TDDD43 Advanced Data Models and
Databases

Graph Data Systems

Huanyu Li
huanyu.li@liu.se

Based on slides by Olaf Hartig

LINKOPING
II.“ UNIVERSITY

mailto:huanyu.li@liu.se

Graphs are Everywhere

* Transportation networks
* Bibliographic networks
 Computer networks

* Social networks

* Topic maps

* Knowledge bases

* Protein interactions

* Biological food chains

* etc.

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Different Graph Data Systems

* Triple stores
* Data model: RDF
* Typically, pattern matching queries

* Graph databases
* Prevalent data model: property graphs
* Typically, navigational queries

e Graph processing systems
* Prevalent data model: generic graphs
* Typically, complex graph analysis tasks

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Graph Data Models

LINKOPING
II.“ UNIVERSITY

Recap of RDF Data Model

e Data is represented as a set of triples
 Atriple: (subject, predicate, object)

* Subject: resources P oomton
* Predicate: properties lmyewfy
) Object: ||terals Or- resources 1975 Science and Engineering

* Such a set of triples may be understood as a graph
 Triples as directed edges
 Subjects and objects as vertexes
* Edges labeled by predicate

* W3C recommendation and standardization

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Property Graph

 “Aproperty graph is made up of nodes, relationships, and properties.
* Nodes contain properties [...] in the form of arbitrary key-value pairs. The
keys are strings and the values are arbitrary data types.

 Arelationship always has a direction, a label, and a start node and an

end node.

* Like nodes, relationships can also have properties.” [1]

[1] lan Robinson, Jim Webber, and Emil Eifr em. Graph Databases. O’Reilly Media, 2013.

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

(Labeled) Property Graph

knows

((weight:1.0)

name:marko
age:29

name:lop

name:josh
lang:java

created created

(weight:0.4)

person

9 (weight0.4)

~
F
e
o

knows
(weight:0.5)

(o 1aublom)
pajeald

o Created
(weight:0.2 J

4

2
person

[name?adas]

4

9
software

. _d
name:ripple
lang:java

name:peter

age:27 age:35

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

(Labeled) Property Graph

* Directed multigraph

 Multiple edges between the same pair of nodes
* Any node and any edge may have a label

 Any node and any edge may have an arbitrary set of key-

M (o M ” knows
value pairs (“properties”) 8 —

1 created 3 created

<
& A e

10

knows ~

created

-
N

0" ybrom
-d
pajeald

6
person

name:peter
age:35

2
person
name:vadas
age:27

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

5
software
name:ripple
lang:java

Property Graphs versus RDF Graphs

e Similarities
* Directed multigraphs
* Labels on edges and on nodes
* Attributes with values on nodes

» Differences
* No edge properties in RDF graphs
* Edge labels cannot appear as nodes in a PG (in RDF, we may have
<sl, pl, 01> and <pl, p2, 02>)
 No multivalued (node) properties in a PG
* Node and edge identifiers in a PG are local to the PG, while URIs in
RDF graphs are globally unique identifiers

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Exercise: converting RDF to Property Graph

* Given a set of RDF triples

ex:restaurant_A rdf:type ex:Restaurant
ex:restaurant_A ex:hasWebsite “http://resaurtantA.org’
ex:restaurant_A ex:hasSite ex:Linkdping
ex:restaurant_ A ex:startDate “2012-02-01"

U

ex:restaurant_ B rdf:type ex:Restaurant
ex:restaurant_B ex:hasWebsite “http://resaurtantB.org”
ex:restaurant_B ex:hasSite ex:Linkdping
ex:restaurant_B ex:startDate “2013-02-01"

ex:Linkoping rdf:type ex:City

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Generic Graphs

Data model
* Directed multigraphs
* Arbitrary user-defined data structure can be used as value
of a vertex (node) or an edge (e.g., a Java object)
Example (Flink Gelly API)

// create new vertexes with a Long ID and a String value
Vertex<Long, String> vl = new Vertex<Long, String>(1L, "foo");

Vertex<Long, String> v2 = new Vertex<Long, String>(2L, "bar");

Edge<Long, Double> e = new Edge<Long, Double>(1L, 2L, 0.5);

Pros: give users maximum flexibility

Cons: systems cannot provide built-in operators related to
vertex data or edge data

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Examples of Graph DB Systems

» Systems that focus on graph databases o , g
@neoy) <

* Neo4j
1
* Sparksee
* Titan & INFINITEGRAPH
* Infinite Graph (
* Multi-model NoSQL databases with support - Cy)rien’rDB”

for graphs ~
* OrientDB bla;eg.rf/\p‘h

* ArangoDB
* Triple stores with Apache TinkerPop support

e Stardog

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Apache TinkerPop

Apaches\
TinkerPop

* Graph computing framework
* Vendor-agnostic

* For graph databases (a graph structure API)
* Formerly known as Blueprints API
* Creating and modifying property graphs

* Example:

Graph graph = ...
Vertex marko = graph.addVertex(T.label, "person”, T.id, 1, "name", "marko”, "age", 29);
Vertex vadas = graph.addVertex(T.label, "person”, T.id, 2, "name", "vadas", "age", 27);

marko.addEdge("knows", vadas, T.id, 7, "weight", 0.5f);

e For graph analytic systems (a process API)

* Graph-parallel engine
e Graph traversal/query, based on Gremlin language

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Gremlin Graph Traversal (Query) Language

* Part of the Apache TinkerPop framework

* Powerful domain-specific language (DSL) with embeddings in
different programming languages

* Expressions specify a concatenation of traversal steps

* A chain of operations/functions that are evaluated from left to right

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Gremlin Examples

g V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’) Result:
==> vadas
e g: for the current graph traversal oeh
==> JOS
* V(): for all vertices in the graph
- T T T4 1
* has(‘name’, ‘marko’): filters the vertices knows S~
weight:1.0 W,
down to those with ‘name’ property ‘marko’ CLEED
i
* out(‘’knows’): traverse outgoing ‘knows’
, 7 g created
edges /
/

* values(‘name’): extracts the values of 11

‘name’ property

weight:0.2

> created

name:peter
age:35

name:ripple
lang:java

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Gremlin Examples

g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’).path()
Result:
==> [v[1],v[2],vadas]

==> [v[1],v[4],josh]

- e
—— =

P knows ~

-
© o/
e
»

created

created

-
/
/ d 4

. \ 2|5 2lg

path(): returns the history of the \ o | Ak

\ 12|E
traverser _2

2 person software

name vadas name peter name npple
4
II LINKOPING Advanced Data Models and %/ "
o UNIVERSITY Graph Data

Gremlin Examples

g.V().has(‘name’, ‘marko’).repeat(out()).times(2).path().by(‘name’)

Result: ==> [marko, josh, ripple]
or ==> [marko, josh, lop]

g.V().until(‘name’, ‘ripple’).repeat(out()).path().by(‘name’)
Result: ==> [marko, josh, ripple]
==> [josh, ripple]
==> [ripple]

* times(N): the number of traverses (N)

_ created

3
>
- <
e weight:0.4

* by(‘name’). element property projection

* repeat(): loops over a traversal given some

break predicate
person persor software,
II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Cypher

Declarative graph database query language

Proprietary (used by Neo4))

The OpenCypher project aims to deliver an open specification

Example
e Recall our initial Gremlin example
g.V().has(‘name’, ‘marko’).out(‘knows’).values(‘name’)
* |n Cypher, we could express this query as follows:
MATCH({name: ‘marko’})-[:knows]->(x)
RETURN x.name

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Possible Clauses in Cypher Queries

* CREATE - creates nodes and edges

 DELETE - removes nodes, edges, properties

* SET - sets values of properties

 MATCH - specifies a pattern to match in the data graph

* WHERE - filters pattern matching results

 RETURN - which nodes / edges / properties in the matched data
should be returned

* UNION - merges results from two or more queries

* WITH - chains subsequent query parts (like piping in Unix
commands)

 manipulate the output before it is passed on to the following
qguery parts

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Node Patterns in Cypher

* Node patterns may have different forms
() — matches any node
(:person)->— matches nodes whose label is person
({name: ‘marko’}) — matches nodes having a property name=‘marko’
(:person {name: ‘marko’}) — matches nodes having both the label
person and a property name=‘marko’

* Every node pattern can be assigned a variable
 (Can be used to refer to the matching node in another query clause
or to express joins
* Forinstance, (x), (x:person)

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Relationship Patterns in Cypher

* Relationship pattern must be placed between two node patterns and it
may have different forms
--> or <-- —matches any edge (with the given direction)

-[:knows]-> — matches edges whose label is knows

-[{weight:0.5}]-> — matches edges having a property weight=0.5

-[:knows {weight:0.5}]-> — matches edges having both the label
knows and a property weight=0.5

[:knows*..4]-> — matches paths of knows edges of up to length 4

* Every relationship pattern can be assigned a variable
* Forinstance, -[x:knows]->

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

More complex Cypher Patterns

* Node patterns and relationship patterns are just basic building blocks

that can be combined into more complex patterns

* MATCH: searches for an existing node, relationship, label, property, or pattern in
the database (like SELECT in SQL).
* RETURN: specifies what values or results you might want to return from a Cypher

query.
* Examples:
MATCH (a)-[:knows]->()-[:knows]->(a)
RETURN a

MATCH p=shortestPath(
(:person {name: ‘marko’})-[*]->(:person {name:‘josh’})

)

RETURN p
II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Filtering in Cypher

e Pattern matching results can be filtered out by using WHERE clause
* Examples:
= MATCH (a:person)-[x:knows]->(b:person)
WHERE x.weight >0.5 AND x.weight<0.9
RETURN a, b

= MATCH ()-[x:knows]->()
WHERE exists(x.weight)
RETURN x

= MATCH (a)-[:knows]->(b)-[x:knows]->(c)
WHERE NOT (a)-[:knows]->(c)
RETURN a, b, ¢

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Updating in Cypher

* CREATE, SET, DELETE, REMOVE
* Examples:
= CREATE (friend:Person {name: 'Mark’})
RETURN friend
= MATCH (a:person)-[x:knows]->(b:person)
SET x.weight = 0.5
RETURN x
= MATCH ()-[x:knows]->()
WHERE NOT exists(x.weight)
DELETE x
= MATCH (a:person)-[:knows]->(b)-[x:knows]->(c)
REMOVE a.organization

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Different Graph Data Systems

* Graph processing systems
* Typically, complex graph analysis tasks
* Prevalent data model: generic graphs

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Complex Graph Analysis Tasks?

* Tasks that require an iterative processing of the entire

PageRank

graph or large portions E—fE

Q

8/ @

 Examples

e Centrality analysis (e.g., PageRank)

Triangle Count

* Clustering, connected components

- A
* Graph coloring .../M'/
* All-pairs shortest path N
e Graph pattern mining (e.g., frequent sub-graphs, ;‘:“p""e"“
. : v
community detection) v ,
-
. . ol
* Machine learning v
II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Properties of Computation on Graphs

 Dependency graph

PageRank

 Dependencies among vertexes E—E
8-/ @

* Local updates

 The value of a vertex is only influenced by its

Triangle Count

neighbours
* [terative Computation

[]
E.g., PageRank Connected
Components

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

PageRank

* Google Search
* Alink analysis algorithm
* An algorithm to rank web pages in results from search engine
* Counting number and quality of links to a page for
determining how important a website is

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Example: PageRank

'/\» PR, (V) = ZVINPRk(V,N)/l Out(Viy)]
V1 V3

N

V2 V4
>

PR(V;) 0.25
PR(V,) 0.25
PR(V5) 0.25
PRV, 0.25

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Example: PageRank

N

V1

|

V2

>

V3

V4

PRk_l_l(V) — ZVINPRk(VIN)/l OMt(V]N)l

PR,(V3)/1 + PR,(V4)/2
0.25/1 + 0.25/2
0.375

I PR,(V1) =PR,(V3)/|Out(V3)| + PR,(V4)/|Out(V4)]

PR(V1)
PR(V>)
PR(Vs)
PR(V4)

0.25
0.25
0.25
0.25

LINKOPING
II.“ UNIVERSITY

Advanced Data Models and Databases
Graph Data

Example: PageRank

'/\» PR, (V) = ZVINPRk(V,N)/l Out(Viy)]
V1 V3

N

V2 V4

>

PR(V,) 025 037 043 045 039 033 038
PR(V,) 025 008 012 014 011 013 013
PR(V;) 025 033 027 029 029 022 028
PR(V,) 025 020 0.6 0.20 9 019 0.19

OFCr

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

* Many such algorithms iteratively propagate data along the
graph structure by transforming intermediate vertex and edge
values

TN PR, (V) =Zy PR(Viy)/ | Out(Viy)|

>
V1 V3
V2 V4
>
II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Can we use MapReduce?

Input Files

Viv VY VDY

REDUCE REDUCE REDUCE

S A
Eoufputﬂles D D D

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Can we use MapReduce?

'/—\ PR, (V) = EVINPRk(V,N)/l Out(Viy)]

>
V1 V3
PR,(V1) =PR,(V3)/|Out(V3)| + PR,(V4)/|Out(V4)]
= PR,(V3)/1 + PR,(V4)/2
= 0.25/1 + 0.25/2
v va = 0.375
>

* Map:
* produces weights of a vertex that assigns to other vertexes e.g., (v3, (0.25,[V1])), (v4, (0.125, [v1,v3]))
* For iterations, keeps topology information, e.g., (v3, [v1]), (v4, [vl,v3])
* For checking convergence, keeps vertexes’ values, e.g., (v3, 0.25), (v4, 0.25)

* Reduce

* Handle all the above (3 kinds) information, computes new values and compares with values from last

iteration
II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Can we use MapReduce?

DATA | DATA DATA | DATA

 MapReduce does not directly support iterative
Startup Penalty

algorithms
* Materializing intermediate results at each M/R
iteration harms performance Ay
P
* Extra M/R job on each iteration for checking Startup Penalty
whether a fixed point has been reached ' &

Disk Penalty

Startup Penalty
* Invariant graph-topology data reloaded and .

e Additional issue for graph algorithms

reprocessed at each iteration
 Wastes I/O, CPU, and network bandwidth

Disk Penalty

DATA | DATA DATA | DATA

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Graph Processing Systems

* Pregel Family
* GraphlLab Family
e Other Systems

Pregel Family GraphLab Family Other Systems
» GraphLab » Trinity
* Giraph * TurboGraph

. . (centralize
* Giraph++ * GraphChi » Signal/Collect
(centralized)

* Mizan
* GPS
* Pregelix
* Pregel+
II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric Abstraction

* Many such algorithms iteratively propagate data along the
graph structure by transforming intermediate vertex and edge
values

* These transformations are defined in terms of functions on
the values of adjacent vertexes and edges

* Hence, such algorithms can be expressed by specifying a
function that can be applied to any vertex separately

* “Think like a vertex”

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric Abstraction

* Vertex compute function consists of three steps:
1. Read all incoming messages from neighbors
2. Update the value of the vertex
3. Send messages to neighbors
e Additionally, the function may “vote to halt” if a local
convergence criterion is met

e Overall execution can be parallelized! Terminates when all
vertexes have halted and no messages in transit

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric PageRank

N

V1 V3

PR.(V:) 0.25
PRi(V,) 0.25
PR.(V5) 0.25
PR(V,) 0.25

|

V2

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric PageRank

1. Read all incoming messages from neighbors

PRk+1(V) = ZVINPRk(VIN)/l OMt(VIN)l

PR.(V:) 0.25
PRi(V,) 0.25
PR.(V5) 0.25
PR(V,) 0.25

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric PageRank

2. Update the value of the vertex

PRk+1(V) = ZVINPRk(VIN)/l OMt(VIN)l

PR.(V:) 0.25
PRi(V,) 0.25
PR.(V5) 0.25
PR(V,) 0.25 0.20

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

0.25
0.25
0.25
0.25

Vertex-centric PageRank

PRk+1(V) = ZVINPRk(VIN)/l OMt(VIN)l

PR(V1)
PR(V)
PR«(V3)
PR«(V4)

0.37
0.08
0.33
0.20

LINKOPING
UNIVERSITY

Advanced Data Models and Databases
Graph Data

Vertex-centric PageRank

3. Send messages to neighbors

N

V1 V3
T

T e kel k2 k3 ke ks ks

PRV 025 0.37
PR(V,) 0.25 0.08
PR(Vs;) 0.25 0.33
PR(V,) 0.25 0.20

|

V2

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric PageRank

N

Vi > PRk+1(V) = ZVINPRk(VIN)/l OMt(VIN)l

V3

PR(V;) 0.25 037 043 035 039 0.38
PR(V,) 0.25 0.08 0.12 0.14 0.11 0.13
PR(V;) 0.25 033 0.27 0.29 0.29 0.28
PR(V,) 0.25 020 0.16 0.20 0.19 0.19

&0

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-centric PageRank

N

V1 V3

PR(V;) 0.25 037 043 035 039 038 0.38
PR(V,) 0.25 0.08 0.12 0.14 0.11 0.13 0.13
PR(V;) 0.25 033 0.27 0.29 0.29 0.28 0.28
PR(V,) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Graph Processing Systems

* Pregel Family

* GraphlLab Family
Pregel Family GraphLab Family Other Systems

® Other SYStemS ° GraphLab . Tr|n|ty
* Giraph PowerGraph » TurboGraph
. _ (centralize
* Giraph++ * GraphChi « Signal/Collect
(centralized)
* Mizan

* GPS

* Pregelix

* Pregel+

Apache Flink: iterative Graph Processing: https://nightlies.apache.org/flink/flink-docs-release-
1.7/dev/libs/gelly/iterative_graph_processing.html|

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Bulk Synchronous Parallel (BSP)

e Bulk Synchronous Parallel (BSP) programming

model
* A sequence of iterations (each called a superstep)
e Supersteps with synchronization barriers
* During a superstep, a user-defined function is invoked
for each vertex

e BSP algorithms features
* Concurrent computation: every participating processor
may perform local computations
e Communication: The processes exchange data to
facilitate remote data storage
e Barrier synchronization: When a process reaches this
point (the barrier), it waits until all other processes
have reached the same barrier
* Application
e Google Pregel
 BSP on top of Hadoop (open project)

Processors

JERS

l dejsiadng — |

| deysiadng |

%

—

%

| — dejsiadng

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Google Pregel (vertex-centric)

e To solve problems which are difficult to solve using MapReduce

* Each vertex has two statuses:
e Active and inactive (halt)

* Initially, every vertex is active

* Each vertex sends messages to neighbors

* Within a superstep: after a vertex receives a message, based on its
function and criterion, it may need to compute a new value (active)
or not (inactive)

e Start next superstep, the computation ends until all vertex are
inactive (no need to compute)

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Google Pregel

Superstep 1

Superstep 2

Superstep 3

In each superstep, each vertex
executes one user-defined
function

Vertices communicate with
other vertices through
messages

A vertex can send a message to
any other vertex in the graph, as
long as it knows its unique ID

In each superstep, all active
vertices execute the same user-
defined computation in parallel

User only need to define one
vertex compute function

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

MapReduce versus Pregel

MapReduce Pregel

e Requires passing of entire * Graph topology is not
graph topology from one passed across iterations,
iteration to the next vertexes only send their

* Intermediate result after state to their neighbors
each iteration is stored on * Main memory based
disk and then read again
from disk * Usage of supersteps and

* Programmer needs to write master-client architecture
a driver program to support makes programming easy

iterations, and another M/R
job to check for fixed point

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Google Pregel

power-law degree distribution!

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Google Pregel (BSP) Limitations

e |n the BSP (bulk synchronous parallel) model, performance is limited by
slowest worker machine
* Many real-world graphs have power-law degree distribution, which
may lead to few highly-loaded workers
* Asingle vertex has more out-edges than in-edges, or vice versa

In-degree (May 99, 0Oct 99) distr. Out-degree (May 99, 0ct 99) distr.
le+1d T T T le+1d T T T
1e+89 | In-degree (May 99> 8 1e+89 | Out-degree (May 99> o _
le+@s o In-degree (Oct 99 + + le+88 | Out-degree (Oct 99> + o
. b b L oes
> 1e+87 > 1e+87 ety
2 le+86 [2 le+86 [
- -
o 1066668 o 1066668
& 1oo0o | & t1oooo |
2 s
5 1688 5 16688
< <
168 168
186 18
1 = >, B J 1
1 18 168 1666800 1 18 168 1668
in-degree out-degree
II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Possible optimizations to balance the workload

» Decompose the vertex program
» Sophisticated graph partitioning

e Graph-centric abstraction
e Asynchronous execution (instead of BSP)

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Possible optimizations to balance the workload

» Decompose the vertex program

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Combiner

* Takes two messages and combines them into one associative, commutative
function

* (Can be used to aggregate messages before sending them to the worker
node that has the target vertex

 Example:

. PR
* |n the vertex-centric PageRank, messages are values m;y = (|0u:gjm§|) of
IN

each incoming neighbor v;y.
* In the vertex function these values are summed up: (Zi0m). 4 PRws) .Y

[out(ving)| — |Out(vin2)l

* Parts of this sum may be computed by worker nodes that have some of

the incoming neighbor vertexes
O OO0

~
~ 7/ S

\ .
\

II LINKOPING Advanced Data Models and Databases (G a °
o UNIVERSITY Graph Data

Signal/Collect Model

* Also known as Scatter-Gather lterations, vertex-centric
» Scatter/Signaling (edge function):
* Every edge uses the value of its source vertex to compute a
message (“signal”) for the target vertex
* Executed on the worker that has the source vertex
* Main task: produces the messages that a vertex will send to other
vertices

* Gather/Collecting (vertex function):
* Every vertex computes its new value based on the messages
received from its incoming edges
* Executed on the worker that has the target vertex
* Main task: updates the vertex value using received messages

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Pregel vs Scatter-Gather

e Similarities
* \Vertex-centric
* Pregel, Scatter-Gather, parallelism based on vertex computations
* Differences
* In Pregel, user defines one single vertex compute function
* |n Scatter-Gather, user defines two functions
e Scatter function for sending messages
e G@Gather function for updating values
* Scatter-Gather decouples sending messages and updating values
* Easy to maintain

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Possible optimizations to balance the workload

» Sophisticated graph partitioning

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Graph Partitioning

oo ! ol ,-L‘@J

Original graph Vertex partitioning/Edge-cut

* The goals of graph partitioning P iachine | N iachine 2 N

* Load balancing, to decrease memory usage P9
— .---:‘..:.:Z::
°

* Minimize cuts, to decrease communications
* Various heuristics and approximation algorithms

* Unfortunately, the problem is NP-complete

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Vertex-Cut

* PowerGraph, a framework for large-scale machine learning and graph
computation
* PowerGraph introduced a partitioning scheme that “cuts” vertexes
such that the edges of high-degree vertexes are handled by multiple
workers
* improved work balance
* Power-law graphs (some node has a large number of edges) have good

vertex-cuts
e Communication is linear in the number of machines each vertex

spans
* Vertex-cut minimizes this number
* Hence, reduced network traffic

vertex cut

II “ LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

Summary

e NoSQL Data Models

e Key-value model

* Document model

* Wide-Column model
e Graph Data Model

e Graph Processing for generic graphs

II LINKOPING Advanced Data Models and Databases
o UNIVERSITY Graph Data

www.liu.se

LINKOPING
II.“ UNIVERSITY

http://www.liu.se/

