TDDD43 Advanced Data Models and Databases

Graph Data Systems

Huanyu Li huanyu.li@liu.se

Based on slides by Olaf Hartig

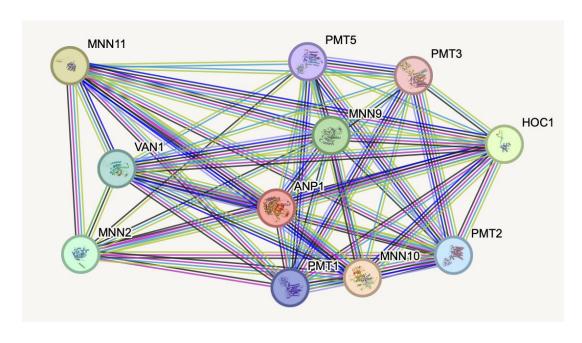
Graphs are Everywhere

- Transportation networks
- Bibliographic networks
- Computer networks
- Social networks
- etc.

As a natural way to capture connections between entities

STRING – Protein-Protein Interaction Networks

- Nodes represent proteins
- Edges represent associations among proteins



https://string-db.org/cgi/network?taskId=bZra1AKzBNL7&sessionId=bYZI4Yz0jSul

Outline

- ➤ How to represent data as graphs?
- How to query graph data or traverse graphs?
- How are generic graphs used in more complex applications?

Different Graph Data Systems

- Triple stores (More details on October 15th)
 - Data model: RDF (Resource Description Framework)
 - Typically, pattern matching queries
- Graph databases
 - Prevalent data model: property graphs
 - Typically, navigational queries
- Graph processing systems
 - Prevalent data model: generic graphs
 - Typically, complex graph analysis tasks

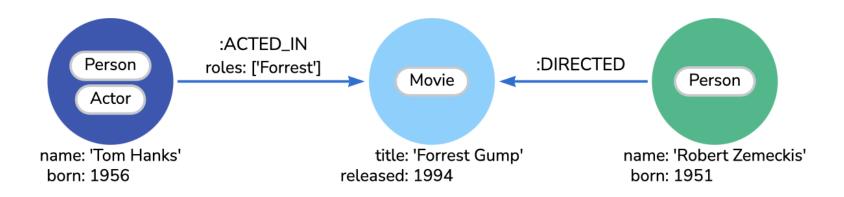
Graph Data Models

Outline

- Overview of RDF graph data
- Property graph
- > Generic graph

Some features

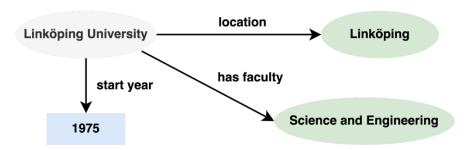
- Nodes represent entities of a domain
- Edges represent relationships/connections among nodes
- Labels represent the kind of nodes/edges
- Properties are associated with nodes and edges



A property graph example: https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/

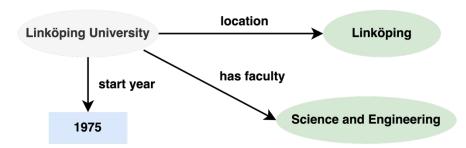
Overview of RDF Data Model

- Resource Description Framework
- Data is represented as a set of triples
 - A triple: (subject, predicate, object)
- Subject: resources
- Predicate: properties
- Object: literals or resources



Overview of RDF Data Model

- Such a set of triples may be understood as a graph
 - Triples as directed edges
 - Subjects and objects as vertices
 - Edges labeled by predicate
- W3C recommendation and standardization

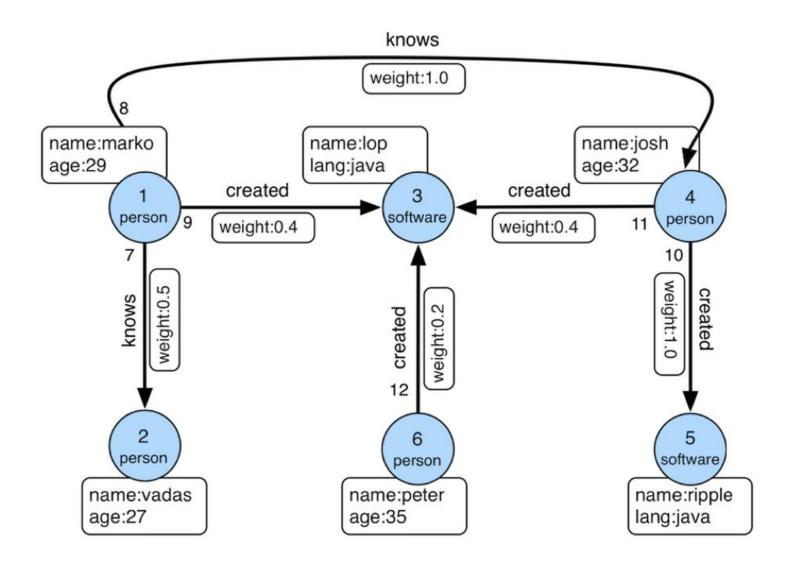


Property Graph

- "A property graph is made up of nodes, relationships, and properties.
- Nodes contain properties [...] in the form of arbitrary key-value pairs. The keys are strings and the values are arbitrary data types.
- A relationship always has a direction, a label, and a start node and an end node.
- Like nodes, relationships can also have properties." [1]

[1] Ian Robinson, Jim Webber, and Emil Eifr em. Graph Databases. O'Reilly Media, 2013.

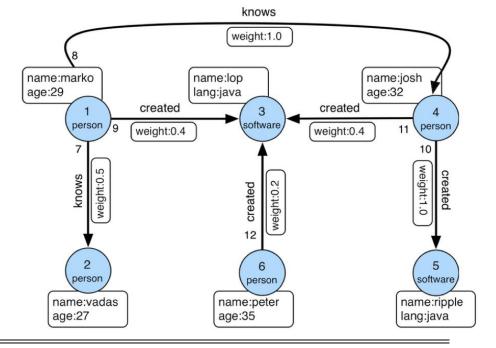
(Labeled) Property Graph



(Labeled) Property Graph

- Directed multigraph
 - Multiple edges between the same pair of nodes
- Any node and any edge may have a label
- Any node and any edge may have an arbitrary set of key-

value pairs ("properties")



Generic Graphs

- Data model
 - Directed multigraphs
 - Arbitrary user-defined data structure can be used as value of a vertex (node) or an edge (e.g., a Java object)
- Example (Apache Flink Gelly API for Graph processing)

```
// create new vertices with a Long ID and a String value
Vertex<Long, String> v1 = new Vertex<Long, String>(1L, "foo");
Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");
Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);
```

- Pros: give users maximum flexibility for representing graphs
- Cons: systems cannot provide built-in operators related to vertex data or edge data

Examples of Graph DB Systems

- Systems that focus on graph databases
 - Neo4j
 - Sparksee
 - Titan
 - Infinite Graph
- Multi-model NoSQL databases with support for graphs
 - OrientDB
 - ArangoDB
- Triple stores with Apache TinkerPop support
 - Stardog

*Sparksee

Neo4j

- A native graph database
- Stores data as nodes, relationships and properties

Provides ACID transactions

Apache TinkerPop

- Graph computing framework
 - Vendor-agnostic
- For graph databases (a graph structure API)
 - Formerly known as Blueprints API
 - Creating and modifying property graphs
 - Example:

```
Graph graph = ...

Vertex marko = graph.addVertex(T.label, "person", T.id, 1, "name", "marko", "age", 29);

Vertex vadas = graph.addVertex(T.label, "person", T.id, 2, "name", "vadas", "age", 27);

marko.addEdge("knows", vadas, T.id, 7, "weight", 0.5f);
```

inkerPop

- For graph analytic systems (a process API)
 - Graph-parallel engine
 - Graph traversal/query, based on Gremlin language

Query Languages

Gremlin and Cypher

- Gremlin
 - part of the Apache TinkerPop framework
- Cypher
 - created by Neo4j, and part of the openCypher project

Gremlin Graph Traversal (Query) Language

- Part of the Apache TinkerPop framework
- Powerful domain-specific language (DSL) with embeddings in different programming languages
- Expressions specify a concatenation of traversal steps
 - A chain of operations/functions that are evaluated from left to right

g.V().has('name', 'marko').out('knows').values('name')

Gremlin Examples

g.V().has('name', 'marko').out('knows').values('name')

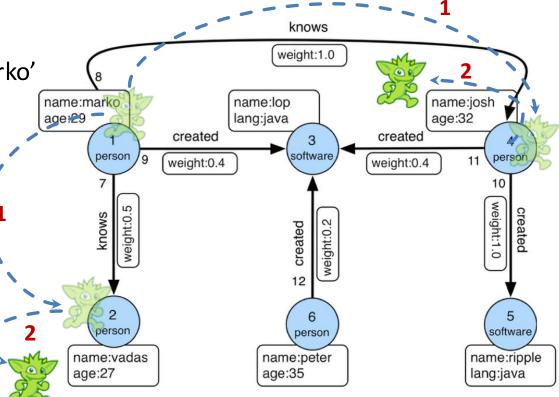
_

Result:

==> vadas

==> josh

- **g**: for the current graph traversal
- *V()*: for all vertices in the graph
- has('name', 'marko'): filters the vertices
 down to those with 'name' property 'marko'
- out('knows'): traverse outgoing 'knows'edges
- values('name'): extracts the values of 11
 'name' property



Gremlin Examples

g.V().has('name', 'marko').out('knows').values('name').path()

Graph Data Systems

- g: for the current graph traversal
- *V()*: for all vertices in the graph
- has('name', 'marko'): filters the vertices down

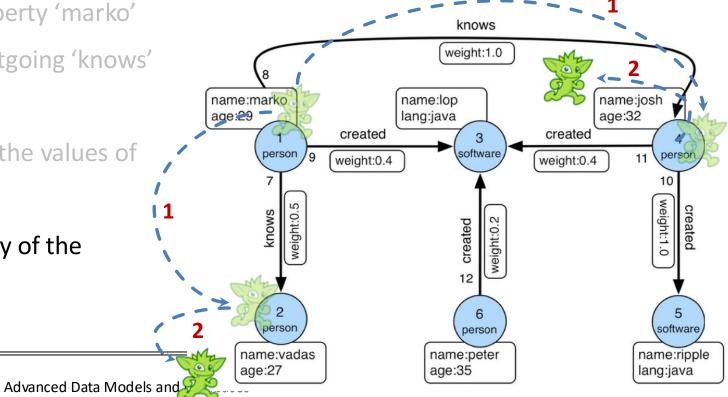
to those with 'name' property 'marko'

- out('knows'): traverse outgoing 'knows' edges
- values('name'): extracts the values of 'name' property
- path(): returns the history of the traverser

Result:

==> [v[1],v[2],vadas]

==> [v[1],v[4],josh]



Gremlin Examples

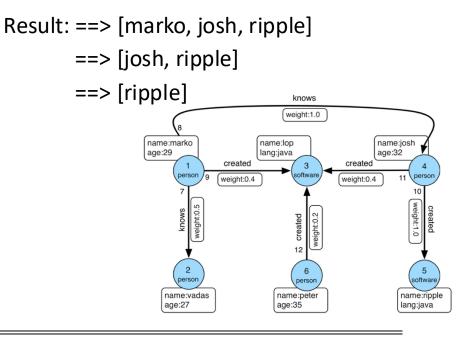
g.V().has('name', 'marko').repeat(out()).times(2).path().by('name')

or

Result: ==> [marko, josh, ripple] ==> [marko, josh, lop]

g.V().until('name', 'ripple').repeat(out()).path().by('name')

- times(N): the number of traverses (N)
- **by('name')**: element property projection
- repeat(): loops over a traversal given some break predicate



Cypher

- Declarative graph database query language
- Proprietary (used by Neo4j)
- The OpenCypher project aims to deliver an open specification
- Example
 - Recall our initial Gremlin example

```
g.V().has('name', 'marko').out('knows').values('name')
```

• In Cypher, we could express this query as follows:

```
MATCH( {name: 'marko'} )-[:knows]->( x )
RETURN x.name
```


Possible Clauses in Cypher Queries

- CREATE creates nodes and edges
- DELETE removes nodes, edges, properties
- SET sets values of properties
- MATCH specifies a pattern to match in the data graph
- WHERE filters pattern matching results
- RETURN which nodes / edges / properties in the matched data should be returned
- UNION merges results from two or more queries
- WITH chains subsequent query parts (like piping in Unix commands)
 - manipulate the output before it is passed on to the following query parts

Node Patterns in Cypher

Node patterns may have different forms

```
    () – matches any node
    (:person)-> – matches nodes whose label is person
    ({name: 'marko'}) – matches nodes having a property name='marko'
    (:person {name: 'marko'}) – matches nodes having both the label person and a property name='marko'
```

- Every node pattern can be assigned a variable
 - Can be used to refer to the matching node in another query clause or to express joins
 - For instance, (x), (x:person)

Relationship Patterns in Cypher

 Relationship pattern must be placed between two node patterns and it may have different forms

```
--> or <-- – matches any edge (with the given direction)
-[:knows]-> – matches edges whose label is knows
-[ {weight:0.5} ]-> – matches edges having a property weight=0.5
-[:knows {weight:0.5} ]-> – matches edges having both the label
knows and a property weight=0.5
-[:knows*..4]-> – matches paths of knows edges of up to length 4
```

- Every relationship pattern can be assigned a variable
 - For instance, -[x:knows]->

More complex Cypher Patterns

- Node patterns and relationship patterns are just basic building blocks that can be combined into more complex patterns
 - *MATCH*: searches for an existing node, relationship, label, property, or pattern in the database (like SELECT in SQL).
 - *RETURN*: specifies what values or results you might want to return from a Cypher query.
- Examples:

Filtering in Cypher

- Pattern matching results can be filtered by using WHERE clause
- Examples:
 - MATCH (a:person)-[x:knows]->(b:person)
 WHERE x.weight >0.5 AND x.weight<0.9
 RETURN a, b
 - MATCH ()-[x:knows]->()WHERE exists(x.weight)RETURN x
 - MATCH (a)-[:knows]->(b)-[x:knows]->(c)
 WHERE NOT (a)-[:knows]->(c)
 RETURN a, b, c

Updating in Cypher

- CREATE, SET, DELETE, REMOVE
- Examples:
 - CREATE (friend:Person {name: 'Mark'})RETURN friend
 - MATCH (a:person)-[x:knows]->(b:person)SET x.weight = 0.5RETURN x
 - MATCH ()-[x:knows]->()WHERE NOT exists(x.weight)DELETE x
 - MATCH (a:person)-[:knows]->(b)-[x:knows]->(c)
 REMOVE a.organization

Differences between Cypher and Gremlin

- Cypher
 - based on pattern matching like SQL
- Gremlin
 - based on functional steps
- Example
 - Recall our initial Gremlin example

```
g.V().has('name', 'marko').out('knows').values('name')
```

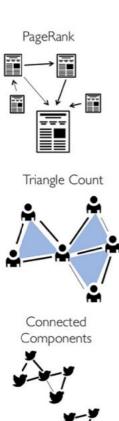
• In Cypher, we could express this query as follows:

```
MATCH( {name: 'marko'} )-[:knows]->( x )
RETURN x.name
```


Graph Processing Systems

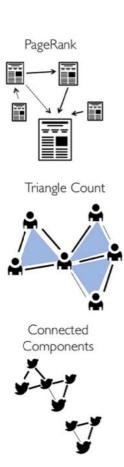
Complex Graph Analysis Tasks?

- Tasks that require iterative processing of the entire graph or large portion of it
- Examples
 - Centrality analysis (e.g., PageRank)
 - Clustering, connected components
 - Graph coloring
 - All-pairs shortest path
 - Graph pattern mining (e.g., frequent sub-graphs, community detection)
 - Machine learning



Properties of Computation on Graphs

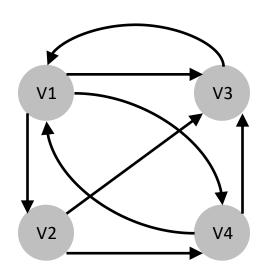
- Dependency graph
 - Dependencies among vertices
- Local updates
 - The value of a vertex is only influenced by its neighbours
- Iterative Computation
 - E.g., PageRank



PageRank

- Google Search
- A link analysis algorithm
- An algorithm to rank web pages in results from search engine
 - Measuring the importance of web pages
 - Counting number and quality of links to a page for determining how important a website is

Example: PageRank, simplified version

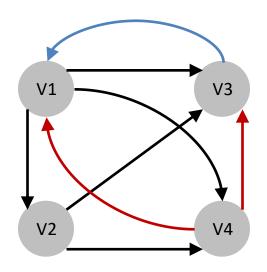


$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

 $PR_k(v)$: the value of a webpage v in the kth iteration of computing v_{in} : the set of vertices that have outgoing edges (link) to v v_{out} : the set of vertices that have incoming edges from v

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25						
$PR_k(V2)$	0.25						
$PR_k(V3)$	0.25						
$PR_k(V4)$	0.25						

Example: PageRank



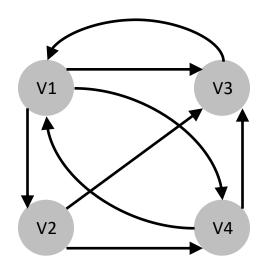
$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

$$PR_{2}(V1) = PR_{1}(V3)/|V3_{out}| + PR_{1}(V4)/|V4_{out}|$$

= $PR_{1}(V3)/1 + PR_{1}(V4)/2$
= $0.25/1 + 0.25/2$
= 0.375

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25	0.37					
$PR_k(V2)$	0.25						
$PR_k(V3)$	0.25						
$PR_k(V4)$	0.25						

Example: PageRank



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

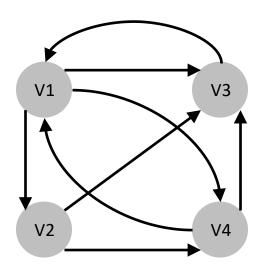
$$PR_{2}(V1) = PR_{1}(V3)/|V3_{out}| + PR_{1}(V4)/|V4_{out}|$$

= $PR_{1}(V3)/1 + PR_{1}(V4)/2$
= $0.25/1 + 0.25/2$
= 0.375

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25	0.37	0.43	0.45	0.39	0.38	0.38
$PR_k(V2)$	0.25	0.08	0.12	0.14	0.11	0.13	0.13
$PR_k(V3)$	0.25	0.33	0.27	0.29	0.29	0.28	0.28
$PR_k(V4)$	0.25	0.20	0.16	0.20	0.19	0.19	0.19

Observation

 Many such algorithms iteratively propagate data along the graph structure by transforming intermediate vertex and edge values



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v') / |v'_{out}|$$

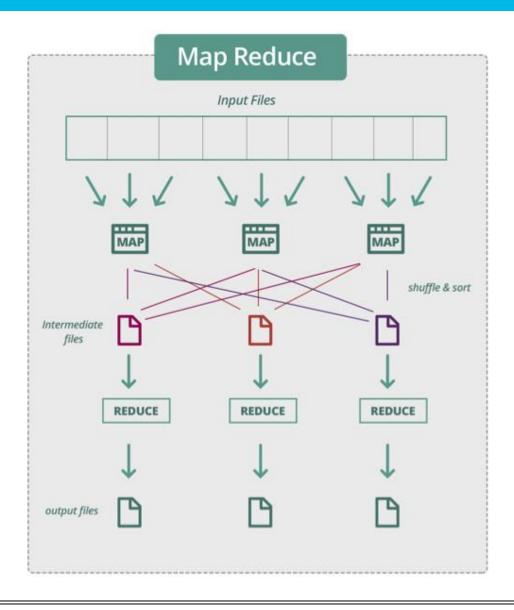
$$PR_{2}(V1) = PR_{1}(V3)/|V3_{out}| + PR_{1}(V4)/|V4_{out}|$$

= $PR_{1}(V3)/1 + PR_{1}(V4)/2$
= $0.25/1 + 0.25/2$
= 0.375

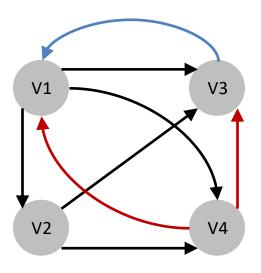
Challenges

- Graphs are widely used to represent datasets in diverse applications and domains
- Big data challenges
 - volume: size of the data
 - variety: type and nature of the data
 - velocity: speed of generation and processing of data
 - veracity: uncertainty of data
 - ...

Can we use MapReduce?



Can we use MapReduce?



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

$$PR_{2}(V1) = PR_{1}(V3)/|V3_{out}| + PR_{1}(V4)/|V4_{out}|$$

= $PR_{1}(V3)/1 + PR_{1}(V4)/2$
= $0.25/1 + 0.25/2$
= 0.375

• Map:

- produces weights of a vertex that assigns to other vertices e.g., (V3, (0.25,[V1])), (V4, (0.125, [V1,V3]))
- For iterations, keeps topology information, e.g., (V3, [V1]), (V4, [V1,V3])
- For checking convergence, keeps vertices' values, e.g., (V3, 0.25), (V4, 0.25)

Reduce

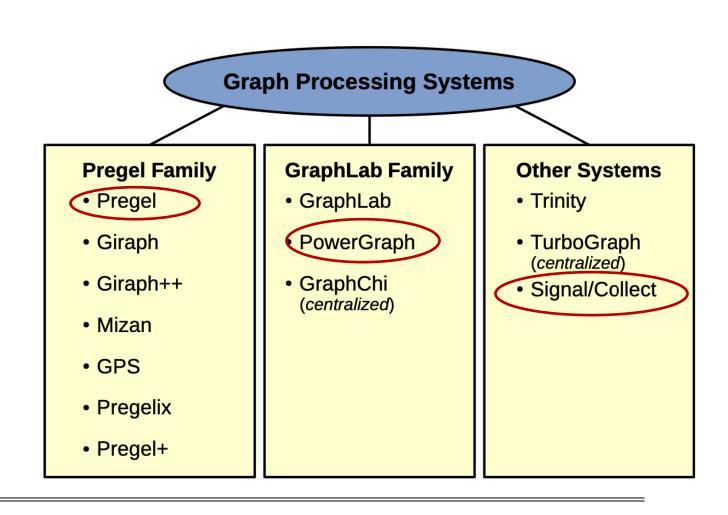
 Handle all the above (3 kinds) information, computes new values and compares with values from last iteration

Can we use MapReduce?

- MapReduce does not directly support iterative algorithms
- Materializing intermediate results at each M/R iteration harms performance
- Extra M/R job on each iteration for checking whether a fixed point has been reached
- Additional issue for graph algorithms
 - Invariant graph-topology data reloaded and reprocessed at each iteration
 - Wastes I/O, CPU, and network bandwidth

Graph Processing Systems

- Pregel Family
- GraphLab Family
- Other Systems



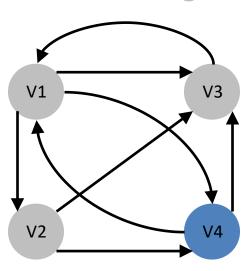
Vertex-centric programming model

- Many such algorithms iteratively propagate data along the graph structure by transforming intermediate vertex and edge values
 - These transformations are defined in terms of functions on the values of adjacent vertices and edges
 - Hence, such algorithms can be expressed by specifying a function that can be applied to any vertex separately
- "Think like a vertex"

Vertex-centric programming model

- Vertex compute function consists of three steps:
 - 1. Read all incoming messages from neighbors
 - 2. Update the value of the vertex
 - 3. Send messages to neighbors
- Additionally, the function may "vote to halt" if a local convergence criterion is met
- Overall execution can be parallelized!
- Terminates when all vertices have halted and no messages in transit

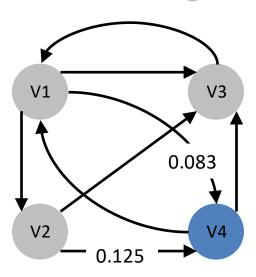
- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors Additionally, the function may "vote to halt" if a local convergence criterion is met



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25						
$PR_k(V2)$	0.25						
$PR_k(V3)$	0.25						
$PR_k(V4)$	0.25						

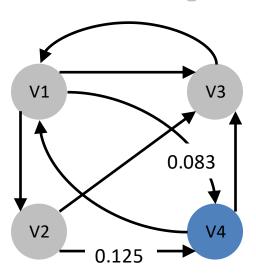
- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors Additionally, the function may "vote to halt" if a local convergence criterion is met



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25						
$PR_k(V2)$	0.25						
$PR_k(V3)$	0.25						
$PR_k(V4)$	0.25						

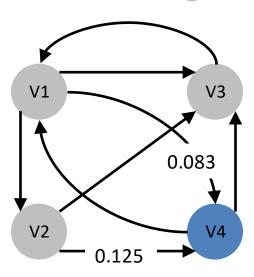
- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors Additionally, the function may "vote to halt" if a local convergence criterion is met



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25						
$PR_k(V2)$	0.25						
$PR_k(V3)$	0.25						
$PR_k(V4)$	0.25	0.20					

- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors Additionally, the function may "vote to halt" if a local convergence criterion is met

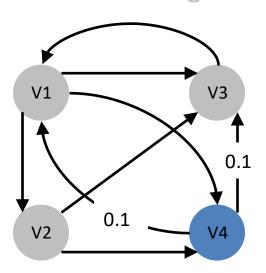


$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25	0.37					
$PR_k(V2)$	0.25	0.08					
$PR_k(V3)$	0.25	0.33					
$PR_k(V4)$	0.25	0.20					

- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors

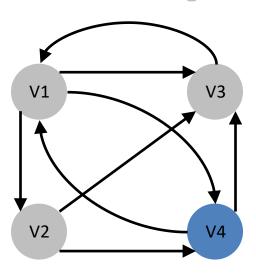
Additionally, the function may "vote to halt" if a local convergence criterion is met



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25	0.37					
$PR_k(V2)$	0.25	0.08					
$PR_k(V3)$	0.25	0.33					
$PR_k(V4)$	0.25	0.20					

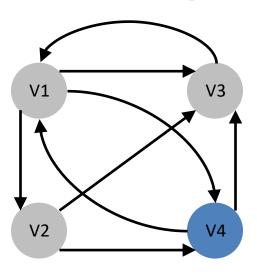
- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors Additionally, the function may "vote to halt" if a local convergence criterion is met



$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

$PR_k(V1)$ 0.25 0.37 0.43 0.35 0.39 0.38 $PR_k(V2)$ 0.25 0.08 0.12 0.14 0.11 0.13	k=6	k=5	k=4	k=3	k=2	k=1	k=0	
$PR_k(V2)$ 0.25 0.08 0.12 0.14 0.11 0.13		0.38	0.39	0.35	0.43	0.37	0.25	$PR_k(V1)$
		0.13	0.11	0.14	0.12	0.08	0.25	$PR_k(V2)$
$PR_k(V3)$ 0.25 0.33 0.27 0.29 0.29 0.28		0.28	0.29	0.29	0.27	0.33	0.25	$PR_k(V3)$
$PR_k(V4)$ 0.25 0.20 0.16 0.20 0.19 0.19	Conv	0.19	0.19	0.20	0.16	0.20	0.25	$PR_k(V4)$

- 1. Read all incoming messages from neighbors
- 2. Update the value of the vertex
- 3. Send messages to neighbors Additionally, the function may "vote to halt" if a local convergence criterion is met

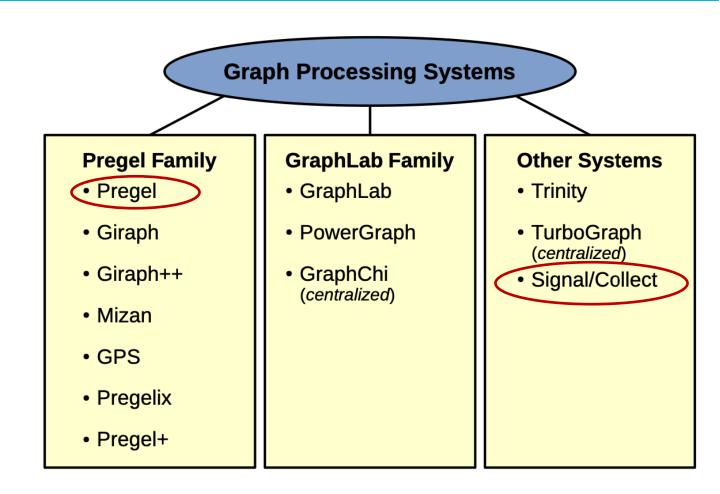


$$PR_{k+1}(v) = \sum_{v' \in v_{in}} PR_k(v')/|v'_{out}|$$

	k=0	k=1	k=2	k=3	k=4	k=5	k=6
$PR_k(V1)$	0.25	0.37	0.43	0.35	0.39	0.38	0.38
$PR_k(V2)$	0.25	0.08	0.12	0.14	0.11	0.13	0.13
$PR_k(V3)$	0.25	0.33	0.27	0.29	0.29	0.28	0.28
$PR_k(V4)$	0.25	0.20	0.16	0.20	0.19	0.19	0.19

Graph Processing Systems

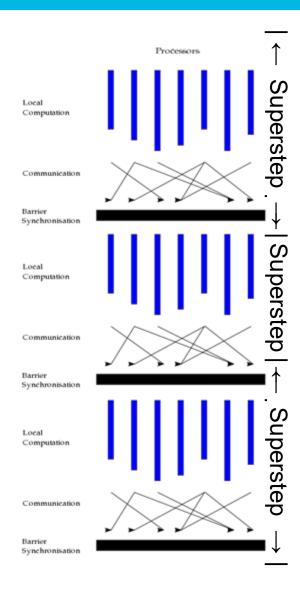
- Pregel Family
- GraphLab Family
- Other Systems



Apache Flink: iterative Graph Processing: https://nightlies.apache.org/flink/flink-docs-release-1.7/dev/libs/gelly/iterative_graph_processing.html

Bulk Synchronous Parallel (BSP)

- Pregel was inspired by BSP
- Bulk Synchronous Parallel programming model
 - A sequence of iterations (each called a superstep)
 - Supersteps with synchronization barriers
 - During a superstep, a user-defined function is invoked for each vertex



Bulk Synchronous Parallel (BSP)

BSP algorithms features

- Concurrent computation: every participating processor may perform local computations
- Communication: The processes exchange data to facilitate remote data storage
- Barrier synchronization: When a process reaches this point (the barrier), it
 waits until all other processes have reached the same barrier

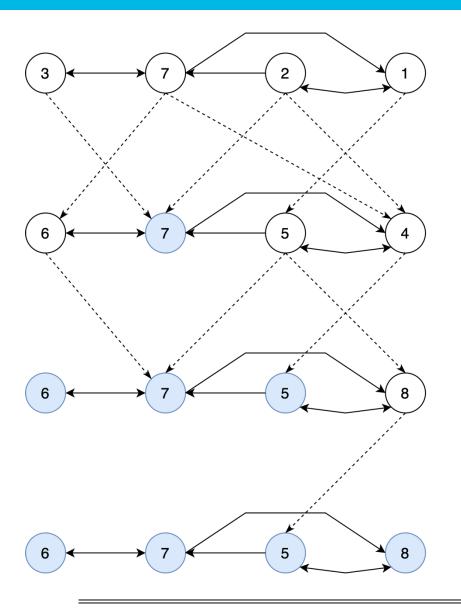
Application

- Google Pregel
- BSP on top of Hadoop (open project)

Pregel (vertex-centric)

- To solve problems which are difficult to solve using MapReduce
- Each vertex has two states:
 - active and inactive (halt)
- Initially, every vertex is active
- Each vertex sends messages to neighbors
- Within a superstep: after a vertex receives a message, based on its function and criterion, it may need to compute a new value (active) or not (inactive)
- Start next superstep, the computation ends until all vertices are inactive (no need to compute)

Pregel



Superstep 1

Superstep 2

Superstep 3

- In each superstep, each vertex executes one user-defined function
- Vertices communicate with other vertices through messages
- A vertex can send a message to any other vertex in the graph, as long as it knows its unique ID
- In each superstep, all active vertices execute the same userdefined computation in parallel
- The user only needs to define one vertex compute function

Pregel – single-source shortest path in a graph

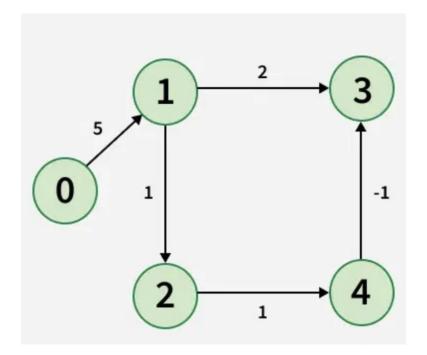
- Distributed Bellman-Ford algorithm
 - "Thinking like a vertex"

```
ALGORITHM 1: Single-Source Shortest Path for a Synchronized TLAV Framework
  input: A graph (V, E) = G with vertices v \in V and edges from i \to j s.t. e_{ij} \in E,
         and starting point vertex v_s \in V
  foreach v \in V do shrtest_path_len, \leftarrow \infty; /* initialize each vertex data to \infty */
                                     /* to activate, send msg of 0 to starting point */
  send (0, v_s);
  repeat
                        /* The outer loop is synchronized with BSP-styled barriers */
     for v \in V do in parallel
                                                       /* vertices execute in parallel */
         /* vertices inactive by default; activated when msg received
         /* compute minimum value received from incoming neighbors
                                                                                            */
         minIncomingData ← min(receive (path_length));
          /* set current vertex-data to minimum value
                                                                                            */
         if minIncomingData < shrtest_path_len, then
             shrtest\_path\_len_v \leftarrow minIncomingData;
             foreach e_{vi} \in E do
                 /* send shortest path + edge weight to outgoing edges
                                                                                           */
                 path_length \leftarrow shrtest_path_len<sub>v</sub>+weight<sub>e</sub>;
5
                 send (path_length, j);
             end
          end
         halt();
      end
  until no more messages are sent;
```

McCune RR, Weninger T, Madey G. Thinking like a vertex: A survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Computing Surveys (CSUR). 2015 Oct 12;48(2):1-39.

Pregel – single-source shortest path in a graph

- Example: given the following graph, compute the shortest distances from a source to all other vertices
 - Non-distributed version of Bellman-Ford
 - https://www.geeksforgeeks.org/dsa/bellman-ford-algorithm-dp-23/
 - Distributed version



Pregel – single-source shortest path in a graph

- Distributed Bellman-Ford algorithm
 - "Thinking like a vertex"

```
ALGORITHM 1: Single-Source Shortest Path for a Synchronized TLAV Framework
  input: A graph (V, E) = G with vertices v \in V and edges from i \to j s.t. e_{ij} \in E,
         and starting point vertex v_s \in V
  foreach v \in V do shrtest_path_len<sub>v</sub> \leftarrow \infty;
                                               /* initialize each vertex data to \infty */
                                     /* to activate, send msg of 0 to starting point */
  send (0, v_s);
  repeat
                        /* The outer loop is synchronized with BSP-styled barriers */
      for v \in V do in parallel
                                                       /* vertices execute in parallel */
         /* vertices inactive by default; activated when msg received
         /* compute minimum value received from incoming neighbors
                                                                                             */
         minIncomingData ← min(receive (path_length));
1
          /* set current vertex-data to minimum value
                                                                                             */
         if minIncomingData < shrtest_path_len, then
             shrtest\_path\_len_v \leftarrow minIncomingData;
             foreach e_{vi} \in E do
                 /* send shortest path + edge weight to outgoing edges
                                                                                            */
                 path_length \leftarrow shrtest_path_len<sub>v</sub>+weight<sub>e</sub>;
                 send (path_length, j);
             end
          end
         halt();
      end
  until no more messages are sent;
```

McCune RR, Weninger T, Madey G. Thinking like a vertex: A survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Computing Surveys (CSUR). 2015 Oct 12;48(2):1-39.

vertex

program

MapReduce versus Pregel

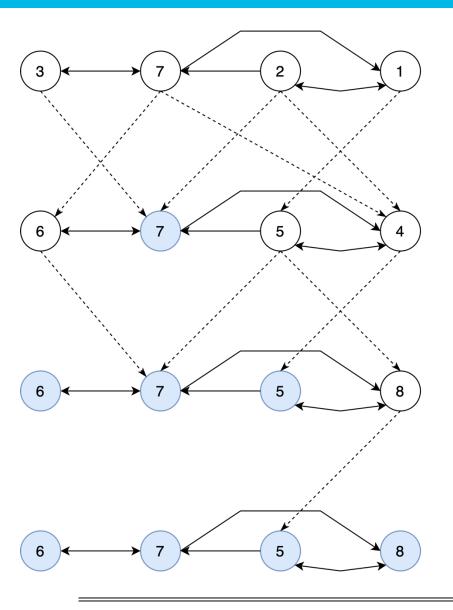
MapReduce

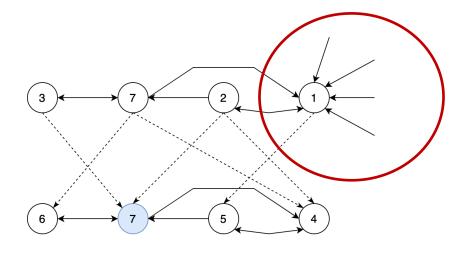
- Requires passing of entire graph topology from one iteration to the next
- Intermediate result after each iteration is stored on disk and then read again from disk
- Programmer needs to write a driver program to support iterations, and another M/R job to check for fixed point

Pregel

- Graph topology is not passed across iterations, vertices only send their state to their neighbors
- Main memory based
- Usage of supersteps and master-client architecture makes programming easy

Pregel

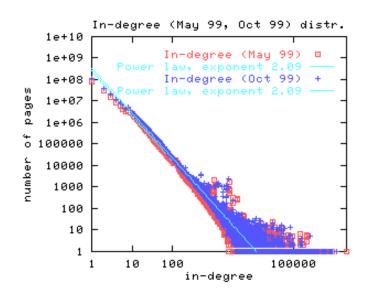


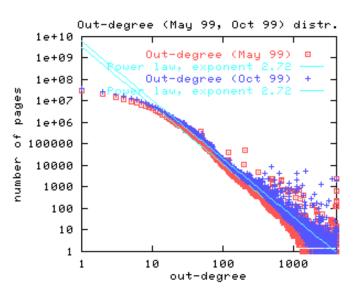


power-law degree distribution!

Pregel (BSP) Limitations

- In the BSP (bulk synchronous parallel) model, performance is limited by slowest worker machine
 - Many real-world graphs have power-law degree distribution, which may lead to a few highly-loaded workers
 - A single vertex has more out-edges than in-edges, or vice versa





Possible optimizations to balance the workload

- Decompose the vertex program
- Sophisticated graph partitioning
- Graph-centric abstraction
- Asynchronous execution (instead of BSP)

Possible optimizations to balance the workload

- Decompose the vertex program
- Sophisticated graph partitioning
- Graph-centric abstraction
- Asynchronous execution (instead of BSP)

Combiner

- Takes two messages and combines them into one associative, commutative function
- Can be used to aggregate messages before sending them to the worker node that has the target vertex
- Example:
 - In the vertex-centric PageRank, messages are values $m_{IN} = \left(\frac{PR_k(v')}{|v'_{out}|}\right)$ of each incoming neighbor v_{in} .
 - In the vertex function these values are summed up
 - Parts of this sum may be computed by worker nodes that have some of the incoming neighbor vertices

Signal/Collect Model

- Also known as Scatter-Gather Iterations, vertex-centric
- Scatter/Signaling (edge function):
 - Every edge uses the value of its source vertex to compute a message ("signal") for the target vertex
 - Executed on the worker that has the source vertex
 - Main task: produces the messages that a vertex will send to other vertices
- Gather/Collecting (vertex function):
 - Every vertex computes its new value based on the messages received from its incoming edges
 - Executed on the worker that has the target vertex
 - Main task: updates the vertex value using received messages

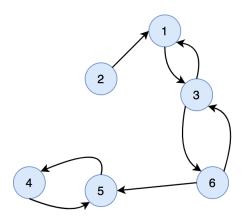
Pregel vs Scatter-Gather

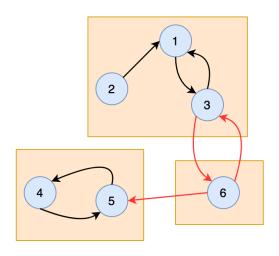
- Similarities
 - Vertex-centric
 - Pregel, Scatter-Gather, parallelism based on vertex computations
- Differences
 - In Pregel, user defines one single vertex compute function
 - In Scatter-Gather, user defines two functions
 - Scatter function for sending messages
 - Gather function for updating values
 - Scatter-Gather decouples sending messages and updating values
 - Easy to maintain

Possible optimizations to balance the workload

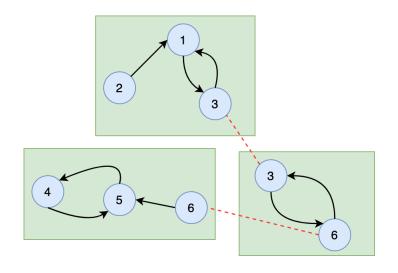
- Decompose the vertex program
- Sophisticated graph partitioning
- Graph-centric abstraction
- Asynchronous execution (instead of BSP)

Graph Partitioning



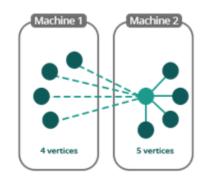


Vertex partitioning/Edge-cut



Edge partitioning/Vertex-cut

- The goals of graph partitioning
 - Load balancing, to decrease memory usage
 - Minimize cuts, to decrease communications
- Unfortunately, the problem is NP-complete
- Various heuristics and approximation algorithms



Summary

- NoSQL Data Models
 - Key-value model
 - Document model
 - Wide-Column model
- Graph Data Model
 - Property graph
 - Query languages
 - Graph Processing for generic graphs

www.liu.se

