TDDD43 Advanced Data Models and Databases

Topic: Graph Data

Olaf Hartig olaf.hartig@liu.se

Graphs are Everywhere

- Transportation networks
- Bibliographic networks
- Computer networks
- Social networks
- Topic maps
- Knowledge bases
- Protein interactions
- Biological food chains
- etc.

Categories of Graph Data Systems

- Triple stores
 - Typically, pattern matching queries
 - Data model: RDF
- Graph databases
 - Typically, navigational queries
 - Prevalent data model: property graphs
- Graph processing systems
 - Typically, complex graph analysis tasks
 - Prevalent data model: generic graphs

Remember my earlier lecture on RDF and SPARQL

Graph Data Models

TDDD43 – Advanced Data Models and Databases, HT 2017 Topic: Graph Data Olaf Hartig

RDF Data Model

Remember my earlier lecture on RDF and **SPARQL**

http://dbpedia.org/resource/Mount_Baker

http://dbpedia.org/property/location

http://dbpedia.org/property/lastEruption

- Data comes as a set of triples (s, p, o)
 - subject: URI
 - predicate: URI
 - object: URI or literal
- Such a set may be understood as a graph
 - Triples as directed edges
 - Subjects and objects as vertexes
 - Edges labeled by predicate

http://dbpedia.org/resource/Washington

1880

Property Graph

Property Graph (cont'd)

- Directed multigraph
 - multiple edges between the same pair of nodes
- Any node and any edge may have a label
- Additionally, any node and any edge may have an arbitrary set of key-value pairs ("properties")

Property Graphs versus RDF Graphs

- Both data models have a lot of similarities:
 - Directed multigraphs
 - Labels on edges and on vertexes
 - Attributes with values on vertexes
- However, there are some subtle differences:
 - No edge properties in RDF graphs
 - Edge labels cannot appear as nodes in a PG (in RDF we may have <s1,p1,o1> and <p1,p2,o2>)
 - No multivalued (vertex) properties in a PG (unless we use a collection object as the value)
 - Node and edge identifiers in a PG are local to the PG, whereas URIs are globally unique identifiers (important for data integration)

Generic Graphs

- Data model
 - Directed multigraphs
 - Arbitrary user-defined data structure can be used as value of a vertex or an edge (e.g., a Java object)
- Example (Flink Gelly API):

```
// create new vertexes with a Long ID and a String value
Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");
Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");
Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);
```

- Advantage: give users maximum flexibility
- Drawback: systems cannot provide built-in operators related to vertex data or edge data

Graph Databases

Categories of Graph Data Systems

- Triple stores
 - Typically, pattern matching queries
 - Data model: RDF
- Graph databases
 - Typically, navigational queries
 - Prevalent data model: property graphs
- Graph processing systems
 - Typically, complex graph analysis tasks
 - Prevalent data model: generic graphs

Examples of Graph DB Systems

- Systems that focus on graph databases
 - Neo4j
 - Sparksee
 - Titan
 - InfiniteGraph
- Multi-model NoSQL stores with support for graphs:
 - OrientDB
 - ArangoDB
- Triple stores with TinkerPop support
 - Blazegraph
 - Stardog
 - IBM System G

Apache TinkerPop

- Graph computing framework
 - Vendor-agnostic
- Includes a graph structure API
 - Formerly known as Blueprints API
 - For creating and modifying Property Graphs
 - Example:

```
Graph graph = ...
```

Vertex marko = graph.addVertex(T.label, "person", T.id, 1, "name", "marko", "age", 29); Vertex vadas = graph.addVertex(T.label, "person", T.id, 2, "name", "vadas", "age", 27); marko.addEdge("knows", vadas, T.id, 7, "weight", 0.5f);

- Also includes a process API
 - Graph-parallel engine
 - Graph traversal, based on a language called Gremlin

Apache

Gremlin Graph Traversal Language

- Part of the TinkerPop framework
- Powerful domain-specific language (DSL) with embeddings in various programming languages
- Expressions specify a concatenation of traversal steps

Gremlin Example

g.V().has('name','marko').out('knows').values('name')

Gremlin Example

g.V().has('name','marko').out('knows').values('name').path()

Gremlin Example

g.V().has('name','marko').repeat(out()).times(2).values('name')

Cypher

- Declarative graph database query language
- Proprietary (used by Neo4j)
- The OpenCypher project aims to deliver an open specification

- Example
 - Recall our initial Gremlin example:

g.V().has('name','marko').out('knows').values('name')

 In Cypher we could express this query as follows: MATCH ({name:'marko'})-[:knows]->(x) RETURN x.name

Possible Clauses in Cypher Queries

- **CREATE** creates nodes and edges
- **DELETE** removes nodes, edges, properties
- SET sets values of properties
- MATCH specifies a *pattern* to match in the data graph
- WHERE filters pattern matching results
- RETURN which nodes / edges / properties in the matched data should be returned
- **UNION** merges results from two or more queries
- WITH chains subsequent query parts (like piping in Unix commands)

Node Patterns in Cypher

- Node patterns may have different forms:
 - () matches any node
 - (:person) matches nodes whose label is *person*
 - ({name:'marko'}) matches nodes that have a property *name='marko'*

(:person {name:'marko'}) - matches nodes that have both the label *person* and a property *name='marko'*

- Every node pattern can be assigned a variable
 - Can be used to refer to the matching node in another query clause or to express joins
 - For instance, (x), (x:person)

Relationship Patterns in Cypher

- Relationship pattern must be placed between two node patterns and it may have different forms
 - --> or <-- matches any edge (with the given direction)
 - -[:knows]-> matches edges whose label is *knows*
 - -[{weight:0.5}]-> matches edges that have a property *weight=0.5*

-[:knows {weight:0.5}]-> - matches edges that have both the label *knows* and a property *weight=0.5*

-[:knows*..4]-> - matches paths of *knows* edges of up to length 4

- Every relationship pattern can be assigned a *variable*
 - For instance, <-[x:knows]-

More Complex Cypher Patterns

- Node patterns and relationship patterns are just basic building blocks that can be combined into more complex patterns
- Examples:
 - MATCH (a)-[:knows]->()-[:knows]->(a)
 RETURN a
 - MATCH p = shortestPath(
 (:person {name:'marko'])-[*]->(:person {name:'josh'])
)
 RETURN p

Filtering in Cypher

- Pattern matching results can be filtered out by using the WHERE clause (similar to SQL)
- Examples:
 - MATCH (a:person)-[x:knows]->(b:person)
 WHERE x.weight > 0.5 AND x.weight < 0.9
 RETURN a , b
 - MATCH ()-[x:knows]->()
 WHERE exists(x.weight)
 RETURN x
 - MATCH (a)-[:knows]->(b)-[x:knows]->(c)
 WHERE NOT (a)-[:knows]->(c)
 RETURN *

Graph Processing Systems

Categories of Graph Data Systems

- Triple stores
 - Typically, pattern matching queries
 - Data model: RDF
- Graph databases
 - Typically, navigational queries
 - Prevalent data model: property graphs
- Graph processing systems
 - Typically, complex graph analysis tasks
 - Prevalent data model: generic graphs

Complex Graph Analysis Tasks???

- Tasks that require an *iterative processing* of the *entire graph* or large portions thereof
- Examples:
 - Centrality analysis (e.g., PageRank)
 - Clustering, connected components
 - Graph coloring
 - Diameter finding
 - All-pairs shortest path
 - Graph pattern mining (e.g., frequent subgraphs, community detection)
 - Machine learning (e.g., belief propagation, Gaussian non-negative matrix factorization)

Example: PageRank

$$\mathsf{PR}_{k+1}(v) = \sum_{V_{|N|}} \mathsf{PR}_{k}(v_{N}) / |\mathsf{Out}(v_{N})|$$

	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
PR(v1)	0.25						
PR(v2)	0.25						
PR(v3)	0.25						
PR(v4)	0.25						

Example: PageRank

v1-		(v3)
	/	\times
		Ţ
VZ		₩4

 $PR_{k+1}(v) = \sum_{V_{|N}} PR_{k}(v_{|N}) / |Out(v_{|N})|$ $PR_{2}(v1) = PR_{1}(v3)/1 + PR_{1}(v4)/2$ = 0.25/1 + 0.25/2 = 0.25 + 0.125 = 0.375

	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
PR(v1)	0.25	0.37					
PR(v2)	0.25						
PR(v3)	0.25						
PR(v4)	0.25						

Example: PageRank

 $\mathsf{PR}_{k+1}(v) = \sum_{V_{|N|}} \mathsf{PR}_{k}(v_{N}) / |\mathsf{Out}(v_{N})|$

$PR_2(v1)$	=	$PR_{1}(v3)/1 +$	PR ₁ (v4)/2
	=	0.25/1 +	0.25/2
	=	0.25 +	0.125
	=	0.375	-

	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
PR(v1)	0.25	0.37	0.43	0.35	0.39	0.38	0.38
PR(v2)	0.25	0.08	0.12	0.14	0.11	0.13	0.13
PR(v3)	0.25	0.33	0.27	0.29	0.29	0.28	0.28
PR(v4)	0.25	0.20	0.16	0.20	0.19	0.19	0.19

Convergence

Observation

 Many such algorithms iteratively propagate data along the graph structure by transforming intermediate vertex and edge values

Can we use MapReduce for this?

Can we use MapReduce for this?

- M/R does not directly support iterative algorithms
- Materializing intermediate results at each M/R iteration harms performance
- Extra M/R job on each iteration for checking whether a fixed point has been reached
- Additional issue for graph algorithms
 - Invariant graph-topology data reloaded and reprocessed at each iteration
 - Wastes I/O, CPU, and network bandwidth

Graph Processing Systems

Pregel Family

- Pregel
- Giraph
- Giraph++
- Mizan
- GPS
- Pregelix
- Pregel+

GraphLab Family

- GraphLab
- PowerGraph
- GraphChi (*centralized*)

Other Systems

- Trinity
- TurboGraph (*centralized*)
- Signal/Collect

Vertex-Centric Abstraction

- Many such algorithms iteratively propagate data along the graph structure by transforming intermediate vertex and edge values
 - These transformations are defined in terms of functions on the values of adjacent vertexes and edges
 - Hence, such algorithms can be expressed by specifying a function that can be applied to any vertex separately

Vertex-Centric Abstraction (cont'd)

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met
- Overall execution can be parallelized
 - Terminates when all vertexes have halted and no messages in transit

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

 $PR_{k+1}(v) = \sum_{v} PR_{k}(v_{v}) / IOut(v_{v})$

	,		✓ IN				
	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
PR(v1)	0.25						
PR(v2)	0.25						
PR(v3)	0.25						
PR(v4)	0.25						

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

 $PR_{iii}(v) = \sum_{i} PR_{i}(v_{i}) / IOut(v_{i})$

=3 <i>k</i> =4 <i>k</i> =5 <i>k</i> =6

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

 $PR_{k+1}(v) = \sum_{v} PR_{v}(v) / IOut(v) I$

<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
0.25						
0.25						
0.25						
0.25	0.20					
	k=0 0.25 0.25 0.25 0.25	k=0 k=1 0.25 0.25 0.25 0.20	k=0 k=1 k=2 0.25	k=0 k=1 k=2 k=3 0.25 .25 .25 0.25 0.25 .20	k=0 k=1 k=2 k=3 k=4 0.25 0.25	k = 0 $k = 1$ $k = 2$ $k = 3$ $k = 4$ $k = 50.250.250.250.250.250.25$

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

 $PR_{k+1}(v) = \sum_{\nu} PR_{\nu}(v_{\mu}) / IOut(v_{\mu})I$

			• IIN		-	· · ·	
	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
PR(v1)	0.25	0.37					
PR(v2)	0.25	0.08					
PR(v3)	0.25	0.33					
PR(v4)	0.25	0.20					

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

 $PR_{k+1}(v) = \sum_{\nu} PR_{\nu}(v_{\mu}) / IOut(v_{\mu})I$

			• IIN	``	-	、 <i>/</i> -		
	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6	
PR(v1)	0.25	0.37						
PR(v2)	0.25	0.08						
PR(v3)	0.25	0.33						
PR(v4)	0.25	0.20						

- Vertex compute function consists of three steps: 1. Read all incoming messages from neighbors 2. Update the value of the vertex 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

	ГП	<i>k</i> +1 (v) –						v2v4
	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6	
PR(v1)	0.25	0.37	0.43	0.35	0.39	0.38		
PR(v2)	0.25	0.08	0.12	0.14	0.11	0.13		local
PR(v3)	0.25	0.33	0.27	0.29	0.29	0.28		convergence
PR(v4)	0.25	0.20	0.16	0.20	0.19	0.19		

- Vertex compute function consists of three steps:
 1. Read all incoming messages from neighbors
 2. Update the value of the vertex
 3. Send messages to neighbors
- Additionally, function may "vote to halt" if a local convergence criterion is met

			- IIN				
	<i>k</i> =0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3	<i>k</i> =4	<i>k</i> =5	<i>k</i> =6
PR(v1)	0.25	0.37	0.43	0.35	0.39	0.38	0.38
PR(v2)	0.25	0.08	0.12	0.14	0.11	0.13	0.13
PR(v3)	0.25	0.33	0.27	0.29	0.29	0.28	0.28
PR(v4)	0.25	0.20	0.16	0.20	0.19	0.19	0.19

Google Pregel

- First system that implemented vertex-centric computation for shared-nothing clusters
 - Communication through message passing
- Based on the bulk synchronous parallel (BSP) programming model
 - Supersteps with synchronization barriers
- Apache Giraph was a first open source implementation of Pregel

MapReduce versus

 Requires passing of entire graph topology from one iteration to the next

- Intermediate result after each iteration is stored on disk and then read again from disk
- Programmer needs to write a driver program to support iterations, and another M/R job to check for fixed point

Pregel

- Graph topology is not passed across iterations, vertexes only send their state to their neighbors
- Main memory based

 Usage of supersteps and master-client architecture makes programming easy

Limitation of Pregel

- In the BSP model, performance is • limited by slowest worker machine
 - Many real-world graphs have power-law degree distribution, which may lead to few highlyloaded workers

TDDD43 – Advanced Data Models and Databases, HT 2017 Topic: Graph Data Olaf Hartig

Processors

Local Computation

Barrier Synchronisation

Local

Computation

Communication

Superstep

Limitation of Pregel

- In the BSP model, performance is limited by slowest worker machine
 - Many real-world graphs have power-law degree distribution, which may lead to few highlyloaded workers
- Possible optimizations to balance the workload:
 - Decompose the vertex program
 - Sophisticated graph partitioning
 - Graph-centric abstraction
- Another possibility: asynchronous execution (instead of BSP)

Combiner

- Takes two messages and combines them into one
 Associative, commutative function
- Can be used to aggregate messages before sending them to the worker node that has the target vertex
- Example:
 - In the vertex-centric PageRank, messages are values $m_{IN} = (Pr_k(v_{IN}) / |Out(v_{IN})|)$ of each incoming neighbor v_{IN}
 - In the vertex function these values are summed up: $(\Pr_k(v_{IN1}) / |Out(v_{IN1})|) + (\Pr_k(v_{IN2}) / |Out(v_{IN2})|) + ...$
 - Parts of this sum may be computed by worker nodes that have some of the incoming neighbor vertexes

Signal/Collect Model

- Signaling (edge function):
 - Every edge uses the value of its source vertex to compute a message ("signal") for the target vertex
 - Executed on the worker that has the source vertex
- Collecting (vertex function):
 - Every vertex computes its new value based on the messages received from its incoming edges
 - Executed on the worker that has the target vertex

Gather, Apply, Scatter (GAS) Model

- Gather:
 - Accumulate incoming messages,
 i.e., same purpose as a combiner
- Apply:
 - Update the vertex value based on the accumulated information
 - Operates only on the vertex
- Scatter:
 - Computes outgoing messages
 - Can be executed in parallel for each adjacent edge

Limitation of Pregel

- In the BSP model, performance is limited by slowest worker machine
 - Many real-world graphs have power-law degree distribution, which may lead to few highlyloaded workers
- Possible optimizations to balance the workload:
 - Decompose the vertex program
 - Sophisticated graph partitioning
 - Graph-centric abstraction
- Another possibility: asynchronous execution (instead of BSP)

Partitioning

• **Goal:** distribute the vertexes to achieve a balanced workload while minimizing inter-partition edges to avoid costly network traffic

- For instance, hash-based (random) partitioning has extremely poor locality
- Unfortunately, the problem is NP-complete
 - k-way graph partitioning problem
- Various heuristics and approximation algorithms

Vertex-Cut

- PowerGraph introduced a partitioning scheme that "cuts" vertexes such that the edges of high-degree vertexes are handled by multiple workers
 - improved work balance

- Power-law graphs have good vertex cuts
 - Communication is linear in the number of machines each vertex spans
 - Vertex-cut minimizes this number
 - Hence, reduced network traffic

Limitation of Pregel

- In the BSP model, performance is limited by slowest worker machine
 - Many real-world graphs have power-law degree distribution, which may lead to few highlyloaded workers
- Possible optimizations to balance the workload:
 - Decompose the vertex program
 - Sophisticated graph partitioning
 - Graph-centric abstraction
- Another possibility: asynchronous execution (instead of BSP)

Acknowledgements:

• Some of the slides about graph processing systems are from a slideset of Sherif Sakr. Thanks Sherif!

Image sources:

- Example Property Graph http://tinkerpop.apache.org/docs/current/tutorials/getting-started/
 BSP Illustration https://en.wikipedia.org/wiki/Bulk_synchronous_parallel
 Smiley https://commons.wikimedia.org/wiki/File:Face-smile.svg
 Frowny https://commons.wikimedia.org/wiki/File:Face-sad.svg

- Powerlaw charts http://www9.org/w9cdrom/160/160.html

www.liu.se

