
TDDD43 Advanced Data Models and
Databases

NoSQL Databases

Huanyu Li
huanyu.li@liu.se

Based on slides by Olaf Hartig

mailto:huanyu.li@liu.se

Advanced Data Models and Databases
NoSQL Databases

NoSQL in general

• “NoSQL” is interpreted differently (without precise definition)
• “no to SQL”
• “not only SQL”
• “not relational”

• Non-relational databases has been around since the late 1960s
• 1998: first used for a RDBMS without SQL interface
• 2009: picked up again to name the conference “NOSQL 2009” about
 “open-source, distributed, non-relational databases”

• Since then, “NoSQL database” loosely specifies class of non-relational DBMSs

Advanced Data Models and Databases
NoSQL Databases

Focuses of this lecture

Ø What are key characteristics of NoSQL systems?

Ø How do DBs supported by NoSQL systems look like?

Ø What can you do with these DBs?

• (in comparison to the DBs supported by RDBMSs)

Advanced Data Models and Databases
NoSQL Databases

Outline

Ø Why NoSQL comes to the stage

Ø NoSQL data models

Ø The performance and scability of NoSQL

Ø NoSQL consistency models and basic techniques

Advanced Data Models and Databases
NoSQL Databases

Recap of Relational Database Management Systems

Ø With well-defined formal foundations

• Schema level (Entity-Relationship)

• Relational Model (relation/table, attribute/column,

tuple/row)

Advanced Data Models and Databases
NoSQL Databases

Recap of Relational Database Management Systems

Student CourseSelect
M N

Name

Ssn
GPA Code Name

Code Name

TDDD43 Advanced Data Models and Databases

TDDE31 Big Data Analytics

COURSE

Tuples/Rows

Attributes/Columns

Relation/Table

Advanced Data Models and Databases
NoSQL Databases

Recap of Relational Database Management Systems

Ø With well-defined formal foundations
Ø SQL – structured query language
• query, data manipulation, database definition

Ø Support of transactions with ACID properties
• Atomicity, Consistency, Isolation, Durability

Ø Established technology
• Many vendors
• Highly mature systems
• Experienced users and administrators

Advanced Data Models and Databases
NoSQL Databases

But, the business world has changed…

Ø More organizations and companies have shifted to the digital
economy powered by the Internet

Ø New IT applications that allow companies to run their business
and to interact with costumers, are required and prioritized
• Web and Mobile applications
• Connected devices (“Internet of Things”)

• As a result, new challenges come…

Advanced Data Models and Databases
NoSQL Databases

Therefore, the scalability of a system is important

Ø Data scalability
• Handle growing amounts of data,

 without losing performance

Ø Read scalability
• Handle increasing numbers of read operations,
 without losing performance

Ø Write scalability
• Handle increasing numbers of write operations,
 without losing performance

Advanced Data Models and Databases
NoSQL Databases

Vertical Scalability vs. Horizontal Scalability

Ø Vertical scalability (scale up)
• Add resources to a server (e.g., more CPUs, more memory,

more or bigger disks)

Ø Horizontal scalability (scale out)
• Add nodes (more computers) to a distributed system

Advanced Data Models and Databases
NoSQL Databases

To achieve much higher performance and scalability

Ø NoSQL supports (some inconsistency may be acceptable):
• Basically Available
• System available whenever accessed,
 even if parts of it unavailable

• Soft state
• the distributed data does not need to
 be in a consistent state at all times

• Eventually consistent
• state will become consistent after a
 certain period of time

We will get back to transactional access of NoSQL systems later again!

Advanced Data Models and Databases
NoSQL Databases

Typical Characteristics of NoSQL systems

Ø Ability to scale horizontally over many commodity servers with high
performance, availability and fault tolerance
Ø achieved by guaranteeing basically available, soft state, eventually consistent

Ø and by partitioning and replication of data

Ø Non-relational data model, no requirements for schemas

Ø “Typical” means there is a broad variety of such systems, but not all of
them have these characteristics to the same degree

Advanced Data Models and Databases
NoSQL Databases

Outline

ü Why NoSQL comes to the stage

Ø NoSQL data models

Ø BASE, ACID, and CAP

Ø NoSQL consistency models and basic techniques

Advanced Data Models and Databases
NoSQL Databases

Data Models for NoSQL

Ø Key-value model

Ø Document model

Ø Wide-column models

Ø Graph database models

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Key value stores

Ø Simplest form of NoSQL databases
Ø Schema-free, a dictionary of key/value pairs
• Keys are unique
• Values are of arbitrary types

Ø Efficient in storying distributed data
Ø Not suitable for
• Representing structures and relations
• Accessing multiple items, since the access

is by key

Advanced Data Models and Databases
NoSQL Databases

Example - Key value stores

Ø Assuming a relational database consisting of a table:

Ø How to represent such data using the key-value model?

alice12 Alice, http://alice.name/

bob_in_se Bob, , @TheBob

charlie Charlie

Advanced Data Models and Databases
NoSQL Databases

Example - Key value stores

Ø Let’s add another table

Ø How to represent such data using the key-value model?

alice12 Alice, http://alice.name/, , [bob_in_se, charlie]

bob_in_se Bob, , @TheBob

charlie Charlie

Advanced Data Models and Databases
NoSQL Databases

Key value stores: Querying

Ø Only CRUD operations in terms of keys
• create, read, update, delete
• put(key, value), get(key), delete(key)

Ø No support for value-related queries
• Recall that values are opaque to the system (i.e., no secondary

index over values)

Ø Accessing multiple items requires separate requests

Ø However, partition the data based on keys (horizontal partitioning
or sharding) and distributed processing can be very efficient

Advanced Data Models and Databases
NoSQL Databases

Example - Key value stores

Ø Assume we try to find all users for whom Bob is a
favorite

Ø It is possible, but very inefficient

alice12 Alice, http://alice.name/, , [bob_in_se, charlie]

bob_in_se Bob, , @TheBob

charlie Charlie

Advanced Data Models and Databases
NoSQL Databases

Example - Key value stores

Ø Assume we try to find all users for whom Bob is a
favorite

Ø It is possible, but very inefficient
Ø What can we do to make it more efficient?
• Add redundancy (downsides: more space needed,

updating becomes less trivial and less efficient)

alice12 Alice, http://alice.name/, , [bob_in_se, charlie], []

bob_in_se Bob, , @TheBob, [], [alice12]

charlie Charlie, , , [], [alice12]

Advanced Data Models and Databases
NoSQL Databases

Examples of Key value stores

• Open-source examples
• Redis
• Memcached

Advanced Data Models and Databases
NoSQL Databases

Data Models for NoSQL

ü Key-value model

Ø Document model

Ø Wide-column models

Ø Graph database models

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Document stores

Ø Store data as documents
ØA dictionary of key/value pairs
• Keys are unique
• Values are documents, semi-structured data
• XML, JSON, BSON (binary), etc.

Ø Efficient in storying distributed data
ØNot suitable for
• Representing structures and relations
• Accessing multiple items, since the access is by key

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Document stores

login: “alice12”
 name: “Alice”
 website: “http://alice.name/”
 favorites: [“bob_in_se”, “charlie”]

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Document stores

ØDocument Store based Database
• A set of documents (or multiple such sets)
• Each document additionally associated with a

unique identifier
• Schema free: different documents may have

different fields

login: “alice12”

name: “Alice”

website: “http://alice.name/”

favorites: [“bob_in_se”, “charlie”]

login: “bob_in_se”

name: “Bob”

website: “@TheBob”

login: “charlie”

name: “Charlie”

271 308 912

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Document stores

Ø Document Store based Database
• A set of documents (or multiple such sets)
• Each document additionally associated with a unique identifier
• Schema free: different documents may have different fields
• Grouping of documents into separate sets (called “domains” or

“collections”)

login: “alice12”

name: “Alice”

website: “http://alice.name/”

favorites: [“bob_in_se”, “charlie”]

login: “bob_in_se”

name: “Bob”

website: “@TheBob”

login: “charlie”

name: “Charlie”

271 308 912

Collection: Users

author: “alice12”

date: “2017-01-23”

text: “I bought a …”

author: “bob_in_se”

text: “I must …”

334 196

Collection: Posts

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Document stores

Ø Document Store based Database
• A set of documents (or multiple such sets)
• Each document additionally associated with a unique identifier
• Schema free: different documents may have different fields
• Grouping of documents into separate sets (called “domains” or

“collections”)
• Partitioning based on collections and/or on document IDs
• Secondary indexes over fields in the documents possible

• Different indexes per domain/collection of documents

login: “alice12”

name: “Alice”

website: “http://alice.name/”

favorites: [“bob_in_se”, “charlie”]

login: “bob_in_se”

name: “Bob”

website: “@TheBob”

login: “charlie”

name: “Charlie”

271 308 912

Collection: Users

Advanced Data Models and Databases
NoSQL Databases

Document stores: Querying

Ø Querying in terms of conditions on document content
Ø Depending on specific systems, queries may be

expressed:
• program code using an API
• in a system-specific query language

Advanced Data Models and Databases
NoSQL Databases

Document stores: Querying

Ø Querying in terms of conditions on document content
Ø Depending on specific systems, queries may be expressed:
• program code using an API
• in a system-specific query language

Ø Examples (based on MongoDB’s query language)
Ø Find all docs in collection Users whose name field is “Alice”

 db.Users.find({name: “Alice”})
Ø Find all docs in collection Users whose age is greater than 23
 db.Users.find({age:{$gt: 23}})
Ø Find all docs in collection Users whose favorite Bob
 db.Users.find({favorites: {$in: [“bob_in_se”]}})

login: “alice12”

name: “Alice”

website: “http://alice.name/”

favorites: [“bob_in_se”, “charlie”]

Advanced Data Models and Databases
NoSQL Databases

Document stores: Querying

Ø Querying in terms of conditions on document content
Ø Depending on specific systems, queries may be expressed:
• program code using an API
• in a system-specific query language

Ø Examples (based on MongoDB’s query language)
Ø Find all docs in collection Users whose name field is “Alice”

 db.Users.find({name: “Alice”})
Ø Find all docs in collection Users whose age is greater than 23
 db.Users.find({age:{$qt: 23}})
Ø Find all docs in collection Users whose favorite Bob
 db.Users.find({favorites: {$in: [“bob_in_se”]}})

• However, no cross-document queries (e.g., joins)
• have to be implemented in the application logic

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Document store

• Examples
• MongoDB

Advanced Data Models and Databases
NoSQL Databases

Data Models for NoSQL

ü Key-value model

ü Document model

Ø Wide-column models

Ø Graph database models

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Wide column stores

ØAlso called column-family or extensible-record
Ø Store data in rows, each row has a unique key and column

families
Ø Schema-free
• Keys are unique
• Values are varying column families
• Columns consist of key value pairs

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Wide column store

• Like a single, very wide relation (SQL table) but
 extensible, schema-free and potentially sparse
• Like the document model without nesting

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Wide column store

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Wide column store

• Columns may be grouped into “column families”
• Therefore, values are addressed by row key,

column family, and column key

basic user data favorites

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Wide column store

• Columns may be grouped into “column families”
• Therefore, values are addressed by row key, column family,

and column key
• Data may be partitioned …
 based on row keys (horizontal partitioning),
 but also based on column families (vertical partitioning),
 or even on both
• Secondary indexes can be created over arbitrary columns

Advanced Data Models and Databases
NoSQL Databases

Wide column stores: Querying

Ø Querying in terms of keys or conditions on column values
Ø Conceptually similar to queries in document stores
• program code using an API
• in a system-specific query language
• Again, no joins, have to be implemented in the application

logic
Ø Better than key value stores for querying and indexing
Ø Not suitable for
• Representing structures and relations

Advanced Data Models and Databases
NoSQL Databases

NoSQL Data Models – Wide Column store

• Examples
• Google BigTable
• Apache HBase
• Apache Cassandra

Advanced Data Models and Databases
NoSQL Databases

Data Models for NoSQL

ü Key-value model

ü Document model

ü Wide-column models

Ø Graph database models

• Next lecture tomorrow

Advanced Data Models and Databases
NoSQL Databases

Data Models for NoSQL

ü Key-value model

ü Document model

ü Wide-column models

Ø Graph database models

Ø There are NoSQL systems that are based on multi models

• OrientDB (key-value, documents, graph)
• ArangoDB (key-value, documents, graph)
• Cosmos DB (key-value, documents, wide-column, graph)

Advanced Data Models and Databases
NoSQL Databases

Outline

ü Why NoSQL comes to the stage

ü NoSQL data models

Ø NoSQL consistency models and basic techniques

Ø ACID, BASE and CAP

Ø Consistent Hashing

Ø Vector Lock

Advanced Data Models and Databases
NoSQL Databases

Typical Characteristics of NoSQL systems

Ø Ability to scale horizontally over many commodity servers with high
performance, availability and fault tolerance
• achieved by guaranteeing basically available, soft state, eventually consistent

• in another word, by giving up ACID guarantees

• and by partitioning and replication od data

Ø Non-relational data model, no requirements for schemas

Ø “Typical” means there is a broad variety of such systems, but not all of
them have these characteristics to the same degree

Advanced Data Models and Databases
NoSQL Databases

ACID

Ø Atomicity
• The entire transaction takes place at once or doesn’t happen at all

Ø Consistency
• The database must be consistent before and after the transaction

Ø Isolation
• Multiple transactions occur independently without interference

Ø Durability
• The changes of a successful transaction occurs even if the system

failure occurs

Advanced Data Models and Databases
NoSQL Databases

NoSQL, BASE rather than ACID

Ø Giving up ACID guarantees, to achieve much higher performance
and scalability

• Basically Available
• System available whenever accessed,
 even if parts of it unavailable

• Soft state
• the distributed data does not need to
 be in a consistent state at all times

• Eventually consistent
• state will become consistent after a
 certain period of time

Advanced Data Models and Databases
NoSQL Databases

CAP Theorem for distributed data store

• Consistency
• After an update, all readers in a

distributed system see the same data
• All nodes are supposed to contain the

same data at all times

• Availability
• All requests will be answered,

regardless of crashes or downtimes

• Partition Tolerance
• System continues to operate, even if

two sets of servers get isolated

Ø Only 2 of 3 properties can
be guaranteed at the same
time in a distributed system
with data replication

Advanced Data Models and Databases
NoSQL Databases

Outline

ü Why NoSQL comes to the stage

ü NoSQL data models

Ø NoSQL consistency models and basic techniques

Advanced Data Models and Databases
NoSQL Databases

Consistency models

• Strong consistency
• After the update completes. Any subsequent access will

return the updated value

• Weak consistency
• The system does not guarantee that subsequent accesses

to the system will return the updated value
• Inconsistency window: the period until all replicas have

been updated in a lazy manner
• Eventual consistency: if no new updates are made,

eventually all accesses will return the last updated value
• Employed by many NoSQL databases

Advanced Data Models and Databases
NoSQL Databases

NoSQL Techniques

• Basic techniques (widely applied in NoSQL systems)
• Distributed data storage, replication (Consistent hashing)
• Recognize order of distributed events and potential

conflicts (Vector clock)
• Distributed query strategy (MapReduce)

Advanced Data Models and Databases
NoSQL Databases

NoSQL Consistent hashing

• A virtual ring structure (hash ring)
• Use the same hashing function to hash

both the node (server) identifiers (IP
addresses) and data keys

• The ring is traversed in the clockwise
direction

• Each node is responsible for the region
of the ring between the node and its
predecessor on the ring

Advanced Data Models and Databases
NoSQL Databases

Consistent hashing – Node Removal

• If a node is dropped out or gets lost
• Its responsible data will be redistributed to an adjacent

node

dropped

Consistent hashing – Node Addition

• If a node is added
• Its hash value is added to the hash table
• the hash realm is repartitioned, and hash data will be

transferred to new neighbor
• No need to update remaining nodes

Advanced Data Models and Databases
NoSQL Databases

Vector clock

• MVCC (Multi-version concurrency control)
• Commonly used in DBMS

• Vector clock is an extension of MVCC
• A vector clock is an array/vector of N logical clocks (N is the

number of processes)
• Each process has a vector clock
• When processes communicate to each other, vector

timestamps are piggybacked

• How are vector clocks maintained?

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance

• Let VCi denote the vector clock for process i	(pi):
• Initialize all clocks for all processes as zero
• VCi[j]	=	0; for i,	j	=	1,	2,	…	N
• Just before a process (pi) timestamps an internal event (e.g., sending messages), its
own logical clock in its vector will be incremented by one
• VCi[i]	=	VCi[i]	+	1
• The new vector of pi is piggybacked when pi send messages to other processes
• When a process (pj) receives a message from another process (pi), it first increments
its own logical clock by one, then compare its vector with the vector it receives and take
all the maximum values for each logical clocks
• VCj[i]	=	VCj[i]	+	1
• VCj[k]	=	max	(VCj[k],	VCi[k]);	for	k	=	1,2,	…	N

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance

p1,
VC1:	(0,	0,	0)

p2,
VC2:	(0,	0,	0)

p3,
VC3:	(0,	0,	0)

Physical Time

• Let VCi denote the vector clock for process i	(pi):
• Initialize all clocks for all processes as zero
• VCi[j]	=	0; for i,	j	=	1,	2,	…	N

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance

p1

p2

p3

Physical Time

(1,	0,	0) (2,	0,	0)

(0,	0,	1)

• Just before a process (pi) timestamps an internal event (e.g., sending messages), its
own logical clock in its vector will be incremented by one
• VCi[i]	=	VCi[i]	+	1

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance

p1

p2

p3

Physical Time

(1,	0,	0) (2,	0,	0)

(0,	0,	1)

(2,	1,	0)(0,	1,	0)

message	1

(2,	2,	0)

(2,	2,	2)(0,	0,	2)

• The new vector of pi is piggybacked when pi send messages to other processes
• When a process (pj) receives a message from another process (pj), it first increments
its own logical clock by one, then compare its vector with the vector it receives and take
all the maximum values for each logical clocks
• VCj[i]	=	VCj[i]	+	1
• VCj[k]	=	max	(VCj[k],	VCi[k]);	for	k	=	1,2,	…	N

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance

• Properties (comparing vector clocks for two events):
• VC	=	VC’			iff.		VC[i]	=	VC’[i];		for	i	=	1,	2,	…	N
• VC	≤	VC’			iff.		VC[i]	≤	VC’[i];		for	i	=	1,	2,	…	N
• VC	<	VC’			iff.		VC[i]	≤	VC’[i];		for	i	=	1,	2,	…	N,	meanwhile	
there	exists	a	process	pj	that,	VC[j]	<	VC’[j]

• For two events e and e’,	e→e’	iff.	VC(e)	<	VC(e’)
• event	e	happens	before	event	e’

• How to detect if two events are conflict to each other?
• For two events e and e’, if neither VC(e)	≤ VC(e’)	nor VC(e’)	
≤ VC(e)	satisfies, then the two events are concurrent

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance
• How to detect if two events are conflict to each other?
• For two events e and e’, if neither VC(e)	≤ VC(e’)	nor VC(e)	≥ VC(e’)	

satisfies, then the two events are concurrent

p1

p2

p3

Physical Time

(1,	0,	0) (2,	0,	0)

(0,	0,	1)

(2,	1,	0)(0,	1,	0)

message	1

(2,	2,	0)

(2,	2,	2)(0,	0,	2)

Event Event Conflict?

e1: (1, 0, 0) e2: (0, 0, 1)

e2: (0, 0, 1) e4: (2, 1, 0)

e1: (1, 0, 0) e4: (2, 1, 0)

e4: (2, 1, 0) e6: (2, 2, 2)

e1 e3

e2

e4 e5

e6

Advanced Data Models and Databases
NoSQL Databases

Vector clock Maintainance
• How to detect if two events are conflict to each other?
• For two events e and e’, if neither VC(e)	≤ VC(e’)	nor VC(e)	≥ VC(e’)	

satisfies, then the two events are concurrent

p1

p2

p3

Physical Time

(1,	0,	0) (2,	0,	0)

(0,	0,	1)

(2,	1,	0)(0,	1,	0)

message	1

(2,	2,	0)

(2,	2,	2)(0,	0,	2)

Event Event Conflict?

e1: (1, 0, 0) e2: (0, 0, 1) concurrent

e2: (0, 0, 1) e4: (2, 1, 0) concurrent

e1: (1, 0, 0) e4: (2, 1, 0)

e4: (2, 1, 0) e6: (2, 2, 2)

e1 e3

e2

e4 e5

e6

Advanced Data Models and Databases
NoSQL Databases

Summary

Ø NoSQL systems support non-relational data models
• Schema free

• Support for semi-structured and unstructured data

• Limited query capabilities (no joins!)

Ø NoSQL systems provide high (horizontal) scalability with high
performance, availablility, and fault tolerance
• Achieved by:

§ Data partitioning

§ Data replication

§ Giving up consistency requirements

www.liu.se

http://www.liu.se/

