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Outline

➢ Hadoop and HDFS

➢ MapReduce

➢ Lab 5 overview
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Hadoop

• Originally designed for computer clusters built based on commodity 
hardware

• Hadoop can be viewed as a distributed system for data storage and 
analysis

• The base Hadoop framework contains some modules:
• Hadoop Common: libraries and utilities needed by other modules
• HDFS: Hadoop Distributed File System storing data on commodity 

machines
• YARN: resource management and application scheduling platform
• Hadoop MapReduce: MapReduce programming model for data 

processing in Hadoop
• …

• The Hadoop framework itself is mostly written in Java
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Focus for today

• Originally designed for computer clusters built based on commodity 
hardware

• Hadoop can be viewed as a distributed system for data storage and 
analysis

• The base Hadoop framework contains some modules:
• Hadoop Common: libraries and utilizes needed by other modules
• HDFS: Hadoop Distributed File System storing data on commodity 

machines
•  YARN: resource management and application scheduling platform
• Hadoop MapReduce: MapReduce programming model for data 

processing in Hadoop
• …

• The Hadoop framework itself is mostly written in Java
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HDFS overview

• A file system designed for storing very large files on clusters
• Runs on top of the native file system

• Files are divided into blocks/shards (128MB by default)
• 3 replicas per block for fault tolerance

• HDFS files: write once, read multiple times, (single writer, multiple 
readers)
• Caching blocks is possible
• Exposes the locations of file blocks via API

• Hierachical file organization
• similar to most other existing file systems
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HDFS node organization

• Two types of nodes operating in a master-worker pattern
• Namenode (master)

• Manages the file system namespace, maintains the file system tree 
and metadata

• Stores in memory the locations of all copies of all blocks for each 
HDFS file

• Datanodes (worker)
• Workhorses of the file system
• Store and retrieve blocks when they are told by clients or the 

namenode
• Report back to the namenode periodically with lists of blocks that 

they are storing
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HDFS node organization

• https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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HDFS distributing files example

• How to distribute a HDFS file (different blocks) with replicas?
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HDFS Block Placement and Replication

• Aims to improve data reliability, availability, and network bandwidth 
utilization 

• Default policy (three replicas):
• No datanode contains more than one replica
• No rack contains more than two replicas of the same block 

• Namenode ensures that the number of replicas is reached 
• Balancer tool – balances the disk space usage 
• Block scanner – periodically verifies checksums 
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HDFS Block Placement and Replication

• The first replica is located on the writer node
• The second and third replicas are on different nodes in a different 

rack
• Any other replicas (if any, more than 3) are located on random 

nodes
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HDFS Pros and Cons

• Pros
• Storing very large files, GBs/TBs
• High-throughput parallel I/O

• Write-once, read many times
• Time to read the entire dataset is more important than the 

latency in reading the first record
• Commodity hardware

• Clusters are built from commonly available hardware
• Designed to continue working without a noticeable 

interruption in case of failure
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HDFS Pros and Cons

• Cons
• Not suitable for low-latency data access

• HDFS is optimized for delivering high throughput of data
• Lots of small files

• The amount of files is limited by the memory of the 
Namenode

• Not suitable for rewriting HDFS files, and arbitrary file 
modifications
• HDFS files are append-only, write is only allowed at the end 

of the file 
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HDFS commands

•hadoop fs -mkdir <FOLDER_NAME> 
•-make a folder on HDFS 

•hadoop fs -mkdir -p <FOLDER_NAME> <FOLDER_NAME> 
•-make multiple folders 

•hadoop fs -test -d <FOLDER_NAME> 
•-if the path is a directory, return 0 

•hadoop fs -rm -r <FOLDER_NAME> 
•-deletes the directory and any content under it recursively



Advanced Data Models and Databases
Hadoop, HDFS, MapReduce 14

HDFS commands

•hadoop fs -cat <FOLDER_ON_HDFS> [local] 
•-copy HDFS path to stdout 

•hadoop fs -copyFromLocal <localsrc> ... <dst> 
•-copy a single source, or multiple sources from local (e.g., Sigma) to 
HDFS

•hadoop fs -copyToLocal <dst> ... <localsrc> -
•copy single src, or multiple srcs from HDFS to local (e.g., Sigma )
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Next question…

• How to perform computations over data stored on HDFS?
• How to write distributed programs

• MapReduce programming model
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MapReduce

• Operate on large distributed input data sets, e.g., HDFS
• Implemented in Hadoop and other frameworks
• A high-level parallel programming construct
• Algorithmic design pattern:

• Map, Shuffle (group by key), Reduce
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MapReduce

• Map Phase (extract data you care about)
• Parses an input file into key-value pairs (Record reader) 
• Performs a user-defined function to each element, then 

produce new key-value pairs as intermediate elements 
(Mapper)

distributed data key-value pairs Intermediate key-value pairs
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MapReduce

• Shuffle phase
• Downloads the needed files to the node where the reducer is 

running
• Pairs with the same keys will be grouped

Intermediate key-value pairs
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MapReduce

• Reduce phase
• Performs a user-defined reduce function once for each key 

grouping
• Outputs key-value pairs
• E.g., aggregation (maximum, minimum, sum), filter 

Key-value pair groups
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Word Count Example

• We have a huge text document
• Count the number of times each distinct word appears in the file

• Example application: analyze web server logs to find popular URLs
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Word Count Example
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Word Count Example
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MapReduce environment in Hadoop

• MapReduce environment takes care of:

• Partitioning the input data
• Scheduling the program’s execution across a set of machines
• Performing the shuffle (group by key)
• Handling machine failures
• Managing required inter-machine communication



Advanced Data Models and Databases
Hadoop, HDFS, MapReduce 24

Hadoop MapReduce Execution Flow

• Job Submission
• Step 1-4

• Job Initialization
• Steps 5a, 5b, 6, 7

• Task Assignment
• Step 8

• Task Execution
• Steps 9a, 9b, 10, 11

Hadoop: The Definitive Guide, 4th Edition, Tom White
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Hadoop MapReduce Execution Flow

• Job Submission
• Step 1

• Run job on the client using “hadoop jar 
PARAMETERS”, and give the jar file 
name, class name, and other parameters 
such as input files

• Step 2
• Ask the resource manager an application 

ID

• Step 3
• Copy jar file, and other resources to 

HDFS

• Step 4
• Then the client actually submit the 

application to resource manager
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Hadoop MapReduce Execution Flow

• Job Initialization
• Step 5a, 5b

• The YARN scheduler allocates a 
container, and then the resource 
manager launches the application 
master’s process

• Step 6
• Create bookkeeping objects to track 

the job’s progress

• Step 7
• Retrieve each input split and create 

a map task for each split, as well as 
create a number of reduce tasks
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Hadoop MapReduce Execution Flow

• Task Assignment
• Step 8

• Application requests resources 
for map and reduce tasks
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Hadoop MapReduce Execution Flow

• Task Execution
• Step 9a, 9b

• Application master starts 
containers by contacting 
node managers

• Step 10
• Retrieve needed resources 

and localize them
• Step 11

• Run tasks
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MapReduce Application

• Matrix-Vector Multiplication
• Suppose we have an n*n matrix M, whose element in row i and column j is 

denoted mij 
• Suppose we have a vector v of length n, whose jth element is vj

• Then the matrix-vector product is the vector x of length n, whose ith element 
xi is given by 

𝑥𝑖 =෍

𝑗=1

𝑛

𝑚𝑖𝑗𝑣𝑗
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MapReduce Application

• MapReduce for Matrix-Vector Multiplication
• The matrix M and the vector v each will be stored in a file on HDFS. We 

assume that the row-column coordinates of each matrix element will be 
discoverable, either from its position in the file or stored with explicit 
coordinates, e.g., (i, j, mij)

• We also assume the position of elements in the vector is discoverable in the 
similar way
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MapReduce Application

• Matrix-Vector Multiplication
• The Map function

• Each map task takes the entire vector v and a chunk of the matrix
• For each matrix element mij, it produces the key-value pair (i, mijvj), 

Thus, all terms of the sum making up the component xi will get the same 
key

• The Reduce function
• A reduce task simply sum up all the values associated with a given key i. 

The result will be a pair (i, xi)

𝑥𝑖 =෍

𝑗=1

𝑛

𝑚𝑖𝑗𝑣𝑗
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Outline

✓ Hadoop

✓ HDFS

✓ MapReduce

➢ Lab 5 overview
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Lab 5 overview

➢ How to work on Sigma
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Lab 5 overview

• Connection
• Option 1: ssh –X username@sigma.nsc.liu.se

• 1.1: Connect the University environment first. You can use thinlinc to 
connect ‘thinlinc.edu.liu.se’, then use ‘ssh -X’ to connect sigma.

• 1.2: With your own laptop, you need an X forwarding configuration.
• An X server software installed on your computer.

• If you run Linux, this is already taken care of.
• If you run MacOS, you might need to install and 

start X11.app  (XQuartz: https://www.xquartz.org) which is included in 
MacOS but not always installed.

• If you run Windows, you need to find a third-party X server software 
(e.g Xming https://sourceforge.net/projects/xming/), as this is not 
normally included in Windows. 

http://en.wikipedia.org/wiki/Apple_X11
http://sourceforge.net/projects/xming/
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Lab 5 overview

• Connection
• Option 2: Thinlinc connection to Sigma directly 

(sigma.nsc.liu.se)
• If you are at a computer in an SU room at the university, to use thinlinc, you 

need to run the following two commands first in a terminal:
• module load courses/TDDD43
• tlclient

• If you use your own computers, you just need to download thinlinc and then 
connect to Sigma

• Notice: During the lab sessions, for each group, please use at most one thinlinc 
connection. 
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Lab 5 overview

• Submit, monitor, cancel jobs at Sigma
 sbatch, squeue, scancel commands
• Demo on sigma
 /software/sse/manual/spark/examples/java_mapreduce_on_hdfs/2_java_wordcount_1.0/

• A script for compiling java code using Hadoop
      complile.sh

• A script for interacting with HDFS and running 
code
 run.q
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How to work on Sigma (run word count example)

• Step 1: Login Sigma
• Step 2: Copy the code to 

your home folder on Sigma Step 1

Step 2
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How to work on Sigma (run word count example)

• Step 3: Compile java program
• Step 4: Submit a job on Sigma
• Step 5: Check the output slurm

file

Step 4

Step 5

Step 3
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How to work on Sigma

Step 1

Step 2, 4

Within Step 4

Parallel Computing Environment
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Word count example code

• Main function – Job configuration
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Word count example code

• Mapper

Class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

Specifilize the output format of key-value pairs of a mapper

void write(KEYOUT key, VALUEOUT value) 

Mapper/Reducer interacts with Hadoop, e.g., emit output

protected void map(KEYIN key, VALUEIN value, Context context)
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Word count example code

• Reducer

Class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)



www.liu.se

http://www.liu.se/

	Slide 1: TDDD43 Advanced Data Models and Databases
	Slide 2: Outline
	Slide 3: Hadoop
	Slide 4: Focus for today
	Slide 5: HDFS overview
	Slide 6: HDFS node organization
	Slide 7: HDFS node organization
	Slide 8: HDFS distributing files example
	Slide 9: HDFS Block Placement and Replication
	Slide 10: HDFS Block Placement and Replication
	Slide 11: HDFS Pros and Cons
	Slide 12: HDFS Pros and Cons
	Slide 13: HDFS commands
	Slide 14: HDFS commands
	Slide 15: Next question…
	Slide 16: MapReduce
	Slide 17: MapReduce
	Slide 18: MapReduce
	Slide 19: MapReduce
	Slide 20: Word Count Example
	Slide 21: Word Count Example
	Slide 22: Word Count Example
	Slide 23: MapReduce environment in Hadoop
	Slide 24: Hadoop MapReduce Execution Flow
	Slide 25: Hadoop MapReduce Execution Flow
	Slide 26: Hadoop MapReduce Execution Flow
	Slide 27: Hadoop MapReduce Execution Flow
	Slide 28: Hadoop MapReduce Execution Flow
	Slide 29: MapReduce Application
	Slide 30: MapReduce Application
	Slide 31: MapReduce Application
	Slide 32: Outline
	Slide 33: Lab 5 overview
	Slide 34: Lab 5 overview
	Slide 35: Lab 5 overview
	Slide 36: Lab 5 overview
	Slide 37: How to work on Sigma (run word count example)
	Slide 38: How to work on Sigma (run word count example)
	Slide 39: How to work on Sigma
	Slide 40: Word count example code
	Slide 41: Word count example code
	Slide 42: Word count example code
	Slide 43

