
TDDD43 Advanced Data Models and
Databases

Graph Data Systems

Huanyu Li
huanyu.li@liu.se

Based on slides by Olaf Hartig

mailto:huanyu.li@liu.se

Advanced Data Models and Databases
Graph Data Systems

Graphs are Everywhere

• Transportation networks

• Bibliographic networks

• Computer networks

• Social networks

• etc.

• As a natural way to capture connections between entities

Advanced Data Models and Databases
Graph Data Systems

STRING – Protein-Protein Interaction Networks

• Nodes represent proteins

• Edges represent associations

among proteins

https://string-db.org/cgi/network?taskId=bZra1AKzBNL7&sessionId=bYZl4Yz0jSul

Advanced Data Models and Databases
Graph Data Systems

Outline

➢ How to represent data as graphs?

➢ How to query graph data or traverse graphs?

➢ How are generic graphs used in more complex applications?

Advanced Data Models and Databases
Graph Data Systems

Different Graph Data Systems

• Triple stores (More details on October 15th)

• Data model: RDF (Resource Description Framework)

• Typically, pattern matching queries

• Graph databases

• Prevalent data model: property graphs

• Typically, navigational queries

• Graph processing systems

• Prevalent data model: generic graphs

• Typically, complex graph analysis tasks

Graph Data Models

Advanced Data Models and Databases
Graph Data Systems

Outline

➢ Overview of RDF graph data

➢ Property graph

➢ Generic graph

Advanced Data Models and Databases
Graph Data Systems

Some features

• Nodes represent entities of a domain

• Edges represent relationships/connections among nodes

• Labels represent the kind of nodes/edges

• Properties are associated with nodes and edges

A property graph example: https://neo4j.com/docs/getting-
started/appendix/graphdb-concepts/

Advanced Data Models and Databases
Graph Data Systems

Overview of RDF Data Model

• Resource Description Framework

• Data is represented as a set of triples

• A triple: (subject, predicate, object)

• Subject: resources

• Predicate: properties

• Object: literals or resources

Advanced Data Models and Databases
Graph Data Systems

Overview of RDF Data Model

• Such a set of triples may be understood as a graph

• Triples as directed edges

• Subjects and objects as vertices

• Edges labeled by predicate

• W3C recommendation and standardization

Advanced Data Models and Databases
Graph Data Systems

Property Graph

• “A property graph is made up of nodes, relationships, and properties.

• Nodes contain properties […] in the form of arbitrary key-value pairs. The

keys are strings and the values are arbitrary data types.

• A relationship always has a direction, a label, and a start node and an

end node.

• Like nodes, relationships can also have properties.” [1]

[1] Ian Robinson, Jim Webber, and Emil Eifr ém. Graph Databases. O’Reilly Media, 2013.

Advanced Data Models and Databases
Graph Data Systems

(Labeled) Property Graph

Advanced Data Models and Databases
Graph Data Systems

(Labeled) Property Graph

• Directed multigraph

• Multiple edges between the same pair of nodes

• Any node and any edge may have a label

• Any node and any edge may have an arbitrary set of key-

value pairs (“properties”)

Advanced Data Models and Databases
Graph Data Systems

Generic Graphs

• Data model

• Directed multigraphs

• Arbitrary user-defined data structure can be used as value

of a vertex (node) or an edge (e.g., a Java object)

• Example (Apache Flink Gelly API for Graph processing)

• Pros: give users maximum flexibility for representing graphs

• Cons: systems cannot provide built-in operators related to

vertex data or edge data

// create new vertices with a Long ID and a String value

Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");

Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");

Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);

Advanced Data Models and Databases
Graph Data Systems

Examples of Graph DB Systems

• Systems that focus on graph databases

• Neo4j

• Sparksee

• Titan

• Infinite Graph

• Multi-model NoSQL databases with support

for graphs

• OrientDB

• ArangoDB

• Triple stores with Apache TinkerPop support

• Stardog

Advanced Data Models and Databases
Graph Data Systems

Neo4j

• A native graph database

• Stores data as nodes, relationships and

properties

• Provides ACID transactions

Advanced Data Models and Databases
Graph Data Systems

Apache TinkerPop

• Graph computing framework

• Vendor-agnostic

• For graph databases (a graph structure API)

• Formerly known as Blueprints API

• Creating and modifying property graphs

• Example:

• For graph analytic systems (a process API)

• Graph-parallel engine

• Graph traversal/query, based on Gremlin language

Query Languages

Advanced Data Models and Databases
Graph Data Systems

Gremlin and Cypher

• Gremlin

• part of the Apache TinkerPop framework

• Cypher

• created by Neo4j, and part of the openCypher project

Advanced Data Models and Databases
Graph Data Systems

Gremlin Graph Traversal (Query) Language

• Part of the Apache TinkerPop framework

• Powerful domain-specific language (DSL) with embeddings in

different programming languages

• Expressions specify a concatenation of traversal steps

• A chain of operations/functions that are evaluated from left to right

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

Advanced Data Models and Databases
Graph Data Systems

Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

1

2

1

2

Result:

==> vadas

==> josh
• g: for the current graph traversal

• V(): for all vertices in the graph

• has(‘name’, ‘marko’): filters the vertices

down to those with ‘name’ property ‘marko’

• out(‘knows’): traverse outgoing ‘knows’

 edges

• values(‘name’): extracts the values of

 ‘name’ property

Advanced Data Models and Databases
Graph Data Systems

Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’).path()
Result:

==> [v[1],v[2],vadas]

==> [v[1],v[4],josh]

1

2

1

2

• g: for the current graph traversal

• V(): for all vertices in the graph

• has(‘name’, ‘marko’): filters the vertices down

to those with ‘name’ property ‘marko’

• out(‘knows’): traverse outgoing ‘knows’

 edges

• values(‘name’): extracts the values of

 ‘name’ property

• path(): returns the history of the

 traverser

Advanced Data Models and Databases
Graph Data Systems

Gremlin Examples

g.V().has(‘name’, ‘marko’).repeat(out()).times(2).path().by(‘name’)

or

g.V().until(‘name’, ‘ripple’).repeat(out()).path().by(‘name’)

Result: ==> [marko, josh, ripple]

 ==> [marko, josh, lop]

• times(N): the number of traverses (N)

• by(‘name’): element property projection

• repeat(): loops over a traversal given some

break predicate

Result: ==> [marko, josh, ripple]

 ==> [josh, ripple]

 ==> [ripple]

Advanced Data Models and Databases
Graph Data Systems

Cypher

• Declarative graph database query language

• Proprietary (used by Neo4j)

• The OpenCypher project aims to deliver an open specification

• Example

• Recall our initial Gremlin example

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

• In Cypher, we could express this query as follows:

MATCH({name: ‘marko’})-[:knows]->(x)

RETURN x.name

Advanced Data Models and Databases
Graph Data Systems

Possible Clauses in Cypher Queries

• CREATE - creates nodes and edges
• DELETE - removes nodes, edges, properties
• SET - sets values of properties
• MATCH - specifies a pattern to match in the data graph
• WHERE - filters pattern matching results
• RETURN - which nodes / edges / properties in the matched data

should be returned
• UNION - merges results from two or more queries
• WITH - chains subsequent query parts (like piping in Unix

commands)
• manipulate the output before it is passed on to the following

query parts

Advanced Data Models and Databases
Graph Data Systems

Node Patterns in Cypher

• Node patterns may have different forms
() – matches any node
(:person)-> – matches nodes whose label is person
({name: ‘marko’}) – matches nodes having a property name=‘marko’
(:person {name: ‘marko’}) – matches nodes having both the label
 person and a property name=‘marko’

• Every node pattern can be assigned a variable
• Can be used to refer to the matching node in another query clause

or to express joins
• For instance, (x), (x:person)

Advanced Data Models and Databases
Graph Data Systems

Relationship Patterns in Cypher

• Relationship pattern must be placed between two node patterns and it
may have different forms

--> or <-- – matches any edge (with the given direction)
-[:knows]-> – matches edges whose label is knows
-[{weight:0.5}]-> – matches edges having a property weight=0.5
-[:knows {weight:0.5}]-> – matches edges having both the label

 knows and a property weight=0.5
 -[:knows*..4]-> – matches paths of knows edges of up to length 4

• Every relationship pattern can be assigned a variable
• For instance, -[x:knows]->

Advanced Data Models and Databases
Graph Data Systems

More complex Cypher Patterns

• Node patterns and relationship patterns are just basic building blocks
that can be combined into more complex patterns

• MATCH: searches for an existing node, relationship, label, property, or pattern in
the database (like SELECT in SQL).

• RETURN: specifies what values or results you might want to return from a Cypher
query.

• Examples:
MATCH (a)-[:knows]->()-[:knows]->(a)
RETURN a

MATCH p=shortestPath(
 (:person {name: ‘marko’})-[*]->(:person {name:‘josh’})
)
RETURN p

Advanced Data Models and Databases
Graph Data Systems

Filtering in Cypher

• Pattern matching results can be filtered by using WHERE clause
• Examples:

▪ MATCH (a:person)-[x:knows]->(b:person)
 WHERE x.weight >0.5 AND x.weight<0.9
 RETURN a, b

▪ MATCH ()-[x:knows]->()
 WHERE exists(x.weight)
 RETURN x

▪ MATCH (a)-[:knows]->(b)-[x:knows]->(c)
 WHERE NOT (a)-[:knows]->(c)
 RETURN a, b, c

Advanced Data Models and Databases
Graph Data Systems

Updating in Cypher

• CREATE, SET, DELETE, REMOVE
• Examples:

▪ CREATE (friend:Person {name: 'Mark’})
 RETURN friend
▪ MATCH (a:person)-[x:knows]->(b:person)
 SET x.weight = 0.5
 RETURN x
▪ MATCH ()-[x:knows]->()
 WHERE NOT exists(x.weight)
 DELETE x
▪ MATCH (a:person)-[:knows]->(b)-[x:knows]->(c)
 REMOVE a.organization

Advanced Data Models and Databases
Graph Data Systems

Differences between Cypher and Gremlin

• Cypher

• based on pattern matching like SQL

• Gremlin

• based on functional steps

• Example

• Recall our initial Gremlin example

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)

• In Cypher, we could express this query as follows:

MATCH({name: ‘marko’})-[:knows]->(x)

RETURN x.name

Graph Processing Systems

Advanced Data Models and Databases
Graph Data Systems

Complex Graph Analysis Tasks?

• Tasks that require iterative processing of the entire

graph or large portion of it

• Examples

• Centrality analysis (e.g., PageRank)

• Clustering, connected components

• Graph coloring

• All-pairs shortest path

• Graph pattern mining (e.g., frequent sub-graphs,

community detection)

• Machine learning

Advanced Data Models and Databases
Graph Data Systems

Properties of Computation on Graphs

• Dependency graph

• Dependencies among vertices

• Local updates

• The value of a vertex is only influenced by its

neighbours

• Iterative Computation

• E.g., PageRank

Advanced Data Models and Databases
Graph Data Systems

PageRank

• Google Search

• A link analysis algorithm

• An algorithm to rank web pages in results from search engine

• Measuring the importance of web pages

• Counting number and quality of links to a page for

determining how important a website is

Advanced Data Models and Databases
Graph Data Systems

Example: PageRank, simplified version

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

V1

V2

V3

V4

PRk(v): the value of a webpage v in the kth iteration of computing
vin: the set of vertices that have outgoing edges (link) to v
vout: the set of vertices that have incoming edges from v

Advanced Data Models and Databases
Graph Data Systems

Example: PageRank

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Example: PageRank

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.45 0.39 0.38 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Observation

• Many such algorithms iteratively propagate data along the

graph structure by transforming intermediate vertex and edge

values

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Challenges

• Graphs are widely used to represent datasets in diverse applications

and domains

• Big data challenges

• volume: size of the data

• variety: type and nature of the data

• velocity: speed of generation and processing of data

• veracity: uncertainty of data

• ...

Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

• Map:

• produces weights of a vertex that assigns to other vertices e.g., (V3, (0.25,[V1])), (V4, (0.125, [V1,V3]))

• For iterations, keeps topology information, e.g., (V3, [V1]), (V4, [V1,V3])

• For checking convergence, keeps vertices’ values, e.g., (V3, 0.25), (V4, 0.25)

• Reduce

• Handle all the above (3 kinds) information, computes new values and compares with values from last

iteration

V1

V2

V3

V4

PR2(V1) =PR1(V3)/|V3out| + PR1(V4)/|V4out|
 = PR1(V3)/1 + PR1(V4)/2
 = 0.25/1 + 0.25/2
 = 0.375

Advanced Data Models and Databases
Graph Data Systems

Can we use MapReduce?

• MapReduce does not directly support iterative algorithms

• Materializing intermediate results at each M/R iteration harms

performance

• Extra M/R job on each iteration for checking whether a fixed point

has been reached

• Additional issue for graph algorithms

• Invariant graph-topology data reloaded and reprocessed at

each iteration

• Wastes I/O, CPU, and network bandwidth

Sakr, Sherif. "Large-scale graph processing systems." Big
Data 2.0 Processing Systems: A Survey. Cham: Springer
International Publishing, 2016. 53-73.

Advanced Data Models and Databases
Graph Data Systems

Graph Processing Systems

• Pregel Family

• GraphLab Family

• Other Systems

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric programming model

• Many such algorithms iteratively propagate data along the
graph structure by transforming intermediate vertex and edge
values

• These transformations are defined in terms of functions on
the values of adjacent vertices and edges

• Hence, such algorithms can be expressed by specifying a
function that can be applied to any vertex separately

• “Think like a vertex”

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric programming model

• Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors

• Additionally, the function may “vote to halt” if a local
convergence criterion is met

• Overall execution can be parallelized!
• Terminates when all vertices have halted and no messages in

transit

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25

0.083

0.125

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25

PRk(V2) 0.25

PRk(V3) 0.25

PRk(V4) 0.25 0.20

0.083

0.125

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25 0.08

PRk(V3) 0.25 0.33

PRk(V4) 0.25 0.20

0.083

0.125

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37

PRk(V2) 0.25 0.08

PRk(V3) 0.25 0.33

PRk(V4) 0.25 0.20

0.1

0.1

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.35 0.39 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19

Advanced Data Models and Databases
Graph Data Systems

Vertex-centric PageRank

1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
Additionally, the function may “vote to halt” if a local
convergence criterion is met

V1

V2

V3

V4

k=0 k=1 k=2 k=3 k=4 k=5 k=6

PRk(V1) 0.25 0.37 0.43 0.35 0.39 0.38 0.38

PRk(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13

PRk(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28

PRk(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

Advanced Data Models and Databases
Graph Data Systems

Graph Processing Systems

• Pregel Family

• GraphLab Family

• Other Systems

Apache Flink: iterative Graph Processing: https://nightlies.apache.org/flink/flink-docs-release-
1.7/dev/libs/gelly/iterative_graph_processing.html

Advanced Data Models and Databases
Graph Data Systems

Bulk Synchronous Parallel (BSP)

• Pregel was inspired by BSP
• Bulk Synchronous Parallel programming model

• A sequence of iterations (each called a superstep)
• Supersteps with synchronization barriers
• During a superstep, a user-defined function is

invoked for each vertex

| ←
 S

u
p
e
rs

te
p

 →
 |

| ←
 S

u
p
e
rs

te
p

 →
 |

| ←
 S

u
p
e
rs

te
p

 →
 |

Advanced Data Models and Databases
Graph Data Systems

Bulk Synchronous Parallel (BSP)

• BSP algorithms features
• Concurrent computation: every participating processor may perform local

computations
• Communication: The processes exchange data to facilitate remote data

storage
• Barrier synchronization: When a process reaches this point (the barrier), it

waits until all other processes have reached the same barrier

• Application
• Google Pregel
• BSP on top of Hadoop (open project)

Advanced Data Models and Databases
Graph Data Systems

Pregel (vertex-centric)

• To solve problems which are difficult to solve using MapReduce

• Each vertex has two states:
• active and inactive (halt)

• Initially, every vertex is active
• Each vertex sends messages to neighbors
• Within a superstep: after a vertex receives a message, based on its

function and criterion, it may need to compute a new value (active)
or not (inactive)

• Start next superstep, the computation ends until all vertices are
inactive (no need to compute)

Advanced Data Models and Databases
Graph Data Systems

Pregel

• In each superstep, each vertex
executes one user-defined
function

• Vertices communicate with other
vertices through messages

• A vertex can send a message to
any other vertex in the graph, as
long as it knows its unique ID

• In each superstep, all active
vertices execute the same user-
defined computation in parallel

• The user only needs to define
one vertex compute function

Advanced Data Models and Databases
Graph Data Systems

Pregel – single-source shortest path in a graph

McCune RR, Weninger T, Madey G. Thinking like a vertex: A survey of vertex-centric frameworks for large-
scale distributed graph processing. ACM Computing Surveys (CSUR). 2015 Oct 12;48(2):1-39.

• Distributed Bellman-Ford algorithm
• “Thinking like a vertex”

Advanced Data Models and Databases
Graph Data Systems

Pregel – single-source shortest path in a graph

• Example: given the following graph, compute the shortest distances
from a source to all other vertices
• Non-distributed version of Bellman-Ford

• https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
• Distributed version

https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/

Advanced Data Models and Databases
Graph Data Systems

Pregel – single-source shortest path in a graph

McCune RR, Weninger T, Madey G. Thinking like a vertex: A survey of vertex-centric frameworks for large-
scale distributed graph processing. ACM Computing Surveys (CSUR). 2015 Oct 12;48(2):1-39.

• Distributed Bellman-Ford algorithm
• “Thinking like a vertex”

vertex
program

Advanced Data Models and Databases
Graph Data Systems

MapReduce versus Pregel

• Requires passing of entire
graph topology from one
iteration to the next

• Intermediate result after
each iteration is stored on
disk and then read again
from disk

• Programmer needs to write
a driver program to support
iterations, and another M/R
job to check for fixed point

• Graph topology is not
passed across iterations,
vertices only send their
state to their neighbors

• Main memory based

• Usage of supersteps and
master-client architecture
makes programming easy

MapReduce Pregel

Advanced Data Models and Databases
Graph Data Systems

Pregel

power-law degree distribution!

Advanced Data Models and Databases
Graph Data Systems

Pregel (BSP) Limitations

• In the BSP (bulk synchronous parallel) model, performance is limited by
slowest worker machine

• Many real-world graphs have power-law degree distribution, which
may lead to a few highly-loaded workers

• A single vertex has more out-edges than in-edges, or vice versa

Advanced Data Models and Databases
Graph Data Systems

Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)

Advanced Data Models and Databases
Graph Data Systems

Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)

Advanced Data Models and Databases
Graph Data Systems

Combiner

• Takes two messages and combines them into one
associative, commutative function

• Can be used to aggregate messages before sending them
to the worker node that has the target vertex

• Example:
• In the vertex-centric PageRank, messages are values

𝑚𝐼𝑁 =
𝑃𝑅𝑘 𝑣′

𝑣′𝑜𝑢𝑡
 of each incoming neighbor 𝑣𝑖𝑛.

• In the vertex function these values are summed up
• Parts of this sum may be computed by worker nodes

that have some of the incoming neighbor vertices

Advanced Data Models and Databases
Graph Data Systems

Signal/Collect Model

• Also known as Scatter-Gather Iterations, vertex-centric
• Scatter/Signaling (edge function):

• Every edge uses the value of its source vertex to compute a
message (“signal”) for the target vertex

• Executed on the worker that has the source vertex
• Main task: produces the messages that a vertex will send to other

vertices

• Gather/Collecting (vertex function):
• Every vertex computes its new value based on the messages

received from its incoming edges
• Executed on the worker that has the target vertex
• Main task: updates the vertex value using received messages

Advanced Data Models and Databases
Graph Data Systems

Pregel vs Scatter-Gather

• Similarities
• Vertex-centric
• Pregel, Scatter-Gather, parallelism based on vertex computations

• Differences
• In Pregel, user defines one single vertex compute function
• In Scatter-Gather, user defines two functions

• Scatter function for sending messages
• Gather function for updating values

• Scatter-Gather decouples sending messages and updating values
• Easy to maintain

Advanced Data Models and Databases
Graph Data Systems

Possible optimizations to balance the workload

➢ Decompose the vertex program
➢ Sophisticated graph partitioning

• Graph-centric abstraction
• Asynchronous execution (instead of BSP)

Advanced Data Models and Databases
Graph Data Systems

Graph Partitioning

Original graph Vertex partitioning/Edge-cut
Edge partitioning/Vertex-cut

• The goals of graph partitioning
• Load balancing, to decrease memory usage
• Minimize cuts, to decrease communications

• Unfortunately, the problem is NP-complete
• Various heuristics and approximation algorithms

Advanced Data Models and Databases
Graph Data Systems

Summary

• NoSQL Data Models

• Key-value model

• Document model

• Wide-Column model

• Graph Data Model

• Property graph

• Query languages

• Graph Processing for generic graphs

www.liu.se

http://www.liu.se/

	Slide 1: TDDD43 Advanced Data Models and Databases
	Slide 2: Graphs are Everywhere
	Slide 3: STRING – Protein-Protein Interaction Networks
	Slide 4: Outline
	Slide 5: Different Graph Data Systems
	Slide 6
	Slide 7: Outline
	Slide 8: Some features
	Slide 9: Overview of RDF Data Model
	Slide 10: Overview of RDF Data Model
	Slide 11: Property Graph
	Slide 12: (Labeled) Property Graph
	Slide 13: (Labeled) Property Graph
	Slide 14: Generic Graphs
	Slide 15: Examples of Graph DB Systems
	Slide 16: Neo4j
	Slide 17: Apache TinkerPop
	Slide 18
	Slide 19: Gremlin and Cypher
	Slide 20: Gremlin Graph Traversal (Query) Language
	Slide 21: Gremlin Examples
	Slide 22: Gremlin Examples
	Slide 23: Gremlin Examples
	Slide 24: Cypher
	Slide 25: Possible Clauses in Cypher Queries
	Slide 26: Node Patterns in Cypher
	Slide 27: Relationship Patterns in Cypher
	Slide 28: More complex Cypher Patterns
	Slide 29: Filtering in Cypher
	Slide 30: Updating in Cypher
	Slide 31: Differences between Cypher and Gremlin
	Slide 32
	Slide 33: Complex Graph Analysis Tasks?
	Slide 34: Properties of Computation on Graphs
	Slide 35: PageRank
	Slide 36: Example: PageRank, simplified version
	Slide 37: Example: PageRank
	Slide 38: Example: PageRank
	Slide 39: Observation
	Slide 40: Challenges
	Slide 41: Can we use MapReduce?
	Slide 42: Can we use MapReduce?
	Slide 43: Can we use MapReduce?
	Slide 44: Graph Processing Systems
	Slide 45: Vertex-centric programming model
	Slide 46: Vertex-centric programming model
	Slide 47: Vertex-centric PageRank
	Slide 48: Vertex-centric PageRank
	Slide 49: Vertex-centric PageRank
	Slide 50: Vertex-centric PageRank
	Slide 51: Vertex-centric PageRank
	Slide 52: Vertex-centric PageRank
	Slide 53: Vertex-centric PageRank
	Slide 54: Graph Processing Systems
	Slide 55: Bulk Synchronous Parallel (BSP)
	Slide 56: Bulk Synchronous Parallel (BSP)
	Slide 57: Pregel (vertex-centric)
	Slide 58: Pregel
	Slide 59: Pregel – single-source shortest path in a graph
	Slide 60: Pregel – single-source shortest path in a graph
	Slide 61: Pregel – single-source shortest path in a graph
	Slide 62: MapReduce versus Pregel
	Slide 63: Pregel
	Slide 64: Pregel (BSP) Limitations
	Slide 65: Possible optimizations to balance the workload
	Slide 66: Possible optimizations to balance the workload
	Slide 67: Combiner
	Slide 68: Signal/Collect Model
	Slide 69: Pregel vs Scatter-Gather
	Slide 70: Possible optimizations to balance the workload
	Slide 71: Graph Partitioning
	Slide 73: Summary
	Slide 74

