
TDDD43
Advanced Data Models
and Databases

Topic: Graph Data

Olaf Hartig
olaf.hartig@liu.se

2
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Graphs are Everywhere

● Transportation networks
● Bibliographic networks
● Computer networks
● Social networks
● Topic maps
● Knowledge bases
● Protein interactions
● Biological food chains
● etc.

4
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Categories of Graph Data Systems

● Triple stores
– Typically, pattern matching queries
– Data model: RDF

● Graph databases
– Typically, navigational queries
– Prevalent data model: property graphs

● Graph processing systems
– Typically, complex graph analysis tasks
– Prevalent data model: generic graphs

Remember
my earlier lecture

on RDF and
SPARQL

Graph Data Models

8
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

RDF Data Model

● Data comes as a set of triples (s, p, o)
– subject: URI
– predicate: URI
– object: URI or literal

● Such a set may be understood as a graph
– Triples as directed edges
– Subjects and objects as vertexes
– Edges labeled by predicate

http://dbpedia.org/resource/Mount_Baker

http://dbpedia.org/resource/Washington

http://dbpedia.org/property/location

1880

http://dbpedia.org/property/lastEruption

Remember
my earlier lecture

on RDF and
SPARQL

9
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Property Graph

10
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Property Graph (cont'd)

● Directed multigraph
– multiple edges between the same pair of nodes

● Any node and any edge may have a label
● Additionally, any node and any edge may have

an arbitrary set of key-value pairs (“properties”)

11
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Property Graphs versus RDF Graphs

● Both data models have a lot of similarities:
– Directed multigraphs
– Labels on edges and on vertexes
– Attributes with values on vertexes

● However, there are some subtle differences:
– No edge properties in RDF graphs
– Edge labels cannot appear as nodes in a PG (in

RDF we may have <s1,p1,o1> and <p1,p2,o2>)
– No multivalued (vertex) properties in a PG

(unless we use a collection object as the value)
– Node and edge identifiers in a PG are local

to the PG, whereas URIs are globally unique
identifiers (important for data integration)

12
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Generic Graphs

● Data model
– Directed multigraphs
– Arbitrary user-defined data structure can be used

as value of a vertex or an edge (e.g., a Java object)
● Example (Flink Gelly API):

● Advantage: give users maximum flexibility
● Drawback: systems cannot provide built-in operators

 related to vertex data or edge data

// create new vertexes with a Long ID and a String value

Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");

Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");

Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);

Graph Databases

15
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Categories of Graph Data Systems

● Triple stores
– Typically, pattern matching queries
– Data model: RDF

● Graph databases
– Typically, navigational queries
– Prevalent data model: property graphs

● Graph processing systems
– Typically, complex graph analysis tasks
– Prevalent data model: generic graphs

16
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Examples of Graph DB Systems

● Systems that focus on graph databases
– Neo4j
– Sparksee
– Titan
– InfiniteGraph

● Multi-model NoSQL stores
with support for graphs:
– OrientDB
– ArangoDB

● Triple stores with TinkerPop support
– Blazegraph
– Stardog
– IBM System G

17
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Apache TinkerPop

● Graph computing framework
– Vendor-agnostic

● Includes a graph structure API
– Formerly known as Blueprints API
– For creating and modifying Property Graphs
– Example:

● Also includes a process API
– Graph-parallel engine
– Graph traversal, based on a language called Gremlin

Graph graph = …

Vertex marko = graph.addVertex(T.label, "person", T.id, 1, "name", "marko", "age", 29);

Vertex vadas = graph.addVertex(T.label, "person", T.id, 2, "name", "vadas", "age", 27);

marko.addEdge("knows", vadas, T.id, 7, "weight", 0.5f);

18
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Gremlin Graph Traversal Language

● Part of the TinkerPop framework
● Powerful domain-specific language (DSL) with

embeddings in various programming languages
● Expressions specify a concatenation of traversal steps

19
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Gremlin Example

g.V().has('name','marko').out('knows').values('name')

Result:

==>vadas

==>josh

20
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Gremlin Example

g.V().has('name','marko').out('knows').values('name').path()

Result:

==>[v[1],v[2],vadas]

==>[v[1],v[4],josh]

21
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Gremlin Example

g.V().has('name','marko').repeat(out()).times(2).values('name')

Result:

==>ripple

==>lop

22
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Cypher

● Declarative graph database query language
● Proprietary (used by Neo4j)
● The OpenCypher project aims

to deliver an open specification
● Example

– Recall our initial Gremlin example:

g.V().has('name','marko').out('knows').values('name')
– In Cypher we could express this query as follows:

MATCH ({name:'marko'})-[:knows]->(x)
RETURN x.name

23
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Possible Clauses in Cypher Queries

CREATE - creates nodes and edges

DELETE - removes nodes, edges, properties

SET - sets values of properties

MATCH - specifies a pattern to match in the data graph

WHERE - filters pattern matching results

RETURN - which nodes / edges / properties in the
 matched data should be returned

UNION - merges results from two or more queries

WITH - chains subsequent query parts
 (like piping in Unix commands)

24
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Node Patterns in Cypher

● Node patterns may have different forms:

() - matches any node

(:person) - matches nodes whose label is person

({name:'marko'}) - matches nodes that have a
 property name='marko'

(:person {name:'marko'}) - matches nodes that have
 both the label person and
 a property name='marko'

● Every node pattern can be assigned a variable
– Can be used to refer to the matching node

in another query clause or to express joins
– For instance, (x), (x:person)

25
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Relationship Patterns in Cypher

● Relationship pattern must be placed between two
node patterns and it may have different forms

--> or <-- - matches any edge (with the given direction)
-[:knows]-> - matches edges whose label is knows
-[{weight:0.5}]-> - matches edges that have a
 property weight=0.5
-[:knows {weight:0.5}]-> - matches edges that have
 both the label knows and
 a property weight=0.5
-[:knows*..4]-> - matches paths of knows
 edges of up to length 4

● Every relationship pattern can be assigned a variable
– For instance, <-[x:knows]-

26
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

More Complex Cypher Patterns

● Node patterns and relationship patterns are just
basic building blocks that can be combined into
more complex patterns

● Examples:
– MATCH (a)-[:knows]->()-[:knows]->(a)

RETURN a

– MATCH p = shortestPath(
 (:person {name:'marko'])-[*]->(:person {name:'josh'])
)
RETURN p

27
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Filtering in Cypher

● Pattern matching results can be filtered out
by using the WHERE clause (similar to SQL)

● Examples:
– MATCH (a:person)-[x:knows]->(b:person)

WHERE x.weight > 0.5 AND x.weight < 0.9
RETURN a , b

– MATCH ()-[x:knows]->()
WHERE exists(x.weight)
RETURN x

– MATCH (a)-[:knows]->(b)-[x:knows]->(c)
WHERE NOT (a)-[:knows]->(c)
RETURN *

Graph Processing Systems

30
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Categories of Graph Data Systems

● Triple stores
– Typically, pattern matching queries
– Data model: RDF

● Graph databases
– Typically, navigational queries
– Prevalent data model: property graphs

● Graph processing systems
– Typically, complex graph analysis tasks
– Prevalent data model: generic graphs

31
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Complex Graph Analysis Tasks???

● Tasks that require an iterative processing of
the entire graph or large portions thereof

● Examples:
– Centrality analysis (e.g., PageRank)
– Clustering, connected components
– Graph coloring
– Diameter finding
– All-pairs shortest path
– Graph pattern mining (e.g., frequent

subgraphs, community detection)
– Machine learning (e.g., belief propagation,

Gaussian non-negative matrix factorization)

32
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: PageRank

PRk+1(v) = ΣvIN
 Prk(vIN) / |Out(vIN)|

v1 v3

v2 v4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

33
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: PageRank

PRk+1(v) = ΣvIN
 Prk(vIN) / |Out(vIN)|

v1 v3

v2 v4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

PR2(v1) = PR1(v3)/1 + PR1(v4)/2
PR2(v1) = 0.25/1 + 0.25/2
PR2(v1) = 0.25 + 0.125
PR2(v1) = 0.375

34
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: PageRank

PRk+1(v) = ΣvIN
 Prk(vIN) / |Out(vIN)|

v1 v3

v2 v4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PR(v2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PR(v3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PR(v4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

PR2(v1) = PR1(v3)/1 + PR1(v4)/2
PR2(v1) = 0.25/1 + 0.25/2
PR2(v1) = 0.25 + 0.125
PR2(v1) = 0.375

Convergence

35
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Observation

● Many such algorithms iteratively propagate
data along the graph structure by transforming
intermediate vertex and edge values

36
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Can we use MapReduce for this?

37
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Can we use MapReduce for this?

● M/R does not directly support iterative algorithms
● Materializing intermediate results at

each M/R iteration harms performance
● Extra M/R job on each iteration for

checking whether a fixed point has
been reached

● Additional issue for graph algorithms
– Invariant graph-topology data

reloaded and reprocessed at
each iteration

– Wastes I/O, CPU, and
network bandwidth

38
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Graph Processing Systems

Pregel Family
● Pregel

● Giraph

● Giraph++

● Mizan

● GPS

● Pregelix

● Pregel+

GraphLab Family
● GraphLab

● PowerGraph

● GraphChi
(centralized)

Other Systems
● Trinity

● TurboGraph
(centralized)

● Signal/Collect

39
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Vertex-Centric Abstraction

● Many such algorithms iteratively propagate
data along the graph structure by transforming
intermediate vertex and edge values
– These transformations are defined

in terms of functions on the values
of adjacent vertexes and edges

– Hence, such algorithms can be
expressed by specifying a function
that can be applied to any vertex
separately

● “Think like a vertex”

40
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Vertex-Centric Abstraction (cont'd)

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

● Overall execution can be parallelized
– Terminates when all vertexes have

halted and no messages in transit

41
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

42
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

0.125

0.083

43
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25

PR(v2) 0.25

PR(v3) 0.25

PR(v4) 0.25 0.20

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

0.125

0.083

44
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37

PR(v2) 0.25 0.08

PR(v3) 0.25 0.33

PR(v4) 0.25 0.20

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

45
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37

PR(v2) 0.25 0.08

PR(v3) 0.25 0.33

PR(v4) 0.25 0.20

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

0.1

0.1

46
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37 0.43 0.35 0.39 0.38

PR(v2) 0.25 0.08 0.12 0.14 0.11 0.13

PR(v3) 0.25 0.33 0.27 0.29 0.29 0.28

PR(v4) 0.25 0.20 0.16 0.20 0.19 0.19

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

local
convergence

47
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Example: Vertex-Centric PageRank

PRk+1(v) = ΣvIN
 PRk(vIN) / |Out(vIN)|

v1 v3

v2 v4
k=0 k=1 k=2 k=3 k=4 k=5 k=6

PR(v1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PR(v2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PR(v3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PR(v4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

● Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

● Additionally, function may “vote to halt”
if a local convergence criterion is met

48
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Google Pregel

● First system that implemented
vertex-centric computation for
shared-nothing clusters
– Communication through

message passing

● Based on the bulk synchronous
parallel (BSP) programming model
– Supersteps with

synchronization barriers

● Apache Giraph was a first open
source implementation of Pregel

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

50
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

MapReduce versus Pregel

● Graph topology is not
passed across iterations,
vertexes only send their
state to their neighbors

● Requires passing of entire
graph topology from one
iteration to the next

● Intermediate result after
each iteration is stored on
disk and then read again
from disk

● Programmer needs to write
a driver program to support
iterations, and another M/R
job to check for fixed point

● Main memory based

● Usage of supersteps and
master-client architecture
makes programming easy

51
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

52
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

● Possible optimizations to
balance the workload:
– Decompose the vertex program
– Sophisticated graph partitioning
– Graph-centric abstraction

● Another possibility: asynchronous
 execution (instead of BSP)

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

53
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Combiner

● Takes two messages and combines them into one
– Associative, commutative function

● Can be used to aggregate messages before sending
them to the worker node that has the target vertex

● Example:
– In the vertex-centric PageRank, messages are values

mIN = (Prk(vIN) / |Out(vIN)|) of each incoming neighbor vIN

– In the vertex function these values are summed up:
 (Prk(vIN1) / |Out(vIN1)|) + (Prk(vIN2) / |Out(vIN2)|) + ...

– Parts of this sum may be computed by worker nodes
that have some of the incoming neighbor vertexes

54
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Signal/Collect Model

● Signaling (edge function):
– Every edge uses the value of its source vertex to

compute a message (“signal”) for the target vertex
– Executed on the worker that has the source vertex

● Collecting (vertex function):
– Every vertex computes its new value based on

the messages received from its incoming edges
– Executed on the worker that has the target vertex

55
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Gather, Apply, Scatter (GAS) Model

● Gather:
– Accumulate incoming messages,

i.e., same purpose as a combiner

● Apply:
– Update the vertex value based

on the accumulated information
– Operates only on the vertex

● Scatter:
– Computes outgoing messages
– Can be executed in parallel for

each adjacent edge

56
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

● Possible optimizations to
balance the workload:
– Decompose the vertex program
– Sophisticated graph partitioning
– Graph-centric abstraction

● Another possibility: asynchronous
 execution (instead of BSP)

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

57
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Partitioning

● Goal: distribute the vertexes to achieve a balanced
workload while minimizing inter-partition
edges to avoid costly network traffic

– For instance, hash-based (random)
partitioning has extremely poor locality

● Unfortunately, the problem is NP-complete
– k-way graph partitioning problem

● Various heuristics and approximation algorithms

59
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Vertex-Cut

● PowerGraph introduced a partitioning scheme that
“cuts” vertexes such that the edges of high-degree
vertexes are handled by multiple workers
– improved work balance

● Power-law graphs have good vertex cuts
– Communication is linear in the number

of machines each vertex spans
– Vertex-cut minimizes this number
– Hence, reduced network traffic

64
TDDD43 – Advanced Data Models and Databases, HT 2017
Topic: Graph Data Olaf Hartig

Limitation of Pregel

● In the BSP model, performance is
limited by slowest worker machine
– Many real-world graphs have

power-law degree distribution,
which may lead to few highly-
loaded workers

● Possible optimizations to
balance the workload:
– Decompose the vertex program
– Sophisticated graph partitioning
– Graph-centric abstraction

● Another possibility: asynchronous
 execution (instead of BSP)

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

| ←
 S

u perstep →
 |

www.liu.se

Acknowledgements:
● Some of the slides about graph processing systems are from a slideset of Sherif Sakr. Thanks Sherif!

Image sources:
● Example Property Graph http://tinkerpop.apache.org/docs/current/tutorials/getting-started/
● BSP Illustration https://en.wikipedia.org/wiki/Bulk_synchronous_parallel
● Smiley https://commons.wikimedia.org/wiki/File:Face-smile.svg
● Frowny https://commons.wikimedia.org/wiki/File:Face-sad.svg
● Powerlaw charts http://www9.org/w9cdrom/160/160.html

	Slide 1
	Slide 2
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 59
	Slide 64
	Slide 68

