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Graphs are Everywhere

• Transportation networks

• Bibliographic networks

• Computer networks

• Social networks

• Topic maps

• Knowledge bases

• Protein interactions

• Biological food chains

• etc.
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Different Graph Data Systems

• Triple stores

• Data model: RDF

• Typically, pattern matching queries

• Graph databases

• Prevalent data model: property graphs

• Typically, navigational queries

• Graph processing systems

• Prevalent data model: generic graphs

• Typically, complex graph analysis tasks



Graph Data Models
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Recap of RDF Data Model

• Data is represented as a set of triples 

• A triple: (subject, predicate, object)

• Subject: resources

• Predicate: properties

• Object: literals or resources

• Such a set of triples may be understood as a graph

• Triples as directed edges

• Subjects and objects as vertexes

• Edges labeled by predicate

• W3C recommendation and standardization
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Property Graph

• “A property graph is made up of nodes, relationships, and properties.

• Nodes contain properties […] in the form of arbitrary key-value pairs. The 

keys are strings and the values are arbitrary data types.

• A relationship always has a direction, a label, and a start node and an 

end node.

• Like nodes, relationships can also have properties.” [1]

[1] Ian Robinson, Jim Webber, and Emil Eifr ém. Graph Databases. O’Reilly Media, 2013. 
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(Labeled) Property Graph
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(Labeled) Property Graph

• Directed multigraph

• Multiple edges between the same pair of nodes

• Any node and any edge may have a label

• Any node and any edge may have an arbitrary set of key-

value pairs (“properties”)
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Property Graphs versus RDF Graphs

• Similarities

• Directed multigraphs

• Labels on edges and on nodes

• Attributes with values on nodes

• Differences

• No edge properties in RDF graphs

• Edge labels cannot appear as nodes in a PG (in RDF, we may have 

<s1, p1, o1> and <p1, p2, o2>)

• No multivalued (node) properties in a PG

• Node and edge identifiers in a PG are local to the PG, while URIs in 

RDF graphs are globally unique identifiers
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Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A     rdf:type     ex:Restaurant
ex:restaurant_A     ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A     ex:hasSite     ex:Linköping
ex:restaurant_A     ex:startDate    “2012-02-01”

ex:restaurant_B     rdf:type     ex:Restaurant
ex:restaurant_B     ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B     ex:hasSite     ex:Linköping
ex:restaurant_B     ex:startDate    “2013-02-01”

ex:Linköping      rdf:type      ex:City
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Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A     rdf:type     ex:Restaurant
ex:restaurant_A     ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A     ex:hasSite     ex:Linköping
ex:restaurant_A     ex:startDate    “2012-02-01”

ex:restaurant_B     rdf:type     ex:Restaurant
ex:restaurant_B     ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B     ex:hasSite     ex:Linköping
ex:restaurant_B     ex:startDate    “2013-02-01”

ex:Linköping      rdf:type      ex:City Nodes 
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Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A     rdf:type     ex:Restaurant
ex:restaurant_A     ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A     ex:hasSite     ex:Linköping
ex:restaurant_A     ex:startDate    “2012-02-01”

ex:restaurant_B     rdf:type     ex:Restaurant
ex:restaurant_B     ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B     ex:hasSite     ex:Linköping
ex:restaurant_B     ex:startDate    “2013-02-01”

ex:Linköping      rdf:type      ex:City Nodes 
Labels (Nodes)
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Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A     rdf:type     ex:Restaurant
ex:restaurant_A     ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A     ex:hasSite     ex:Linköping
ex:restaurant_A     ex:startDate    “2012-02-01”

ex:restaurant_B     rdf:type     ex:Restaurant
ex:restaurant_B     ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B     ex:hasSite     ex:Linköping
ex:restaurant_B     ex:startDate    “2013-02-01”

ex:Linköping      rdf:type      ex:City Labels (Edges)
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Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A     rdf:type     ex:Restaurant
ex:restaurant_A     ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A     ex:hasSite     ex:Linköping
ex:restaurant_A     ex:startDate    “2012-02-01”

ex:restaurant_B     rdf:type     ex:Restaurant
ex:restaurant_B     ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B     ex:hasSite     ex:Linköping
ex:restaurant_B     ex:startDate    “2013-02-01”

ex:Linköping      rdf:type      ex:City Properties  
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Generic Graphs

• Data model

• Directed multigraphs

• Arbitrary user-defined data structure can be used as value 

of a vertex (node) or an edge (e.g., a Java object)

• Example (Apache Flink Gelly API for Graph processing)

• Pros: give users maximum flexibility for representing graphs

• Cons: systems cannot provide built-in operators related to 

vertex data or edge data

// create new vertexes with a Long ID and a String value

Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");

Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");

Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);
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Examples of Graph DB Systems

• Systems that focus on graph databases

• Neo4j

• Sparksee

• Titan

• Infinite Graph

• Multi-model NoSQL databases with support 

for graphs

• OrientDB

• ArangoDB

• Triple stores with Apache TinkerPop support

• Stardog
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Apache TinkerPop

• Graph computing framework

• Vendor-agnostic

• For graph databases (a graph structure API)

• Formerly known as Blueprints API

• Creating and modifying property graphs

• Example:

• For graph analytic systems (a process API)

• Graph-parallel engine

• Graph traversal/query, based on Gremlin language



Query Languages
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Gremlin Graph Traversal (Query) Language

• Part of the Apache TinkerPop framework

• Powerful domain-specific language (DSL) with embeddings in 

different programming languages

• Expressions specify a concatenation of traversal steps

• A chain of operations/functions that are evaluated from left to right

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)
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Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

1

2

1

2

Result:

==> vadas

==> josh
• g: for the current graph traversal

• V(): for all vertices in the graph

• has(‘name’, ‘marko’): filters the vertices 

down to those with ‘name’ property ‘marko’

• out(‘knows’): traverse outgoing ‘knows’ 

      edges

• values(‘name’): extracts the values of 

      ‘name’ property
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Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’).path()
Result:

==> [v[1],v[2],vadas]

==> [v[1],v[4],josh]

1

2

1

2

• g: for the current graph traversal

• V(): for all vertices in the graph

• has(‘name’, ‘marko’): filters the vertices down 

to those with ‘name’ property ‘marko’

• out(‘knows’): traverse outgoing ‘knows’ 

      edges

• values(‘name’): extracts the values of 

      ‘name’ property

• path(): returns the history of the 

      traverser
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Gremlin Examples

g.V().has(‘name’, ‘marko’).repeat(out()).times(2).path().by(‘name’)

or

g.V().until(‘name’, ‘ripple’).repeat(out()).path().by(‘name’)

Result: ==> [marko, josh, ripple]

             ==> [marko, josh, lop]

• times(N): the number of traverses (N)

• by(‘name’): element property projection

• repeat(): loops over a traversal given some 

break predicate

Result: ==> [marko, josh, ripple]

             ==> [josh, ripple]

             ==> [ripple]
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Cypher

• Declarative graph database query language

• Proprietary (used by Neo4j)

• The OpenCypher project aims to deliver an open specification

• Example

• Recall our initial Gremlin example

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

• In Cypher, we could express this query as follows:

MATCH( {name: ‘marko’} )-[:knows]->( x )

RETURN x.name
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Possible Clauses in Cypher Queries

• CREATE - creates nodes and edges 
• DELETE - removes nodes, edges, properties 
• SET - sets values of properties 
• MATCH - specifies a pattern to match in the data graph 
• WHERE - filters pattern matching results 
• RETURN - which nodes / edges / properties in the matched data 

should be returned 
• UNION - merges results from two or more queries 
• WITH - chains subsequent query parts  (like piping in Unix 

commands) 
• manipulate the output before it is passed on to the following 

query parts
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Node Patterns in Cypher

• Node patterns may have different forms
( ) – matches any node
(:person)-> – matches nodes whose label is person
( {name: ‘marko’} ) – matches nodes having a property name=‘marko’
(:person {name: ‘marko’} ) – matches nodes having both the label 
         person and a property name=‘marko’

• Every node pattern can be assigned a variable
• Can be used to refer to the matching node in another query clause 

or to express joins
• For instance, (x), (x:person)
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Relationship Patterns in Cypher

• Relationship pattern must be placed between two node patterns and it 
may have different forms

--> or <-- – matches any edge (with the given direction)
-[:knows]-> – matches edges whose label is knows
-[ {weight:0.5} ]-> – matches edges having a property weight=0.5
-[:knows {weight:0.5} ]-> – matches edges having both the label 

         knows and a property weight=0.5
       -[:knows*..4]-> – matches paths of knows edges of up to length 4

• Every relationship pattern can be assigned a variable
• For instance, -[x:knows]-> 
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More complex Cypher Patterns

• Node patterns and relationship patterns are just basic building blocks 
that can be combined into more complex patterns

• MATCH: searches for an existing node, relationship, label, property, or pattern in 
the database (like SELECT in SQL).

• RETURN: specifies what values or results you might want to return from a Cypher 
query.

• Examples:
MATCH (a)-[:knows]->()-[:knows]->(a)
RETURN a

MATCH p=shortestPath(
    (:person {name: ‘marko’})-[*]->(:person {name:‘josh’})
  )
RETURN p
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Filtering in Cypher

• Pattern matching results can be filtered out by using WHERE clause
• Examples:

▪ MATCH (a:person)-[x:knows]->(b:person)
     WHERE x.weight >0.5 AND x.weight<0.9
     RETURN a, b

▪ MATCH ()-[x:knows]->()
     WHERE exists(x.weight)
     RETURN x

▪ MATCH (a)-[:knows]->(b)-[x:knows]->(c)
     WHERE NOT (a)-[:knows]->(c) 
     RETURN a, b, c
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Updating in Cypher

• CREATE, SET, DELETE, REMOVE
• Examples:

▪ CREATE (friend:Person {name: 'Mark’}) 
    RETURN friend
▪ MATCH (a:person)-[x:knows]->(b:person)
     SET x.weight = 0.5
     RETURN x
▪ MATCH ()-[x:knows]->()
     WHERE NOT exists(x.weight)
     DELETE x
▪ MATCH (a:person)-[:knows]->(b)-[x:knows]->(c)
     REMOVE a.organization



Graph Processing Systems
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Complex Graph Analysis Tasks?

• Tasks that require an iterative processing of the entire 

graph or large portions

• Examples

• Centrality analysis (e.g., PageRank)

• Clustering, connected components

• Graph coloring

• All-pairs shortest path

• Graph pattern mining (e.g., frequent sub-graphs, 

community detection)

• Machine learning
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Properties of Computation on Graphs

• Dependency graph

• Dependencies among vertexes 

• Local updates

• The value of a vertex is only influenced by its 

neighbours

• Iterative Computation

• E.g., PageRank
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PageRank

• Google Search

• A link analysis algorithm

• An algorithm to rank web pages in results from search engine

• Measuring the importance of website pages

• Counting number and quality of links to a page for 

determining how important a website is
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Example: PageRank, simplified version

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

V1

V2

V3

V4

PRk(v): the value of a webpage v in the kth iteration of computing
vin: the set of vertexes that have outgoing edges (link) to v
vout: the set of vertexes that have incoming edges from v
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Example: PageRank

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
               =      PR1(V3)/1      +          PR1(V4)/2
               =          0.25/1        +          0.25/2
               =                          0.375
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Example: PageRank

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.45 0.39 0.38 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
               =      PR1(V3)/1      +          PR1(V4)/2
               =          0.25/1        +          0.25/2
               =                          0.375
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Observation

• Many such algorithms iteratively propagate data along the 

graph structure by transforming intermediate vertex and edge 

values

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
               =      PR1(V3)/1      +          PR1(V4)/2
               =          0.25/1        +          0.25/2
               =                          0.375
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Can we use MapReduce?
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Can we use MapReduce?

• Map: 

• produces weights of a vertex that assigns to other vertexes e.g., (V3, (0.25,[V1]) ), (V4, (0.125, [V1,V3]) )

• For iterations, keeps topology information, e.g., (V3, [V1]), (V4, [V1,V3])

• For checking convergence, keeps vertexes’ values, e.g., (V3, 0.25), (V4, 0.25)

• Reduce

• Handle all the above (3 kinds) information, computes new values and compares with values from last 

iteration

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
               =      PR1(V3)/1      +          PR1(V4)/2
               =          0.25/1        +          0.25/2
               =                          0.375



Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

• MapReduce does not directly support iterative 

algorithms

• Materializing intermediate results at each M/R 

iteration harms performance

• Extra M/R job on each iteration for checking 

whether a fixed point has been reached

• Additional issue for graph algorithms

• Invariant graph-topology data reloaded and 

reprocessed at each iteration

• Wastes I/O, CPU, and network bandwidth
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Graph Processing Systems

• Pregel Family

• GraphLab Family

• Other Systems
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Vertex-centric Abstraction

• Many such algorithms iteratively propagate data along the 
graph structure by transforming intermediate vertex and edge 
values

• These transformations are defined in terms of functions on 
the values of adjacent vertexes and edges

• Hence, such algorithms can be expressed by specifying a 
function that can be applied to any vertex separately

• “Think like a vertex”
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Vertex-centric Abstraction

• Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

• Additionally, the function may “vote to halt” if a local 
convergence criterion is met

• Overall execution can be parallelized! 
• Terminates when all vertexes have halted and no messages in 

transit
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Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25
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Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

0.083

0.125
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Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25 0.20

0.083

0.125



Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25 0.08

PRk(V3) 0.25 0.33

PRk(V4) 0.25 0.20

0.083

0.125
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Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25 0.08

PRk(V3) 0.25 0.33

PRk(V4) 0.25 0.20

0.1

0.1
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Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.35 0.39 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19
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Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local 
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19
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Graph Processing Systems

• Pregel Family

• GraphLab Family

• Other Systems

Apache Flink: iterative Graph Processing: https://nightlies.apache.org/flink/flink-docs-release-
1.7/dev/libs/gelly/iterative_graph_processing.html
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Bulk Synchronous Parallel (BSP)

• Bulk Synchronous Parallel (BSP) programming 
model
• A sequence of iterations (each called a superstep)
• Supersteps with synchronization barriers
• During a superstep, a user-defined function is invoked 

for each vertex

• BSP algorithms features
• Concurrent computation: every participating processor 

may perform local computations
• Communication: The processes exchange data to 

facilitate remote data storage
• Barrier synchronization: When a process reaches this 

point (the barrier), it waits until all other processes 
have reached the same barrier

• Application
• Google Pregel
• BSP on top of Hadoop (open project)
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Google Pregel (vertex-centric)

• To solve problems which are difficult to solve using MapReduce

• Each vertex has two statuses:
• Active and inactive (halt)

• Initially, every vertex is active
• Each vertex sends messages to neighbors
• Within a superstep: after a vertex receives a message, based on its 

function and criterion, it may need to compute a new value (active) 
or not (inactive)

• Start next superstep, the computation ends until all vertex are 
inactive (no need to compute)
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Google Pregel

• In each superstep, each vertex 
executes one user-defined 
function

• Vertices communicate with 
other vertices through 
messages

• A vertex can send a message to 
any other vertex in the graph, as 
long as it knows its unique ID

• In each superstep, all active 
vertices execute the same user-
defined computation in parallel

• User only need to define one 
vertex compute function
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MapReduce versus Pregel

• Requires passing of entire 
graph topology from one 
iteration to the next

• Intermediate result after 
each iteration is stored on 
disk and then read again 
from disk

• Programmer needs to write
a driver program to support 
iterations, and another M/R 
job to check for fixed point

• Graph topology is not 
passed across iterations, 
vertexes only send their 
state to their neighbors

• Main memory based

• Usage of supersteps and 
master-client architecture 
makes programming easy

MapReduce Pregel
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Google Pregel

power-law degree distribution!
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Google Pregel (BSP) Limitations

• In the BSP (bulk synchronous parallel) model, performance is limited by 
slowest worker machine

• Many real-world graphs have power-law degree distribution, which 
may lead to few highly-loaded workers

• A single vertex has more out-edges than in-edges, or vice versa
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Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)
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Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)
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Combiner

• Takes two messages and combines them into one associative, commutative 
function

• Can be used to aggregate messages before sending them to the worker 
node that has the target vertex

• Example:

• In the vertex-centric PageRank, messages are values 𝑚𝐼𝑁 =
𝑃𝑅𝑘 𝑣′

𝑣′𝑜𝑢𝑡
 of 

each incoming neighbor 𝑣𝑖𝑛.
• In the vertex function these values are summed up
• Parts of this sum may be computed by worker nodes that have some of 

the incoming neighbor vertexes
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Signal/Collect Model 

• Also known as Scatter-Gather Iterations, vertex-centric
• Scatter/Signaling (edge function):

• Every edge uses the value of its source vertex to compute a 
message (“signal”) for the target vertex

• Executed on the worker that has the source vertex
• Main task: produces the messages that a vertex will send to other 

vertices

• Gather/Collecting (vertex function):
• Every vertex computes its new value based on the messages 

received from its incoming edges
• Executed on the worker that has the target vertex
• Main task: updates the vertex value using received messages
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Pregel vs Scatter-Gather

• Similarities
• Vertex-centric
• Pregel, Scatter-Gather, parallelism based on vertex computations

• Differences
• In Pregel, user defines one single vertex compute function
• In Scatter-Gather, user defines two functions 

• Scatter function for sending messages
• Gather function for updating values

• Scatter-Gather decouples sending messages and updating values
• Easy to maintain
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Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)
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Graph Partitioning

Original graph Vertex partitioning/Edge-cut
Edge partitioning/Vertex-cut

• The goals of graph partitioning
• Load balancing, to decrease memory usage
• Minimize cuts, to decrease communications

• Unfortunately, the problem is NP-complete
• Various heuristics and approximation algorithms
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Vertex-Cut

• PowerGraph, a framework for large-scale machine learning and graph 
computation

• PowerGraph introduced a partitioning scheme that “cuts” vertexes 
such that the edges of high-degree vertexes are handled by multiple 
workers

• improved work balance
• Power-law graphs (some node has a large number of edges) have good 

vertex-cuts
• Communication is linear in the number of machines each vertex 

spans
• Vertex-cut minimizes this number
• Hence, reduced network traffic
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Summary

• NoSQL Data Models

• Key-value model

• Document model

• Wide-Column model

• Graph Data Model

• Graph Processing for generic graphs
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