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Graphs are Everywhere

● Transportation networks
● Bibliographic networks
● Computer networks
● Social networks
● Topic maps
● Knowledge bases
● Protein interactions
● Biological food chains
● etc.
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Categories of Graph Data Systems

● Triple stores
– Typically, pattern matching queries
– Data model: RDF

● Graph databases
– Typically, navigational queries
– Prevalent data model: property graphs

● Graph processing systems
– Typically, complex graph analysis tasks
– Prevalent data model: generic graphs

Remember
my earlier lecture

on RDF and
SPARQL



Graph Data Models
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RDF Data Model

● Data comes as a set of triples (s, p, o)
– subject: URI
– predicate: URI
– object: URI or literal

● Such a set may be understood as a graph
– Triples as directed edges
– Subjects and objects as vertexes
– Edges labeled by predicate

http://dbpedia.org/resource/Mount_Baker

http://dbpedia.org/resource/Washington

http://dbpedia.org/property/location                                                                      

1880

http://dbpedia.org/property/lastEruption                                                                       

Remember
my earlier lecture

on RDF and
SPARQL
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Property Graph
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Property Graph (cont'd)

● Directed multigraph
– multiple edges between the same pair of nodes

● Any node and any edge may have a label
● Additionally, any node and any edge may have

an arbitrary set of key-value pairs (“properties”)
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Property Graphs versus RDF Graphs

● Both data models have a lot of similarities:
– Directed multigraphs
– Labels on edges and on vertexes
– Attributes with values on vertexes

● However, there are some subtle differences:
– No edge properties in RDF graphs
– Edge labels cannot appear as nodes in a PG (in

RDF we may have <s1,p1,o1> and <p1,p2,o2>)
– No multivalued (vertex) properties in a PG

(unless we use a collection object as the value)
– Node and edge identifiers in a PG are local

to the PG, whereas URIs are globally unique
identifiers (important for data integration)



12
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data                             Olaf Hartig

Generic Graphs

● Data model
– Directed multigraphs
– Arbitrary user-defined data structure can be used

as value of a vertex or an edge (e.g., a Java object)
● Example (Flink Gelly API):

● Advantage: give users maximum flexibility
● Drawback: systems cannot provide built-in operators

                  related to vertex data or edge data

// create new vertexes with a Long ID and a String value

Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");

Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");

Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);



Graph Databases
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Categories of Graph Data Systems

● Triple stores
– Typically, pattern matching queries
– Data model: RDF

● Graph databases
– Typically, navigational queries
– Prevalent data model: property graphs

● Graph processing systems
– Typically, complex graph analysis tasks
– Prevalent data model: generic graphs
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Examples of Graph DB Systems

● Systems that focus on graph databases
– Neo4j
– Sparksee
– Titan
– InfiniteGraph

● Multi-model NoSQL stores
with support for graphs:
– OrientDB
– ArangoDB

● Triple stores with TinkerPop support
– Blazegraph
– Stardog
– IBM System G
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Apache TinkerPop

● Graph computing framework
– Vendor-agnostic

● Includes a graph structure API
– Formerly known as Blueprints API
– For creating and modifying Property Graphs
– Example:

● Also includes a process API
– Graph-parallel engine
– Graph traversal, based on a language called Gremlin

Graph graph = … 

Vertex marko = graph.addVertex(T.label, "person", T.id, 1, "name", "marko", "age", 29);

Vertex vadas = graph.addVertex(T.label, "person", T.id, 2, "name", "vadas", "age", 27);

marko.addEdge("knows", vadas, T.id, 7, "weight", 0.5f);
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Gremlin Graph Traversal Language

● Part of the TinkerPop framework
● Powerful domain-specific language (DSL) with 

embeddings in various programming languages
● Expressions specify a concatenation of traversal steps
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Gremlin Example

g.V().has('name','marko').out('knows').values('name')

Result:

==>vadas

==>josh
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Gremlin Example

g.V().has('name','marko').out('knows').values('name').path()

Result:

==>[v[1],v[2],vadas]

==>[v[1],v[4],josh]
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Gremlin Example

g.V().has('name','marko').repeat(out()).times(2).values('name')

Result:

==>ripple

==>lop
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Cypher

● Declarative graph database query language
● Proprietary (used by Neo4j)
● The OpenCypher project aims

to deliver an open specification
● Example

– Recall our initial Gremlin example:

g.V().has('name','marko').out('knows').values('name')
– In Cypher we could express this query as follows:

MATCH ( {name:'marko'} )-[:knows]->( x )
RETURN x.name 
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Possible Clauses in Cypher Queries

CREATE  - creates nodes and edges

DELETE  - removes nodes, edges, properties

SET  - sets values of properties

MATCH  - specifies a pattern to match in the data graph

WHERE  - filters pattern matching results

RETURN  - which nodes / edges / properties in the
                   matched data should be returned

UNION  - merges results from two or more queries

WITH  - chains subsequent query parts
             (like piping in Unix commands)
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Node Patterns in Cypher

● Node patterns may have different forms:

( )  - matches any node

(:person)  - matches nodes whose label is person

( {name:'marko'} )  - matches nodes that have a
                                property name='marko'

(:person {name:'marko'} )  - matches nodes that have
                                            both the label person and
                                            a property name='marko'

● Every node pattern can be assigned a variable 
– Can be used to refer to the matching node

in another query clause or to express joins
– For instance, (x), (x:person)
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Relationship Patterns in Cypher

● Relationship pattern must be placed between two 
node patterns and it may have different forms

-->  or  <--  - matches any edge (with the given direction)
-[:knows]->  - matches edges whose label is knows
-[ {weight:0.5} ]->  - matches edges that have a
                               property weight=0.5
-[:knows {weight:0.5} ]->  - matches edges that have
                                           both the label knows and
                                           a property weight=0.5
-[:knows*..4]->  - matches paths of knows
                           edges of up to length 4

● Every relationship pattern can be assigned a variable 
– For instance, <-[x:knows]-
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More Complex Cypher Patterns

● Node patterns and relationship patterns are just
basic building blocks that can be combined into
more complex patterns

● Examples:
– MATCH (a)-[:knows]->()-[:knows]->(a)

RETURN a

– MATCH p = shortestPath(
      (:person {name:'marko'])-[*]->(:person {name:'josh'])
)
RETURN p



27
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data                             Olaf Hartig

Filtering in Cypher

● Pattern matching results can be filtered out
by using the WHERE clause (similar to SQL)

● Examples:
– MATCH (a:person)-[x:knows]->(b:person)

WHERE x.weight > 0.5 AND x.weight < 0.9
RETURN a , b

– MATCH ()-[x:knows]->()
WHERE exists(x.weight)
RETURN x

– MATCH (a)-[:knows]->(b)-[x:knows]->(c)
WHERE NOT (a)-[:knows]->(c)
RETURN *



Graph Processing Systems
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Categories of Graph Data Systems

● Triple stores
– Typically, pattern matching queries
– Data model: RDF

● Graph databases
– Typically, navigational queries
– Prevalent data model: property graphs

● Graph processing systems
– Typically, complex graph analysis tasks
– Prevalent data model: generic graphs
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Complex Graph Analysis Tasks???

● Tasks that require an iterative processing of
the entire graph or large portions thereof

● Examples:
– Centrality analysis (e.g., PageRank)
– Clustering, connected components
– Graph coloring
– Diameter finding
– All-pairs shortest path
– Graph pattern mining (e.g., frequent

subgraphs, community detection)
– Machine learning (e.g., belief propagation,

Gaussian non-negative matrix factorization)
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Example: PageRank

PRk+1(v) = ΣvIN
 Prk(vIN) / |Out(vIN)|

v1 v3

v2 v4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|
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Example: PageRank

PRk+1(v) = ΣvIN
 Prk(vIN) / |Out(vIN)|

v1 v3

v2 v4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

PR2(v1) = PR1(v3)/1 + PR1(v4)/2
PR2(v1) =     0.25/1 +     0.25/2
PR2(v1) =       0.25  +      0.125
PR2(v1) =             0.375
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Example: PageRank

PRk+1(v) = ΣvIN
 Prk(vIN) / |Out(vIN)|

v1 v3

v2 v4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PR(v2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PR(v3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PR(v4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

PR2(v1) = PR1(v3)/1 + PR1(v4)/2
PR2(v1) =     0.25/1 +     0.25/2
PR2(v1) =       0.25  +      0.125
PR2(v1) =             0.375

Convergence
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Observation

● Many such algorithms iteratively propagate
data along the graph structure by transforming 
intermediate vertex and edge values
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Can we use MapReduce for this?
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Can we use MapReduce for this?

● M/R does not directly support iterative algorithms
● Materializing intermediate results at

each M/R iteration harms performance
● Extra M/R job on each iteration for

checking whether a fixed point has
been reached

● Additional issue for graph algorithms
– Invariant graph-topology data

reloaded and reprocessed at
each iteration

– Wastes I/O, CPU, and
network bandwidth
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Graph Processing Systems

Pregel Family
● Pregel

● Giraph

● Giraph++

● Mizan

● GPS

● Pregelix

● Pregel+

GraphLab Family
● GraphLab

● PowerGraph

● GraphChi
(centralized)

Other Systems
● Trinity

● TurboGraph
(centralized)

● Signal/Collect
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Vertex-Centric Abstraction

● Many such algorithms iteratively propagate
data along the graph structure by transforming 
intermediate vertex and edge values
– These transformations are defined

in terms of functions on the values
of adjacent vertexes and edges

– Hence, such algorithms can be
expressed by specifying a function
that can be applied to any vertex
separately

● “Think like a vertex”
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Vertex-Centric Abstraction (cont'd)

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

● Overall execution can be parallelized
– Terminates when all vertexes have

halted and no messages in transit
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

0.125

0.083
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25 0.20

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

0.125

0.083
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37

PR(v2) 0.25 0.08

PR(v3) 0.25 0.33

PR(v4) 0.25 0.20

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37

PR(v2) 0.25 0.08

PR(v3) 0.25 0.33

PR(v4) 0.25 0.20

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

0.1

0.1
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37 0.43 0.35 0.39 0.38

PR(v2) 0.25 0.08 0.12 0.14 0.11 0.13

PR(v3) 0.25 0.33 0.27 0.29 0.29 0.28

PR(v4) 0.25 0.20 0.16 0.20 0.19 0.19

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

local
convergence
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Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PR(v2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PR(v3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PR(v4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met
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Google Pregel

● First system that implemented
vertex-centric computation for
shared-nothing clusters
– Communication through

message passing

● Based on the bulk synchronous
parallel (BSP) programming model
– Supersteps with

synchronization barriers

● Apache Giraph was a first open
source implementation of Pregel

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |
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MapReduce      versus      Pregel

● Graph topology is not 
passed across iterations, 
vertexes only send their
state to their neighbors

● Requires passing of entire 
graph topology from one 
iteration to the next

● Intermediate result after 
each iteration is stored on 
disk and then read again 
from disk

● Programmer needs to write
a driver program to support 
iterations, and another M/R 
job to check for fixed point

● Main memory based

● Usage of supersteps and 
master-client architecture 
makes programming easy
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Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |
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Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

● Possible optimizations to
balance the workload:
– Decompose the vertex program
– Sophisticated graph partitioning
– Graph-centric abstraction

● Another possibility: asynchronous
            execution (instead of BSP)

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |
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Combiner

● Takes two messages and combines them into one
– Associative, commutative function

● Can be used to aggregate messages before sending 
them to the worker node that has the target vertex

● Example:
– In the vertex-centric PageRank, messages are values

mIN = (Prk(vIN) / |Out(vIN)|)  of each incoming neighbor vIN

– In the vertex function these values are summed up: 
      (Prk(vIN1) / |Out(vIN1)|) + (Prk(vIN2) / |Out(vIN2)|) + ...

– Parts of this sum may be computed by worker nodes 
that have some of the incoming neighbor vertexes
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Signal/Collect Model

● Signaling (edge function):
– Every edge uses the value of its source vertex to 

compute a message (“signal”) for the target vertex
– Executed on the worker that has the source vertex

● Collecting (vertex function):
– Every vertex computes its new value based on

the messages received from its incoming edges
– Executed on the worker that has the target vertex
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Gather, Apply, Scatter (GAS) Model

● Gather:
– Accumulate incoming messages,

i.e., same purpose as a combiner

● Apply:
– Update the vertex value based

on the accumulated information
– Operates only on the vertex

● Scatter:
– Computes outgoing messages
– Can be executed in parallel for

each adjacent edge
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Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

● Possible optimizations to
balance the workload:
– Decompose the vertex program
– Sophisticated graph partitioning
– Graph-centric abstraction

● Another possibility: asynchronous
            execution (instead of BSP)

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |
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Partitioning

● Goal: distribute the vertexes to achieve a balanced 
workload while minimizing inter-partition
edges to avoid costly network traffic

– For instance, hash-based (random)
partitioning has extremely poor locality

● Unfortunately, the problem is NP-complete
– k-way graph partitioning problem

● Various heuristics and approximation algorithms
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Vertex-Cut

● PowerGraph introduced a partitioning scheme that 
“cuts” vertexes such that the edges of high-degree 
vertexes are handled by multiple workers
– improved work balance

● Power-law graphs have good vertex cuts
– Communication is linear in the number

of machines each vertex spans
– Vertex-cut minimizes this number
– Hence, reduced network traffic
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Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

● Possible optimizations to
balance the workload:
– Decompose the vertex program
– Sophisticated graph partitioning
– Graph-centric abstraction

● Another possibility: asynchronous
            execution (instead of BSP)

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |

| ←
  S

u perstep   →
 |
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Acknowledgements:
● Some of the slides about graph processing systems are from a slideset of Sherif Sakr. Thanks Sherif!

Image sources:
● Example Property Graph http://tinkerpop.apache.org/docs/current/tutorials/getting-started/ 
● BSP Illustration https://en.wikipedia.org/wiki/Bulk_synchronous_parallel 
● Smiley https://commons.wikimedia.org/wiki/File:Face-smile.svg 
● Frowny https://commons.wikimedia.org/wiki/File:Face-sad.svg 
● Powerlaw charts http://www9.org/w9cdrom/160/160.html 
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