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Early Web Search

How to organize the Web?
I First try: Human curated Web directories Yahoo, DMOZ.
I Second try: Web Search

→ Information Retrieval investigates:
Find relevant docs in a small and trusted set

Newspaper

articles, Patents

But: Web is huge, full of untrusted documents, random things, web
spam, etc.
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Early Web Search Engine

Early Web search engine worked by
crawling the Web → terms in inverted index → query

Ranked query processing:
I Presence of a term in a header → higher rank
I Large numbers of occurrences of the term → higher rank

Term Spam
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Term Spam

A T-shirt seller could add a term movie to his page, and do it
thousands of times.

When a user issued a search query with the term movie, the search
engine would list that page first.

Many tricks:
I Give it the same color as the background.
I Go to the search engine, issue the query movie → copy the 1st

ranked page → using the background color to make it invisible.

Term Spam: techniques for fooling search engines into believing
your page is about something it is not.

Term spam rendered early search engines almost useless.
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PageRank

PageRank was used to simulate where Web surfers
I Starting at a random page
I Would tend to congregate if they followed randomly chosen outlinks

from the page at which they were currently located
I This process were allowed to iterate many times.
I Pages that would have a large number of surfers were considered

more important than pages that would rarely be visited.

Google prefers important pages to unimportant pages.

Page judged not only by the terms appearing on that page, but by
the terms used in or near the links to that page.

I Spammer cannot easily get false terms added to these pages.
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PageRank

Ok, but why simulation of random surfers should allow us to approximate
the intuitive notion of the importance of pages?

Users of the Web vote with their feet.
→ They tend to place links to pages they think are good or useful
pages to look at, rather than bad or useless pages.

The behavior of a random surfer indicates which pages users of the
Web are likely to visit.
→ Users are more likely to visit useful pages than useless pages.

PageRank measure has been proved empirically to work.
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PageRank: Transiation Matrix

A hypothetical example
of the Web

Transition matrix

M =









A B C D

A 0 1/2 1 0
B 1/3 0 0 1/2
C 1/3 0 0 1/2
D 1/3 1/2 0 0









Eelement mij in row i and column j
has value 1/k if page j has k arcs
out, and one of them is to page i .
Otherwise, mij = 0.

Model the Web as a directed graph. Pages: nodes, Links: edges.

The transition matrix of the Web M has n rows and columns for the
Web with n pages.
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PageRank: Definition

Definition (PageRank)

The probability distribution for the location of a random surfer can be
described by a column vector whose jth component is the probability
that the surfer is at page j . This probability is the (idealized) PageRank
function.

A random surfer at any of the n pages of the Web with equal
probability. Then the initial vector v0 will have 1/n for each
component.

If M is the transition matrix of the Web, then after one step, the
distribution of the surfer will be Mv0, after two steps it will be
M(Mv0) = M2v0 . . .

→ M iv0 is the distribution of the surfer after i steps.
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PageRank: Transiation Matrix








0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0









×









1/4
1/4
1/4
1/4









=









9/24
5/24
5/24
5/24

















0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0









×









9/24
5/24
5/24
5/24









=









15/48
11/48
11/48
11/48









. . .








0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0









×









3/9
2/9
2/9
2/9









=









3/9
2/9
2/9
2/9








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PageRank: Definition









0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0









×









1/4
1/4
1/4
1/4









=









9/24
5/24
5/24
5/24









The probability xi that a random surfer will be at node i at the next step,
is

Σjmijvj

where mij is the probability that a surfer at node j will move to node i at
the next step and vj is the probability that the surfer was at node j at
the previous step.

This behavior is an example of the theory of Markov processes.
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PageRank: Markov process

It is known that the distribution of the surfer approaches a limiting
distribution v that satisfies v = Mv , provided two conditions are
met:

I The graph is strongly connected; that is, it is possible to get from any
node to any other node.

I There are no dead ends: nodes that have no arcs out.

Limit reached means the limiting v is an eigenvector of M →
Mv = v .

M is stochastic → its columns each add up to 1.

The principal eigenvector of M tells us where the surfer is most
likely to be after a long time.

We can compute the principal eigenvector of M by starting with the
initial vector v0 and multiplying by M some number of times, until
the vector we get shows little change at each round.
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Web Picture

The bowtie picture of the Web In-component: could reach
SCC, but not reachable from
the SCC.

Out-component: reachable
from the SCC but unable to
reach the SCC.

Tendrils:
I out: reachable from the

in-component but not able to
reach the in-component.

I in: can reach out-component,
but are not reachable from
out-component.

Tubes, isolated components
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Web Picture

The bowtie picture of the Web Problems:

Violation on assumptions
needed for the Markov process
iteration to converge to a limit.

Out-components: spider traps.

Surfers starting at SCC,
in-components eventually wind
up in out-components or
tendrils.

Page in the SCC or
in-component winds up with
probability of 0.
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PageRank: Dead End

With dead ends, the transition matrix of the Web is no longer stochastic
→ some of the columns will sum to 0 rather than 1.

Web with dead end Transition matrix

M =









A B C D

A 0 1/2 0 0
B 1/3 0 0 1/2
C 1/3 0 0 1/2
D 1/3 1/2 0 0









C is a dead end. In terms of random
surfers, when surfers reaches C they
disappear at the next round.
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PageRank: Dead End

Starting with the vector with each component 1/4, and repeatedly
multiplying the vector by M:









1/4
1/4
1/4
1/4

















3/24
5/24
5/24
5/24

















5/48
7/48
7/48
7/48









. . .









0
0
0
0









→ After some time, all the surfers will be landing on C and drains out of
the Web.
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PageRank: Dead End

With dead ends, the transition matrix of the Web is no longer stochastic
→ some of the columns will sum to 0 rather than 1.

Web with dead end Transition matrix

M =









A B C D

A 0 1/2 1/4 0
B 1/3 0 1/4 1/2
C 1/3 0 1/4 1/2
D 1/3 1/2 1/4 0









Modify the process by simulating
random surfers moving about the
Web.
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PageRank: Modify Process for Dead End

Starting with the vector with each component 1/4, and repeatedly
multiplying the vector by M:









1/4
1/4
1/4
1/4

















9/48
13/48
13/48
13/48

















39/192
51/192
51/192
51/192

















153/768
205/768
205/768
205/768









. . .









3/15
4/15
4/15
4/15









→ Converges!
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PageRank: Spider traps

A spider trap is a set of nodes with no dead ends but no arcs out.

Web with spider traps Transition matrix

M =









A B C D

A 0 1/2 0 0
B 1/3 0 0 1/2
C 1/3 0 1 1/2
D 1/3 1/2 0 0









C a simple spider trap of one node.
Note that in general spider traps can
have many nodes.
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PageRank: Spider traps

Starting with the vector with each component 1/4, and repeatedly
multiplying the vector by M:









1/4
1/4
1/4
1/4

















3/24
5/24
11/24
5/24

















5/48
7/48
29/48
7/48

















21/288
31/288
205/288
31/288









. . .









0
0
1
0









→ All the PageRank is at C , since once there a random surfer there, he
can never leave.
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PageRank: Aperiodic graphs
Aperiodicity. Roughly: The pages cannot be partitioned such that the
random walker visits the partitions sequentially

Graph which is not
aperiodic

Transition matrix

M =

(

A B

A 0 1
B 1 0

)

Starting with the vector

(

1
0

)

, and

repeatedly multiplying the vector by
M:

(

1
0

) (

0
1

) (

1
0

)

. . .
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any other
page.

Aperiodicity. Roughly: The pages cannot be partitioned such that
the random walker visits the partitions sequentially.
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PageRank: 3 questions

Mv = v

Does this converge?
→ no. As long as the graph does not fulfill those conditions.
Modifying the graphs is not a good idea.

Does it converge to what we want?
→ no. It does not really describe the random surfer’s behaviour.

Are results reasonable?
→ no. A surfer does not simply stop or get trapped repeatedly. She
can always jump out and start a new page.

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 23

PageRank: Teleporting

We modify the calculation of PageRank by allowing each random
surfer a small probability of teleporting to a random page, rather
than following an out-link from their current page.

The iterative step, where we compute a new vector estimate of
PageRanks v ′ from the current PageRank estimate v and the
transition matrix M is

v ′ = βMv + (1− β)e/n

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 24



PageRank: Teleporting

v ′ = βMv + (1− β)e/n

β: a chosen constant, usually in the range 0.8 to 0.9.

e: a vector of all 1’s with the appropriate number of components.

n : the number of nodes in the Web graph.

βMv represents the case where, with probability β, the random
surfer decides to follow an out-link from their present page.

The term (1− β)e/n is a vector each of whose components has
value (1− β)/n and represents the introduction, with probability
(1− β), of a new random surfer at a random page.
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PageRank: Teleporting

Let M =









A B C D

A 0 1/2 0 0
B 1/3 0 0 1/2
C 1/3 0 1 1/2
D 1/3 1/2 0 0









If we set β as 0.8, the equation for the iteration becomes

v ′ =









0 2/5 0 0
4/15 0 0 2/5
4/15 0 4/5 2/5
4/15 2/5 0 0









v +









1/20
1/20
1/20
1/20









→ incorporated the factor β into M by multiplying each of its elements
by 4/5.
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PageRank: Teleporting

Starting with the vector with each component 1/4, and repeatedly
multiplying the vector by M:









1/4
1/4
1/4
1/4

















9/60
13/60
25/60
13/60

















41/300
53/300
153/300
53/300

















543/4500
707/4500
2543/4500
707/4500









. . .









15/148
19/148
95/148
19/148









→ By being a spider trap, C has managed to get more than half of the
PageRank for itself.

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 27

Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique long-term
visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in proportion to this
rate.

It doesn’t matter where we start.

Teleporting makes the process ergodic.

⇒ Web-graph+teleporting has a steady-state probability
distribution.

⇒ Each page in the web-graph+teleporting has a PageRank.
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Topic-Specific PageRank

Instead of generic popularity, can we measure popularity within a
topic?

Goal: Evaluate Web pages not just according to their popularity, but
by how close they are to a particular topic, e.g sports or history

Allows search queries to be answered based on interests of the user

Example: Query Trojan wants different pages depending on whether
you are interested in sports, history and computer security
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Topic-Specific PageRank

Random walker has a small probability of teleporting at any step

Teleport can go to:
I Standard PageRank: Any page with equal probability (To avoid dead

end and spider trap problems)
I Topic Specific PageRank: A topic specific set of relevant pages

(teleport set)

Idea: Bias the random walk
I When walker teleports, she picks a page from a set S
I S contains only pages that are relevant to the topic. → E.g., Open

Directory (DMOZ) pages for a given topic/query
I For each teleport set S , we get a different vector rS
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Topic-Specific PageRank

Suppose S is a set of integers consisting of the numbers for the
pages we have identified as belonging to a certain topic (called the
teleport set).

Let eS be a vector that has 1 in the components in S and 0 in other
components. Then the topic-specific PageRank for S is the limit of
the iteration

v ′ = βMv + (1− β)eS/|S |

where M is the transition matrix of the Web, and |S | is the size of set S .

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 31

Topic-Specific PageRank

A hypothetical
example of the Web

Transition matrix

M =









A B C D

A 0 1/2 1 0
B 1/3 0 0 1/2
C 1/3 0 0 1/2
D 1/3 1/2 0 0









βM =









A B C D

A 0 2/5 4/5 0
B 4/15 0 0 2/5
C 4/15 0 0 2/5
D 4/15 2/5 0 0









Where β = 0.8.
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Topic Specific PageRank

Suppose our topic is represented by the teleport set S = {B ,D}. Then
the vector (1− β)eS/|S | has 1/10 for its second and fourth components
and 0 for the other two components. (1/10 comes from 0.2*1/2).

v ′ =









0 2/5 4/5 0
4/15 0 0 2/5
4/15 0 0 2/5
4/15 2/5 0 0









v +









0
1/10
0

1/10

















0/2
1/2
0/2
1/2

















2/10
3/10
2/10
3/10

















42/150
41/150
26/150
41/150

















62/250
71/250
46/250
71/250









. . .









54/210
59/210
38/210
59/210









→ B and D get a higher PageRank than they did before.
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Link Spam

Once Google became the dominant search engine, spammers began
to work out ways to fool Google

Spam farms were developed to concentrate PageRank on a single
page

Link spam: Creating link structures that boost PageRank of a
particular page
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Link Spam

The Web from the point of view of the link spammer

A collection of pages whose purpose is to increase the PageRank of
a certain page or pages is called a spam farm.

target page t: at which spammer attempts to place as much
PageRank as possible.

A large number m of supporting pages: accumulate the portion of
the PageRank that is distributed equally to all pages.
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Analysis of a Spam Farm

Taxation parameter β, typically around 0.85.

n be pages on the Web, m be the number of supporting pages.

x be the amount of PageRank contributed by the accessible pages.
I → x is the sum, over all accessible pages p with a link to t, of the

PageRank of p times β, divided by the number of successors of p.

Let y be the unknown PageRank of t. We shall solve for y .

PageRank of each supporting page is βy/m + (1− β)/n
Then,

y = x + βm(βy/m + (1− β)/n) + (1− β)/n(ignored)
= x/(1− β2) + c(m/n)

where c = β/(1 + β).
For β = 0.85, (1− β2) = 3.6 → amplified the external PageRank
contribution by 360%. Increasing m will increase y .
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Combating Link Spam: TrustRank

TrustRank: topic specific PageRank with a teleport set of trusted
pages. → Example: edu domains, similar domains for non US
schools.

Basic principle: while a spam page might easily be made to link to a
trustworthy page, it is unlikely that a trustworthy page would link to
a spam page.

The borderline area is a site with blogs or other opportunities for
spammers to create links. These pages cannot be considered
trustworthy.

→ It is likely that search engines today implement this strategy routinely,
so that what we think of as PageRank really is a form of TrustRank.
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How hard can crawling be?

Web search engines must crawl their documents.

Getting the content of the documents is easier for many other IR
systems.

I E.g., indexing all files on your hard disk: just do a recursive descent
on your file system

Ok: for web IR, getting the content of the documents takes longer
. . .

. . . because of latency.

But is that really a design/systems challenge?
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Basic crawler operation

Initialize queue with URLs of known seed pages

Repeat
I Take URL from queue
I Fetch and parse page
I Extract URLs from page
I Add URLs to queue

Fundamental assumption: The web is well linked.
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Exercise: What’s wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)

while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()

mypage := myurl.fetch()

fetchedurls.add(myurl)

newurls := mypage.extracturls()

for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:

urlqueue.add(myurl)

addtoinvertedindex(mypage)
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What’s wrong with the simple crawler

Scale: we need to distribute.

We can’t index everything: we need to subselect. How?

Duplicates: need to integrate duplicate detection

Spam and spider traps: need to integrate spam detection

Politeness: we need to be “nice” and space out all requests for a
site over a longer period (hours, days)

Freshness: we need to recrawl periodically.
I Because of the size of the web, we can do frequent recrawls only for a

small subset.
I Again, subselection problem or prioritization
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Magnitude of the crawling problem

To fetch 20,000,000,000 pages in one month . . .

. . . we need to fetch almost 8000 pages per second!

Actually: many more since many of the pages we attempt to crawl
will be duplicates, unfetchable, spam etc.
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What a crawler must do

Be polite

Don’t hit a site too often

Only crawl pages you are allowed to crawl: robots.txt

Be robust

Be immune to spider traps, duplicates, very large pages, very large
websites, dynamic pages etc
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Robots.txt

Protocol for giving crawlers (“robots”) limited access to a website,
originally from 1994

Examples:
I User-agent: *

Disallow: /yoursite/temp/
I User-agent: searchengine

Disallow: /

Important: cache the robots.txt file of each site we are crawling
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Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0

Disallow: /news/information/knight/

Disallow: /nidcd/

...

Disallow: /news/research_matters/secure/

Disallow: /od/ocpl/wag/

User-agent: *

Disallow: /news/information/knight/

Disallow: /nidcd/

...

Disallow: /news/research_matters/secure/

Disallow: /od/ocpl/wag/

Disallow: /ddir/

Disallow: /sdminutes/
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What any crawler should do

Be capable of distributed operation

Be scalable: need to be able to increase crawl rate by adding more
machines

Fetch pages of higher quality first

Continuous operation: get fresh version of already crawled pages
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Resources

Chapter 19, 20, 21 of
Introduction to Information Retrieval

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze

Ebook: http://nlp.stanford.edu/IR-book/

Chapter 5 of
Mining of Massive Datasets

Anand Rajaraman, Jure Leskovec, Jeffrey D. Ullman

Ebook: http://infolab.stanford.edu/∼ullman/mmds.html
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