe

1 web page serving system; serves parts of the page (chat, news
feed, ...)

] Scribe

] aggregates log data from different servers

Linképing University

NoSQL: Facebook

hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-
hadoop.html

1 Architecture: Hadoop Cluster

1 21 PB in Data Warehouse cluster, spread across 2000 machines:

J 1200 machines with 8 cores, 800 machines with 16 cores

] 12 TB disk space per machine, 32 GB RAM per machine
- 15 map-reduce tasks per machine

] Workload

) daily: 12 TB of compressed data added, 800 TB of compressed
data scanned, and 25 000 map-reduce jobs

J 65 millions files in HDFS

Linképing University

NoSQL: Facebook

] Conclusion

) classical database solutions have turned out to be completely
Insufficient

1 heterogeneous software architecture is needed to match all
requirements

Linképing University

NoSQL: Not only SQL

1 RDBMS are still a great solution for centralized, tabular data sets

1 NoSQL gets interesting if data is heterogeneous and/or too large

1 most NoSQL projects are open source and have open communities
] code bases are up-to-date (no 30 years old, closed legacy code)

] they are subject to rapid development and change

] cannot offer general-purpose solutions yet, as claimed by RDBMS

Linképing University

NoSQL: Not only SQL

www.techrepublic.com/blog/10things/10-things-you-should-know-
about-nosqgl-databases/1772

10 Things: Five Advantages

- Elastic Scaling = scaling out: distributing data on commodity
clusters instead of buying bigger servers

1 Economics - based on cheap commodity servers and less costs
per transaction/second

1 Big Data - opens new dimensions that cannot be handled with
RDBMS

] Goodbye DBAs (see you later?) - automatic repair, distribution,
tuning, ...

] Flexible Data Models = non-existing/relaxed data schema,
structural changes cause no overhead
Linképing University

NoSQL: Not only SQL
www.techrepublic.com/blog/10things/10-things-you-should-know-
about-nosqgl-databases/1772

10 Things: Five Challenges

1 Maturity = still in pre-production phase, key features yet to be
Implemented

1 Expertise - few NoSQL experts available in the market

J Analytics and Business Intelligence - focused on web apps
scenarios, limited ad-hoc querying

] Support = mostly open source, start-ups, limited resources or
credibility

1 Administration - require lot of skill to install and effort to maintain

Linképing University

Outline

INoSQL — Not only SQL
] Motivation
1 Concepts
] Techniques
] Systems

I Distributed File System
I Map-Reduce

Linképing University

NoSQL: Concepts

nosqgl-database.org

NoSQL Definition:

Next Generation Databases mostly addressing some of the
points: being non-relational, distributed, open source
and horizontally scalable. The original intention has been
modern web-scale databases. The movement began early
2009 and is growing rapidly. Often more characteristics
apply as: schema-free, easy replication support, simple
API, eventually consistent/BASE (not ACID), a huge
data amount, and more.

- Stefan Edlich

Linképing University

NoSQL: Concepts

Scalability: system can handle growing amounts of data
without losing performance.

] Vertical Scalability (scale up)

] add resources (more CPUs, more memory) to a single node
] using more threads to handle a local problem

J Horizontal Scalability (scale out)

J add nodes (more computers, servers) to a distributed system

] gets more and more popular due to low costs for commodity
hardware

] often surpasses scalability of vertical approach

Linképing University

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

Theorem
(Gilbert, Lynch SIGACT'2002):
only 2 of the 3 guarantees

can be given in a shared-data Consistency
system. RDBME._._
Availability ~Fartiion

N

Key-value stores

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems
] Consistency

1 after an update, all readers in a distributed system see the same
data

) all nodes are supposed to contain the same data at all times
- Example

] single database instance will always be consistent

) if multiple instances exist, all writes must be duplicated before write
operation is completed

Linképing University

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems
1 Availability

1 all requests will be answered, regardless of crashes or downtimes
- Example

] a single instance has an availability of 100% or 0%, two servers
may be available 100%, 50%, or 0%

Linképing University

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems
1 Partition Tolerance

] system continues to operate, even if two sets of servers get
Isolated

- Example

] system gets partitioned if connection between server clusters fails

] failed connection won't cause troubles if system is tolerant

Linképing University

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

) (Positive) consequence: we can
concentrate on two challenges

1 ACID properties needed to
guarantee consistency and Consistency

o RDBMS
availability —

1 BASE properties come into play if

availability and partition tolerance Availability
is favored X

Partition
tolerance

Key-value stores

NoSQL: Concepts

ACID: Atomicity, Consistency, Isolation, Durability

1 Atomicity - all operations in the transaction will
complete, or none will

J Consistency - before and after the transaction, the
database will be in a consistent state

] Isolation = operations cannot access data that is
currently modified

 Durability - data will not be lost upon completion of a
transaction

Linképing University

NoSQL: Concepts

BASE: Basically Available, Soft State, Eventual
Consistency

Fox et al. [SOSP'1997]: Cluster—-Based Scalable Network
Services

1 Basically Available - an application works basically all
the time (despite partial failures)

] Soft State -2 is In flux and non-deterministic (changes all
the time)

1 Eventual Consistency - will be in some consistent state
(at some time in future)

Linképing University

NoSQL: Concepts

CAP Theorem: Consistency, Availability, Partition
Tolerance

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems

) (Positive) consequence: we can
concentrate on two challenges

1 ACID properties needed to
guarantee consistency and Consistency

o RDBMS
availability —

1 BASE properties come into play if

availability and partition tolerance Availability
is favored X

Partition
tolerance

Key-value stores

Outline

INoSQL — Not only SQL
] Motivation
1 Concepts
 Techniques
] Systems

I Distributed File System
I Map-Reduce

Linképing University

NoSQL: Techniques

Basic techniques (widely applied in NoSQL systems)

1 distributed data storage, replication (how to distribute the
data which is partition tolerant?) -> Consistent hashing

1 distributed query strategy (horizontal scalability) -
MapReduce

] recognize order of distributed events and potential
conflicts = Vector clock

Linképing University

NoSQL: Techniques — Consistent Hashing

Karger et al. [ACM STOC'1997], Consistent Hashing and Random
Trees

Task

- find machine that stores data for a specified key k
) trivial hash function to distribute data on n nodes: h(k; n) = k mod n
1 if number of nodes changes, all data will have to be redistributed!

Challenge

] minimize number of nodes to be copied after a configuration change

1 incorporate hardware characteristics into hashing model

Linképing University

NoSQL: Techniqgues — Consistent Hashing

Basic idea

] arrange the nodes in a ring and
each node is in charge of the hash
values in the range between its
neighbor node

] Iinclude hash values of all nodes in
hash structure

- calculate hash value of the key to
be added/retrieved

J choose node which occurs next
clockwise in the ring

Linképing University

NoSQL: Techniques — Consistent Hashing

1 A

J Include hash values of all nodes in
hash structure

) calculate hash value of the key to
be added/retrieved

J choose node which occurs next e
clockwise in the ring

) if node is dropped or gets lost,
missing data is redistributed to
adjacent nodes (replication issue)

L+

NoSQL: Techniqgues — Consistent Hashing

1 A

J if a new node is added, its hash
value is added to the hash table

) the hash realm is repartitioned, and
hash data will be transferred to new
neighbor

— no need to update remaining
nodes!

NoSQL: Techniques — Consistent Hashing

Karger et al. [ACM STOC'1997], Consistent Hashing and Random

Trees

1 a replication factor r is introduced: not only the next node
but the next r nodes in clockwise direction become
responsible for a key

J number of added keys can be made dependent on node
characteristics (bandwidth, CPU, ...)

1 nifty details are left to the implementation

e.g.: DeCandia et al. [2007], Dynamo: Amazon's Highly
Available Key-value Store

Linképing University

NoSQL: Techniqgues — Logical Time

Challenge

) recognize order of distributed events and potential conflicts

] most obvious approach: attach timestamp (ts) of system clock to each
event e — ts(e)

— error-prone, as clocks will never be fully synchronized

— insufficient, as we cannot catch causalities (needed to detect conflicts)

Linképing University

NoSQL: Techniques — Vector Clock

[book] G. Coulouris et al. Distributed Systems: Concepts and
Design, 5th Edition

1 A vector clock for a system of N nodes is an array of N integers.

J Each process keeps its own vector clock, V; , which it uses to timestamp
local events.

] processes piggyback vector timestamps on the messages they send to one
another, and there are simple rules for updating the clocks:

d VCL1: Initially, V;[j] =0, fori,j=1,2,...N
VC2: Just before p; timestamps an event, it sets V, [i] .=V, [i] + 1

VC3: p; includes the value t = V, in every message it sends

U 0O O

VC4: When p, receives a timestamp t in a message, it sets
V, [j] := max(V; [j]; t[]), forj=1,2, ... N

Linképing University

NoSQL: Techniques — Vector Clock

J VC1: Initially, V; [j] =0, fori,j=1,2, ... N
J VC2: Just before p, timestamps an event, it sets V, [i] :=V, [i] + 1
J VC3: p; includes the value t =V, in every message it sends
J VC4: When p, receives a timestamp t in a message, it sets
V. [J] .= max(V;[j]; t[j]), forj=1,2, ... N

(1,0,0) (2,0,0)

P < il
a b I
(2,1,0) (2,2,0) . Physical
» : e time
I
(0,0,1) (2,2,2)
S ® "

e f ersity

NoSQL: Techniques — Vector Clock

Properties:

dv=Vv iff V[jJ=VT]] forj=1,2,...N

dvsV iff V[j]=sVTj] forj=1,2,...N

dv<Vv iff VsVandV #V

two events e and e': thate — €' «— V(e) < V(e')

— Conflict detection! (c Il e since neither V(c) < V(e) nor V(e) < V(c))
(1,0,0) (2,0,0)

P < il
a b I
(2,1,0) (2,2,0) . Physical
» : 7 time
I
(0,0,1) (2,2,2)
D @ "

e f ersity

Outline

INoSQL — Not only SQL
] Motivation
1 Concepts
] Techniques
1 Systems

I Distributed File System
I Map-Reduce

Linképing University

NoSQL: Systems

Selected Categories from nosgl-databases.org
] Key-Value Stores

1 Document Stores

J (Wide) Column Stores

] Graph Databases

] Object Databases

-> no taxonomy exists that all parties agree upon

- might look completely different some years later

Linképing University

NoSQL: Systems

] Key-Value Stores

] simple common baseline: maps or dictionaries, storing keys and
values

] also called: associative arrays, hash tables/maps

] keys are unique, values may have arbitrary type

J focus: high scalability (more important than consistency)

] traditional solution: BerkeleyDB, started in 1986

- revived by Amazon Dynamo in 2007 (proprietary)

] recent solutions: Redis, Voldemort, Tokyo Cabinet, Memcached
- (very) limited query facilities; usually get(key) and put(key,
value)

Linképing University

NoSQL: Systems

J Document Stores

] basic entities (tuples) are documents
J schema-less storage

] document format depends on implementation: XML, JSON, YAML,
binary data, ...

- more powerful than key/value stores: offers query and indexing
facilities

) first document store (commercial): LotusDB, developed in 1984

) recent solutions: CouchDB and MongoDB (free), SimpleDB
(commercial)

Linképing University

NoSQL: Systems

- (Wide) Column Stores
] tight coupling of column data
—> But single tuples are spread across multiple files/pages
- schema-less storage

1 efficient for calculating aggregations, accessing single
columns

] space saving for dense or identical column data
- Column Stores implementations: MonetDB, Sybase, Vertica

] Wide Column Stores implementations: BigTable, HBase,
Cassandra

Linképing University

NoSQL: Systems

] Graph Databases
] based on the property graph model
] stored as directed adjacency lists
] vertices: entities
] edges: similar to relations in RDBMSs
1 majority of graph databases are schema free

] prominent use cases: location-based services (LBS), social
networks, shortest paths, ...

1 examples: Neo4J, GraphDB, FlockDB, DEX, InfoGrid,
OrientDB

Linképing University

NoSQL: Systems

] Object Databases
] hot research topic in the 1990s
-l inspired by the success of object-oriented languages
[requirement: make objects persistent with minimum effort
] basic entities (tuples) are objects
] early solutions: GemStone, Obijectivity/DB, Versant, Caché
- new impetus by Open Source movements (db40)

) standardization efforts: SQL:1999, ODMG, Native Queries,
LINQ

 query language: OQL (very similar to SQL)

Linképing University

NoSQL: Not only SQL

Conclusion
J NoSQL solutions have become essential in distributed environment

1 RDBMS are still widespread and often are the only alternative

Choosing a Database

Before you go for a database system/paradigm, clarify for
yourself...

1. Which features are needed? Robust storage vs. real-time results vs.
qguerying
2. What limits are most critical? Memory vs. performance vs. bandwidth

3. How large your data will get? Mega- vs. giga- vs. tera- vs. ...bytes

Linképing University

[

I

References

http://www.inf.uni-konstanz.de/dbis/teaching/ss11/advanced-database-
technologies/

Brewer [ACM PODC'2000]: Towards Robust Distributed Systems -
https://lwww.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

CAP Twelve Years Later: How the "Rules" Have Changed -
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Lynch, Seth [ACM SIGACT'2002]: Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services

Fox et al. [SOSP'1997]: Cluster-Based Scalable Network Services

Dean, Ghemawat [OSDI'2004]: MapReduce: Simplified Data Processing on Large
Clusters

Karger et al. [ACM STOC'1997], Consistent Hashing and Random Trees
G. Coulouris et al. Distributed Systems: Concepts and Design, 5th Edition

DeCandia et al. [ACM SIGOPS'2007], Dynamo: Amazon's Highly Available Key-
value Store

Chang et al. [OSDI'2006], Bigtable: A Distributed Storage System for Structured
Data

Ghemawat et al. [SOSP'2003], The Google File System
Linképing University

Outline

INoSQL — Not only SQL
] Motivation
1 Concepts
] Techniques
] Systems

dDistributed File System
I Map-Reduce

Linképing University

45

Compute Nodes

] Compute node — processor, main memory, cache and
local disk.

] Organized into racks.
] Intra-rack connection typically gigabit speed.

] Inter-rack connection slower by a small factor.

Linképing University

46

Distributed File System

1 Files are very large, read/append.

] They are divided into chunks.
J Typically 64MB to a chunk.

- Chunks are replicated at several compute-nodes.

- A master (possibly replicated) keeps track of all locations
of all chunks.

Linképing University

47

File

Racks of Compute Nodes

NV

Chunks

Linképing University

48

1 ;I

1 1 1

3-way replication of
files, with copies on
different racks.

Source: J. D. Ullman invited talk EDBT 2011

Linképing University

49

Implementations

J GFS (Google File System — proprietary).
J HDFS (Hadoop Distributed File System — open source).

) CloudStore (Kosmix File System — open source).

Linképing University

50

The New Stack

SQL Implementations,
e.g., PIG (relational
algebra), HIVE

Object Store (key-value
store), e.g., BigTable,
Hbase, Cassandra

Map-Reduce, e.g.
Hadoop

Distributed File System

Source: J. D. Ullman invited talk EDBT 2011

Linképing University

51

What is Hadoop used for?
Slideshare.net - Hadoop Distributed File System by Dhruba Borthaku, 2009

] Search
— Yahoo, Amazon, Zvents
] Log processing
— Facebook, Yahoo, ContextWeb, Joost, Last.fm
1 Recommendation Systems
— Facebook
] Data Warehouse
— Facebook, AOL
- Video and Image Analysis
— New York Times, Eyealike

Linképing University

Outline

INoSQL — Not only SQL
] Motivation
1 Concepts
] Techniques
] Systems

I Distributed File System
IMap-Reduce

Linképing University

53

MapReduce Overview

- Sequentially read a lot of data
1 Map: Extract something you care about

1 Group by key: Sort and Shuffle

] Reduce: Aggregate, summarize, filter or transform
] Write the result

v Outline stays the same, map and reduce change to
fit the problem

Linképing University

54

Map step

Input Intermediate
key-value pairs key-value pairs

. ST
AEL S o g
AL o4

AE OLT

Linképing University

Reduce step

Output
Key-value groups key-value pairs

\ JO D g &
I"E uce ‘ .

Intermediate
key-value pairs

'Y
& ., &8
o

o ON

&0

Linképing University

55

56

More specifically

- Input: a set of key/value pairs
- Programmer specifies two methods:
d Map(k, v) > <k',v>*

] Takes a key value pair and outputs a set of key value pairs
(input: e.qg., key is the filename, value is the text of the
document;)

1 There is one Map call for every (k,v) pair
J Reduce(k’, <v’>*) > <K', v'>*

- All values v’ with same key k' are reduced together and
processed in v’ order

 There is one Reduce function call per unique key k’

Linképing University

57

Word Count

1 We have a huge text document

J Count the number of times each distinct word appears in
the file

- Sample application: Analyze web server logs to find
popular URLs

Linképing University

58

Word Count using MR

map (key, value):
// key: document name; value:
for each word w in value:
emit (w, 1)

reduce (key, values):

text of the document

// key: a word; value: an iterator over counts

result = 0
for each count v in values:
result += v

emit (key, result)

Linképing University

59

Map-Reduce Pattern

‘key ~value
pairs

A 4

from to DFS
DFS

Input \ Output

Map Reduce
tasks tasks

Linképing University

60

Map-Reduce environment

Map-Reduce environment takes care of:

 Partitioning the input data

1 Scheduling the program’s execution across a set of
machines

J Handling machine failures

] Managing required inter-machine communication

Linképing University

61

Fi .
N hs
, ¢ assign assign "~ .
8y

! ME[L) Y
/ . P Reduce -~ \

Input

Data Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University

The user program forks a Normally, a Worker handles either
Master controller process and >Program Map tasks (a Map worker) or

some number of Worker s fork '\ Reduce tasks (a Reduce worker),
processes fork /' "\ forkbut not both.
at different compute nodes. . @ '
A ,,“rf \\'\ \
s Kr" . \\ !
r},’ ¢ assign assign N "\x
Map Reduce x\\ '
N

Data

Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University
62

The Master creates some number -
s5er
of Map tasks and some number of

Reduce tasks. ' \
/ I 5
;.r IfDIk H"-.
) fork)/ ' fork
These numbers being ; @ \
£ A"
selected by K y - "
the user program.)/ '
s - b !
These tasks will be S -" assign ST
. ; f’ as51gn " A\
assigned to Worker ¢ -7 Map Reduce "~ %\

Data Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University
63

The Master keeps track of the status
of each Map and Reduce task s Program

(idle, executing at AP
a particular Worker, fork "\ fork
7 A
or completed). / @ \
;j ,,“rf \\'\ "'.
s Kr" . ‘-\ !
r,’ ¢ assign assign . \'-.x
Map Reduce x\\ '
LN

Data

Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University
64

A Worker process reports
»Drogram to the Master when

)/ fork it finishes a task, and a new
fork /' "\ fork task is scheduled by the Master
/ @ H for that Worker process.
;‘, /{f \"»\ \\
lr.|" '{r" . "-1“L "-\
. o7 assign assign ™ '
A Map Reduce ~ Y

Input

Data Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University

65

Each Map task is assigned one or The Map task creates a file for
more chunks of the input file(s) each Reduce task on the local

ropram

and executes on it the code written | \ disk of the Worker that execute
by the user. K fork the Map task.
fork)/ v fork
A ,,“rf \\'\ \
& - Y Y
r & ' b 5
,.-; »° e assign) A b 11.
Map Reduce x\\ ",
KN

Input

Data

Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University
66

The Master is informed of the . The Reduce task executes
location and sizes of each of these code written by the user

files, and the Reduce task for AP and writes its output to a
which each is destined. fork N fork file that is part of the
;;'J surrounding distributed file
When a Reduce task is assigned " system.
by the Master to a Worker prro’c!:es:sf; ’élssigu assi;‘x\ H\H
ap

LY LY
Reduce -~ \

Data Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

Linképing University

67

68

Coping With Fallures

- Map worker failure

[Map tasks completed or in-progress at worker are reset to idle

J Reduce workers are notified when task is rescheduled on another
worker

J Reduce worker failure

1 Only in-progress tasks are reset to idle

] Master failure

] MapReduce task is aborted and client is notified

Linképing University

69

Things Map-Reduce is Good At

] Matrix-Matrix and Matrix-vector multiplication.

1 One step of the PageRank iteration was the original
application.

] Relational algebra operations.

] Many other parallel operations.

Linképing University

Matrix-Vector Multiplication

] Suppose we have an n x n matrix M, whose elementinrowi and
column | will be denoted m;.

- Suppose we also have a vector v of length n , whose jth element is v;.

1 Then the matrix-vector product is the vector x of length n, whose ith
element x; is given by n
Lg = Z mi; vy
j=1

> AP + BQ + CR
Q |7| DP+EQ+FR
R GP + HQ + IR

o >
m o
2 g

71

Matrix-Vector Multiplication

1 The matrix M and the vector v each will be stored in a file
of the DFS. We assume that the row-column coordinates
of each matrix element will be discoverable, either from its
position in the file, or because it is stored with explicit
coordinates, as a triple (i, J, my).

1 We also assume the position of element v; in the vector v
will be discoverable in the analogous way.

Linképing University

72

Matrix-Vector Multiplication

- The Map Function:

J Each Map task will take the entire vector v and a chunk of the
matrix M.

1 From each matrix element m; it produces the key-value pair (i,
m;Vv;). Thus, all terms of the sum that make up the component x; of
the matrix-vector product will get the same key.

] The Reduce Function:

] A Reduce task has simply to sum all the values associated with a
given key i. The result will be a pair (i, X)).

Linképing University

73

Relational Algebra

] Selection

] Projection

1 Union, Intersection, Difference
] Natural join

J Grouping and Aggregation

v" A relation can be stored as a file in a distributed file
system. The elements of this file are the tuples of the
relation.

Linképing University

74

Union

J Suppose relations R and S have the same schema.

] The input for the Map tasks are chunks from either R or S.

- The Map Function:
J Turn each input tuple t into a key-value pair (t, t).
] The Reduce Function:

] Associated with each key t there will be either one or two values.
Produce output (t, t) in either case.

Linképing University

75

Intersection

J Suppose relations R and S have the same schema.

] The input for the Map tasks are chunks from either R or S.

- The Map Function:
J Turn each input tuple t into a key-value pair (t, t).
] The Reduce Function:

) If key t has value list [t, t], then produce (t, t). Otherwise, produce
(t, NULL).

Linképing University

76

Difference

J Suppose relations R and S have the same schema.
] The input for the Map tasks are chunks from either R or S.
- The Map Function:

. Foratuplet in R, produce key-value pair (t, R), and for a tuple t in
S, produce key-value pair (t, S). Note that the intent is that the

value is the name of R or S, not the entire relation.

] The Reduce Function:
] For each key t , do the following.

l If the associated value list is [R], then produce (t, t).

 If the associated value list is anything else, which could only be
R, S],[S,R], or [S], produce (t, NULL).

Linképing University

7

I W

Natural join

Joining R (A,B) with S (B,C).

We must find tuples that agree on their B components.

The Map Function:

1 For each tuple (a, b) of R, produce the key-value pair (b, (R, a)).
1 For each tuple (b, c) of S, produce the key-value pair (b, (S, c)).
The Reduce Function:

1 Each key value b will be associated with a list of pairs that are either of the
form (R, a) or (S, c).

1 Construct all pairs consisting of one with first component R and the other
with first component S, say (R, a) and (S, c). The output for key b is (b,
[(al, b, cl), (a2, b, c2), .. .]),

) that is, b associated with the list of tuples that can be formed from an R-

tuple and an S-tuple with a common b value.
Linképing University

78

Grouping and Aggregation

R(A,B,C)
Select SUM(B) From R Group by A

- The Map Function:
1 For each tuple (a, b, c) produce the key-value pair (a, b).
- The Reduce Function:

] Each key a represents a group. Apply SUM to the list [b1, b2, .. .,
bn] of b-values associated with key a. The output is the pair (a, x),
where x=bl +b2 +... +Dbn.

Linképing University

79

Thank you!

Linképing University

