
TDDD43 Advanced Data Models and
Databases

Graph Data Systems

Huanyu Li
huanyu.li@liu.se

Based on slides by Olaf Hartig

mailto:huanyu.li@liu.se

Advanced Data Models and Databases
Graph Data Systems

Outline

➢ Graph Data Models

➢ Query Languages

➢ Graph Processing Systems

Advanced Data Models and Databases
Graph Data Systems

Graphs are Everywhere

• Transportation networks

• Bibliographic networks

• Computer networks

• Social networks

• Topic maps

• Knowledge bases

• Protein interactions

• Biological food chains

• etc.

Advanced Data Models and Databases
Graph Data Systems

Different Graph Data Systems

• Triple stores

• Data model: RDF

• Typically, pattern matching queries

• Graph databases

• Prevalent data model: property graphs

• Typically, navigational queries

• Graph processing systems

• Prevalent data model: generic graphs

• Typically, complex graph analysis tasks

Graph Data Models

Advanced Data Models and Databases
Graph Data Systems

Recap of RDF Data Model

• Data is represented as a set of triples

• A triple: (subject, predicate, object)

• Subject: resources

• Predicate: properties

• Object: literals or resources

• Such a set of triples may be understood as a graph

• Triples as directed edges

• Subjects and objects as vertexes

• Edges labeled by predicate

• W3C recommendation and standardization

Advanced Data Models and Databases
Graph Data Systems

Property Graph

• “A property graph is made up of nodes, relationships, and properties.

• Nodes contain properties […] in the form of arbitrary key-value pairs. The

keys are strings and the values are arbitrary data types.

• A relationship always has a direction, a label, and a start node and an

end node.

• Like nodes, relationships can also have properties.” [1]

[1] Ian Robinson, Jim Webber, and Emil Eifr ém. Graph Databases. O’Reilly Media, 2013.

Advanced Data Models and Databases
Graph Data Systems

(Labeled) Property Graph

Advanced Data Models and Databases
Graph Data Systems

(Labeled) Property Graph

• Directed multigraph

• Multiple edges between the same pair of nodes

• Any node and any edge may have a label

• Any node and any edge may have an arbitrary set of key-

value pairs (“properties”)

Advanced Data Models and Databases
Graph Data Systems

Property Graphs versus RDF Graphs

• Similarities

• Directed multigraphs

• Labels on edges and on nodes

• Attributes with values on nodes

• Differences

• No edge properties in RDF graphs

• Edge labels cannot appear as nodes in a PG (in RDF, we may have

<s1, p1, o1> and <p1, p2, o2>)

• No multivalued (node) properties in a PG

• Node and edge identifiers in a PG are local to the PG, while URIs in

RDF graphs are globally unique identifiers

Advanced Data Models and Databases
Graph Data Systems

Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A rdf:type ex:Restaurant
ex:restaurant_A ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A ex:hasSite ex:Linköping
ex:restaurant_A ex:startDate “2012-02-01”

ex:restaurant_B rdf:type ex:Restaurant
ex:restaurant_B ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B ex:hasSite ex:Linköping
ex:restaurant_B ex:startDate “2013-02-01”

ex:Linköping rdf:type ex:City

Advanced Data Models and Databases
Graph Data Systems

Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A rdf:type ex:Restaurant
ex:restaurant_A ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A ex:hasSite ex:Linköping
ex:restaurant_A ex:startDate “2012-02-01”

ex:restaurant_B rdf:type ex:Restaurant
ex:restaurant_B ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B ex:hasSite ex:Linköping
ex:restaurant_B ex:startDate “2013-02-01”

ex:Linköping rdf:type ex:City Nodes

Advanced Data Models and Databases
Graph Data Systems

Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A rdf:type ex:Restaurant
ex:restaurant_A ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A ex:hasSite ex:Linköping
ex:restaurant_A ex:startDate “2012-02-01”

ex:restaurant_B rdf:type ex:Restaurant
ex:restaurant_B ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B ex:hasSite ex:Linköping
ex:restaurant_B ex:startDate “2013-02-01”

ex:Linköping rdf:type ex:City Nodes
Labels (Nodes)

Advanced Data Models and Databases
Graph Data Systems

Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A rdf:type ex:Restaurant
ex:restaurant_A ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A ex:hasSite ex:Linköping
ex:restaurant_A ex:startDate “2012-02-01”

ex:restaurant_B rdf:type ex:Restaurant
ex:restaurant_B ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B ex:hasSite ex:Linköping
ex:restaurant_B ex:startDate “2013-02-01”

ex:Linköping rdf:type ex:City Labels (Edges)

Advanced Data Models and Databases
Graph Data Systems

Exercise: converting RDF to Property Graph

• Given a set of RDF triples

ex:restaurant_A rdf:type ex:Restaurant
ex:restaurant_A ex:hasWebsite “http://resaurtantA.org”
ex:restaurant_A ex:hasSite ex:Linköping
ex:restaurant_A ex:startDate “2012-02-01”

ex:restaurant_B rdf:type ex:Restaurant
ex:restaurant_B ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B ex:hasSite ex:Linköping
ex:restaurant_B ex:startDate “2013-02-01”

ex:Linköping rdf:type ex:City Properties

Advanced Data Models and Databases
Graph Data Systems

Generic Graphs

• Data model

• Directed multigraphs

• Arbitrary user-defined data structure can be used as value

of a vertex (node) or an edge (e.g., a Java object)

• Example (Apache Flink Gelly API for Graph processing)

• Pros: give users maximum flexibility for representing graphs

• Cons: systems cannot provide built-in operators related to

vertex data or edge data

// create new vertexes with a Long ID and a String value

Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");

Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");

Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);

Advanced Data Models and Databases
Graph Data Systems

Examples of Graph DB Systems

• Systems that focus on graph databases

• Neo4j

• Sparksee

• Titan

• Infinite Graph

• Multi-model NoSQL databases with support

for graphs

• OrientDB

• ArangoDB

• Triple stores with Apache TinkerPop support

• Stardog

Advanced Data Models and Databases
Graph Data Systems

Apache TinkerPop

• Graph computing framework

• Vendor-agnostic

• For graph databases (a graph structure API)

• Formerly known as Blueprints API

• Creating and modifying property graphs

• Example:

• For graph analytic systems (a process API)

• Graph-parallel engine

• Graph traversal/query, based on Gremlin language

Query Languages

Advanced Data Models and Databases
Graph Data Systems

Gremlin Graph Traversal (Query) Language

• Part of the Apache TinkerPop framework

• Powerful domain-specific language (DSL) with embeddings in

different programming languages

• Expressions specify a concatenation of traversal steps

• A chain of operations/functions that are evaluated from left to right

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

Advanced Data Models and Databases
Graph Data Systems

Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

1

2

1

2

Result:

==> vadas

==> josh
• g: for the current graph traversal

• V(): for all vertices in the graph

• has(‘name’, ‘marko’): filters the vertices

down to those with ‘name’ property ‘marko’

• out(‘knows’): traverse outgoing ‘knows’

 edges

• values(‘name’): extracts the values of

 ‘name’ property

Advanced Data Models and Databases
Graph Data Systems

Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’).path()
Result:

==> [v[1],v[2],vadas]

==> [v[1],v[4],josh]

1

2

1

2

• g: for the current graph traversal

• V(): for all vertices in the graph

• has(‘name’, ‘marko’): filters the vertices down

to those with ‘name’ property ‘marko’

• out(‘knows’): traverse outgoing ‘knows’

 edges

• values(‘name’): extracts the values of

 ‘name’ property

• path(): returns the history of the

 traverser

Advanced Data Models and Databases
Graph Data Systems

Gremlin Examples

g.V().has(‘name’, ‘marko’).repeat(out()).times(2).path().by(‘name’)

or

g.V().until(‘name’, ‘ripple’).repeat(out()).path().by(‘name’)

Result: ==> [marko, josh, ripple]

 ==> [marko, josh, lop]

• times(N): the number of traverses (N)

• by(‘name’): element property projection

• repeat(): loops over a traversal given some

break predicate

Result: ==> [marko, josh, ripple]

 ==> [josh, ripple]

 ==> [ripple]

Advanced Data Models and Databases
Graph Data Systems

Cypher

• Declarative graph database query language

• Proprietary (used by Neo4j)

• The OpenCypher project aims to deliver an open specification

• Example

• Recall our initial Gremlin example

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

• In Cypher, we could express this query as follows:

MATCH({name: ‘marko’})-[:knows]->(x)

RETURN x.name

Advanced Data Models and Databases
Graph Data Systems

Possible Clauses in Cypher Queries

• CREATE - creates nodes and edges
• DELETE - removes nodes, edges, properties
• SET - sets values of properties
• MATCH - specifies a pattern to match in the data graph
• WHERE - filters pattern matching results
• RETURN - which nodes / edges / properties in the matched data

should be returned
• UNION - merges results from two or more queries
• WITH - chains subsequent query parts (like piping in Unix

commands)
• manipulate the output before it is passed on to the following

query parts

Advanced Data Models and Databases
Graph Data Systems

Node Patterns in Cypher

• Node patterns may have different forms
() – matches any node
(:person)-> – matches nodes whose label is person
({name: ‘marko’}) – matches nodes having a property name=‘marko’
(:person {name: ‘marko’}) – matches nodes having both the label
 person and a property name=‘marko’

• Every node pattern can be assigned a variable
• Can be used to refer to the matching node in another query clause

or to express joins
• For instance, (x), (x:person)

Advanced Data Models and Databases
Graph Data Systems

Relationship Patterns in Cypher

• Relationship pattern must be placed between two node patterns and it
may have different forms

--> or <-- – matches any edge (with the given direction)
-[:knows]-> – matches edges whose label is knows
-[{weight:0.5}]-> – matches edges having a property weight=0.5
-[:knows {weight:0.5}]-> – matches edges having both the label

 knows and a property weight=0.5
 -[:knows*..4]-> – matches paths of knows edges of up to length 4

• Every relationship pattern can be assigned a variable
• For instance, -[x:knows]->

Advanced Data Models and Databases
Graph Data Systems

More complex Cypher Patterns

• Node patterns and relationship patterns are just basic building blocks
that can be combined into more complex patterns

• MATCH: searches for an existing node, relationship, label, property, or pattern in
the database (like SELECT in SQL).

• RETURN: specifies what values or results you might want to return from a Cypher
query.

• Examples:
MATCH (a)-[:knows]->()-[:knows]->(a)
RETURN a

MATCH p=shortestPath(
 (:person {name: ‘marko’})-[*]->(:person {name:‘josh’})
)
RETURN p

Advanced Data Models and Databases
Graph Data Systems

Filtering in Cypher

• Pattern matching results can be filtered out by using WHERE clause
• Examples:

▪ MATCH (a:person)-[x:knows]->(b:person)
 WHERE x.weight >0.5 AND x.weight<0.9
 RETURN a, b

▪ MATCH ()-[x:knows]->()
 WHERE exists(x.weight)
 RETURN x

▪ MATCH (a)-[:knows]->(b)-[x:knows]->(c)
 WHERE NOT (a)-[:knows]->(c)
 RETURN a, b, c

Advanced Data Models and Databases
Graph Data Systems

Updating in Cypher

• CREATE, SET, DELETE, REMOVE
• Examples:

▪ CREATE (friend:Person {name: 'Mark’})
 RETURN friend
▪ MATCH (a:person)-[x:knows]->(b:person)
 SET x.weight = 0.5
 RETURN x
▪ MATCH ()-[x:knows]->()
 WHERE NOT exists(x.weight)
 DELETE x
▪ MATCH (a:person)-[:knows]->(b)-[x:knows]->(c)
 REMOVE a.organization

Graph Processing Systems

Advanced Data Models and Databases
Graph Data Systems

Complex Graph Analysis Tasks?

• Tasks that require an iterative processing of the entire

graph or large portions

• Examples

• Centrality analysis (e.g., PageRank)

• Clustering, connected components

• Graph coloring

• All-pairs shortest path

• Graph pattern mining (e.g., frequent sub-graphs,

community detection)

• Machine learning

Advanced Data Models and Databases
Graph Data Systems

Properties of Computation on Graphs

• Dependency graph

• Dependencies among vertexes

• Local updates

• The value of a vertex is only influenced by its

neighbours

• Iterative Computation

• E.g., PageRank

Advanced Data Models and Databases
Graph Data Systems

PageRank

• Google Search

• A link analysis algorithm

• An algorithm to rank web pages in results from search engine

• Measuring the importance of website pages

• Counting number and quality of links to a page for

determining how important a website is

Advanced Data Models and Databases
Graph Data Systems

Example: PageRank, simplified version

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

V1

V2

V3

V4

PRk(v): the value of a webpage v in the kth iteration of computing
vin: the set of vertexes that have outgoing edges (link) to v
vout: the set of vertexes that have incoming edges from v

Advanced Data Models and Databases
Graph Data Systems

Example: PageRank

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Example: PageRank

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.45 0.39 0.38 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Observation

• Many such algorithms iteratively propagate data along the

graph structure by transforming intermediate vertex and edge

values

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

• Map:

• produces weights of a vertex that assigns to other vertexes e.g., (V3, (0.25,[V1])), (V4, (0.125, [V1,V3]))

• For iterations, keeps topology information, e.g., (V3, [V1]), (V4, [V1,V3])

• For checking convergence, keeps vertexes’ values, e.g., (V3, 0.25), (V4, 0.25)

• Reduce

• Handle all the above (3 kinds) information, computes new values and compares with values from last

iteration

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

• MapReduce does not directly support iterative

algorithms

• Materializing intermediate results at each M/R

iteration harms performance

• Extra M/R job on each iteration for checking

whether a fixed point has been reached

• Additional issue for graph algorithms

• Invariant graph-topology data reloaded and

reprocessed at each iteration

• Wastes I/O, CPU, and network bandwidth

Advanced Data Models and Databases
Graph Data Systems

Graph Processing Systems

• Pregel Family

• GraphLab Family

• Other Systems

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric Abstraction

• Many such algorithms iteratively propagate data along the
graph structure by transforming intermediate vertex and edge
values

• These transformations are defined in terms of functions on
the values of adjacent vertexes and edges

• Hence, such algorithms can be expressed by specifying a
function that can be applied to any vertex separately

• “Think like a vertex”

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric Abstraction

• Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

• Additionally, the function may “vote to halt” if a local
convergence criterion is met

• Overall execution can be parallelized!
• Terminates when all vertexes have halted and no messages in

transit

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

0.083

0.125

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25 0.20

0.083

0.125

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25 0.08

PRk(V3) 0.25 0.33

PRk(V4) 0.25 0.20

0.083

0.125

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25 0.08

PRk(V3) 0.25 0.33

PRk(V4) 0.25 0.20

0.1

0.1

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.35 0.39 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

Advanced Data Models and Databases
Graph Data Systems

Graph Processing Systems

• Pregel Family

• GraphLab Family

• Other Systems

Apache Flink: iterative Graph Processing: https://nightlies.apache.org/flink/flink-docs-release-
1.7/dev/libs/gelly/iterative_graph_processing.html

Advanced Data Models and Databases
Graph Data Systems

Bulk Synchronous Parallel (BSP)

• Bulk Synchronous Parallel (BSP) programming
model
• A sequence of iterations (each called a superstep)
• Supersteps with synchronization barriers
• During a superstep, a user-defined function is invoked

for each vertex

• BSP algorithms features
• Concurrent computation: every participating processor

may perform local computations
• Communication: The processes exchange data to

facilitate remote data storage
• Barrier synchronization: When a process reaches this

point (the barrier), it waits until all other processes
have reached the same barrier

• Application
• Google Pregel
• BSP on top of Hadoop (open project)

| ←
 S

u
p
e
rs

te
p

 →
 |

| ←
 S

u
p
e
rs

te
p

 →
 |

| ←
 S

u
p
e
rs

te
p

 →
 |

Advanced Data Models and Databases
Graph Data Systems

Google Pregel (vertex-centric)

• To solve problems which are difficult to solve using MapReduce

• Each vertex has two statuses:
• Active and inactive (halt)

• Initially, every vertex is active
• Each vertex sends messages to neighbors
• Within a superstep: after a vertex receives a message, based on its

function and criterion, it may need to compute a new value (active)
or not (inactive)

• Start next superstep, the computation ends until all vertex are
inactive (no need to compute)

Advanced Data Models and Databases
Graph Data Systems

Google Pregel

• In each superstep, each vertex
executes one user-defined
function

• Vertices communicate with
other vertices through
messages

• A vertex can send a message to
any other vertex in the graph, as
long as it knows its unique ID

• In each superstep, all active
vertices execute the same user-
defined computation in parallel

• User only need to define one
vertex compute function

Advanced Data Models and Databases
Graph Data Systems

MapReduce versus Pregel

• Requires passing of entire
graph topology from one
iteration to the next

• Intermediate result after
each iteration is stored on
disk and then read again
from disk

• Programmer needs to write
a driver program to support
iterations, and another M/R
job to check for fixed point

• Graph topology is not
passed across iterations,
vertexes only send their
state to their neighbors

• Main memory based

• Usage of supersteps and
master-client architecture
makes programming easy

MapReduce Pregel

Advanced Data Models and Databases
Graph Data Systems

Google Pregel

power-law degree distribution!

Advanced Data Models and Databases
Graph Data Systems

Google Pregel (BSP) Limitations

• In the BSP (bulk synchronous parallel) model, performance is limited by
slowest worker machine

• Many real-world graphs have power-law degree distribution, which
may lead to few highly-loaded workers

• A single vertex has more out-edges than in-edges, or vice versa

Advanced Data Models and Databases
Graph Data Systems

Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)

Advanced Data Models and Databases
Graph Data Systems

Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)

Advanced Data Models and Databases
Graph Data Systems

Combiner

• Takes two messages and combines them into one associative, commutative
function

• Can be used to aggregate messages before sending them to the worker
node that has the target vertex

• Example:

• In the vertex-centric PageRank, messages are values 𝑚𝐼𝑁 =
𝑃𝑅𝑘 𝑣′

𝑣′𝑜𝑢𝑡
 of

each incoming neighbor 𝑣𝑖𝑛.
• In the vertex function these values are summed up
• Parts of this sum may be computed by worker nodes that have some of

the incoming neighbor vertexes

Advanced Data Models and Databases
Graph Data Systems

Signal/Collect Model

• Also known as Scatter-Gather Iterations, vertex-centric
• Scatter/Signaling (edge function):

• Every edge uses the value of its source vertex to compute a
message (“signal”) for the target vertex

• Executed on the worker that has the source vertex
• Main task: produces the messages that a vertex will send to other

vertices

• Gather/Collecting (vertex function):
• Every vertex computes its new value based on the messages

received from its incoming edges
• Executed on the worker that has the target vertex
• Main task: updates the vertex value using received messages

Advanced Data Models and Databases
Graph Data Systems

Pregel vs Scatter-Gather

• Similarities
• Vertex-centric
• Pregel, Scatter-Gather, parallelism based on vertex computations

• Differences
• In Pregel, user defines one single vertex compute function
• In Scatter-Gather, user defines two functions

• Scatter function for sending messages
• Gather function for updating values

• Scatter-Gather decouples sending messages and updating values
• Easy to maintain

Advanced Data Models and Databases
Graph Data Systems

Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)

Advanced Data Models and Databases
Graph Data Systems

Graph Partitioning

Original graph Vertex partitioning/Edge-cut
Edge partitioning/Vertex-cut

• The goals of graph partitioning
• Load balancing, to decrease memory usage
• Minimize cuts, to decrease communications

• Unfortunately, the problem is NP-complete
• Various heuristics and approximation algorithms

Advanced Data Models and Databases
Graph Data Systems

Vertex-Cut

• PowerGraph, a framework for large-scale machine learning and graph
computation

• PowerGraph introduced a partitioning scheme that “cuts” vertexes
such that the edges of high-degree vertexes are handled by multiple
workers

• improved work balance
• Power-law graphs (some node has a large number of edges) have good

vertex-cuts
• Communication is linear in the number of machines each vertex

spans
• Vertex-cut minimizes this number
• Hence, reduced network traffic

Advanced Data Models and Databases
Graph Data Systems

Summary

• NoSQL Data Models

• Key-value model

• Document model

• Wide-Column model

• Graph Data Model

• Graph Processing for generic graphs

www.liu.se

http://www.liu.se/

	Slide 1: TDDD43 Advanced Data Models and Databases
	Slide 2: Outline
	Slide 3: Graphs are Everywhere
	Slide 4: Different Graph Data Systems
	Slide 5
	Slide 6: Recap of RDF Data Model
	Slide 7: Property Graph
	Slide 8: (Labeled) Property Graph
	Slide 9: (Labeled) Property Graph
	Slide 10: Property Graphs versus RDF Graphs
	Slide 11: Exercise: converting RDF to Property Graph
	Slide 12: Exercise: converting RDF to Property Graph
	Slide 13: Exercise: converting RDF to Property Graph
	Slide 14: Exercise: converting RDF to Property Graph
	Slide 15: Exercise: converting RDF to Property Graph
	Slide 16: Generic Graphs
	Slide 17: Examples of Graph DB Systems
	Slide 18: Apache TinkerPop
	Slide 19
	Slide 20: Gremlin Graph Traversal (Query) Language
	Slide 21: Gremlin Examples
	Slide 22: Gremlin Examples
	Slide 23: Gremlin Examples
	Slide 24: Cypher
	Slide 25: Possible Clauses in Cypher Queries
	Slide 26: Node Patterns in Cypher
	Slide 27: Relationship Patterns in Cypher
	Slide 28: More complex Cypher Patterns
	Slide 29: Filtering in Cypher
	Slide 30: Updating in Cypher
	Slide 31
	Slide 32: Complex Graph Analysis Tasks?
	Slide 33: Properties of Computation on Graphs
	Slide 34: PageRank
	Slide 35: Example: PageRank, simplified version
	Slide 36: Example: PageRank
	Slide 37: Example: PageRank
	Slide 38: Observation
	Slide 39: Can we use MapReduce?
	Slide 40: Can we use MapReduce?
	Slide 41: Can we use MapReduce?
	Slide 42: Graph Processing Systems
	Slide 43: Vertex-centric Abstraction
	Slide 44: Vertex-centric Abstraction
	Slide 45: Vertex-centric PageRank
	Slide 46: Vertex-centric PageRank
	Slide 47: Vertex-centric PageRank
	Slide 48: Vertex-centric PageRank
	Slide 49: Vertex-centric PageRank
	Slide 50: Vertex-centric PageRank
	Slide 51: Vertex-centric PageRank
	Slide 52: Graph Processing Systems
	Slide 53: Bulk Synchronous Parallel (BSP)
	Slide 54: Google Pregel (vertex-centric)
	Slide 55: Google Pregel
	Slide 56: MapReduce versus Pregel
	Slide 57: Google Pregel
	Slide 58: Google Pregel (BSP) Limitations
	Slide 59: Possible optimizations to balance the workload
	Slide 60: Possible optimizations to balance the workload
	Slide 61: Combiner
	Slide 62: Signal/Collect Model
	Slide 64: Pregel vs Scatter-Gather
	Slide 65: Possible optimizations to balance the workload
	Slide 66: Graph Partitioning
	Slide 67: Vertex-Cut
	Slide 68: Summary
	Slide 69

