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Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).

These days we frequently think first of web search, but there are many
other cases:

E-mail search

Searching your laptop

Corporate knowledge bases

Legal information retrieval
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Boolean retrieval

The Boolean model is arguably the simplest model to base an
information retrieval system on.

Queries are Boolean expressions, e.g., Caesar and Brutus

The seach engine returns all documents that satisfy the Boolean
expression.
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Unstructured data in 1650: Shakespeare
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Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia.

Why is grep not the solution?

I Slow (for large collections)
I grep is line-oriented, IR is document-oriented
I “not Calpurnia” is non-trivial
I Other operations (e.g., find the word Romans near countryman)

not feasible
I Ranked retrieval (best documents to return)
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Term-document incidence matrix
Anthony Julius The Hamlet Othello Macbeth . . .

and Caesar Tempest
Cleopatra

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The tempest.
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Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus and Caesar and not Calpurnia:

I Take the vectors for Brutus, Caesar, and Calpurnia
I Complement the vector of Calpurnia
I Do a (bitwise) and on the three vectors
I 110100 and 110111 and 101111 = 100100
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0/1 vector for Brutus
Anthony Julius The Hamlet Othello Macbeth . . .

and Caesar Tempest
Cleopatra

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 9



Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and punctuation ⇒
size of document collection is about 6 · 109 = 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Note that we are making a term/token distinction.)
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Can’t build the incidence matrix

M = 500,000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.
I Matrix is extremely sparse.

What is a better representations?
I We only record the 1s.
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Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings
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Inverted index construction

1 Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Do linguistic preprocessing, producing a list of normalized tokens,
which are the indexing terms:

friend roman countryman so . . .

4 Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.
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Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings file
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings file
5 Intersect the two postings lists
6 Return intersection to user
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Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.
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Intersecting two postings lists

Intersect(p1, p2)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer
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Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)
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Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of increasing
frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31
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Phrase queries

We want to answer a query such as [stanford university] – as a
phrase.

Thus The inventor Stanford Ovshinsky never went to university
should not be a match.

The concept of phrase query has proven easily understood by users.

About 10% of web queries are phrase queries.

Consequence for inverted index: it no longer suffices to store docIDs
in postings lists.

Two ways of extending the inverted index:
I biword index
I positional index
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Positional indexes

Positional indexes are a more efficient alternative to biword indexes.

Postings lists in a nonpositional index: each posting is just a docID

Postings lists in a positional index: each posting is a docID and a
list of positions
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Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;

2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1: 〈17, 25〉;

4: 〈17, 191, 291, 430, 434〉;
5: 〈14, 19, 101〉; . . . 〉

Document 4 is a match!

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 21



Problem with Boolean search: Feast or
famine

Boolean queries often result in either too few (=0) or too many
(1000s) results.

Query 1 (boolean conjunction): [standard user dlink 650]
I → 200,000 hits – feast

Query 2 (boolean conjunction): [standard user dlink 650 no card
found]

I → 0 hits – famine

In Boolean retrieval, it takes a lot of skill to come up with a query
that produces a manageable number of hits.
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Feast or famine: No problem in ranked
retrieval

With ranking, large result sets are not an issue.

Just show the top 10 results

Doesn’t overwhelm the user

Premise: The ranking algorithm works: More relevant results are
ranked higher than less relevant results.
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Count matrix
Anthony Julius The Hamlet Othello Macbeth . . .

and Caesar Tempest
Cleopatra

Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.
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Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able to
distinguish these two documents.

For now: bag of words model
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Term frequency tf

The term frequency tft,d of term t in document d is defined as the
number of times that t occurs in d .

We want to use tf when computing query-document match scores.

But how?

Raw term frequency is not what we want because:

A document with tf = 10 occurrences of the term is more relevant
than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term frequency.
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Instead of raw frequency: Log frequency
weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d → wt,d :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q and d :
tf-matching-score(q, d) =

∑
t∈q∩d(1 + log tft,d)

The score is 0 if none of the query terms is present in the document.
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Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection (e.g.,
arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like arachnocentric.
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Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection (e.g.,
good, increase, line).

A document containing this term is more likely to be relevant than a
document that doesn’t . . .

. . . but words like good, increase and line are not sure indicators
of relevance.

→ For frequent terms like good, increase, and line, we want
positive weights . . .

. . . but lower weights than for rare terms.
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Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing the
matching score.

The document frequency is the number of documents in the
collection that the term occurs in.
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idf weight

dft is the document frequency, the number of documents that t
occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

[log N/dft ] instead of [N/dft ] to “dampen” the effect of idf

Note that we use the log transformation for both term frequency
and document frequency.
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Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf
weight.

wt,d = (1 + log tft,d) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Note: the “-” in tf-idf is a hyphen, not a minus sign!

Alternative names: tf.idf, tf x idf
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Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d) · log N

dft
The tf-idf weight . . .

I . . . increases with the number of occurrences within a document.
(term frequency)

I . . . increases with the rarity of the term in the collection. (inverse
document frequency)
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Binary → count → weight matrix
Anthony Julius The Hamlet Othello Macbeth . . .

and Caesar Tempest
Cleopatra

Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights ∈ R|V |.
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Documents as vectors

Each document is now represented as a real-valued vector of tf-idf
weights ∈ R|V |.
So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when you
apply this to web search engines

Each vector is very sparse - most entries are zero.
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Queries as vectors

Key idea 1: do the same for queries: represent them as vectors in
the high-dimensional space

Key idea 2: Rank documents according to their proximity to the
query

proximity = similarity

proximity ≈ negative distance

Recall: We’re doing this because we want to get away from the
you’re-either-in-or-out, feast-or-famine Boolean model.

Instead: rank relevant documents higher than nonrelevant
documents
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How do we formalize vector space similarity?

First cut: (negative) distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to itself.
Call this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two documents
can be quite large.
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From angles to cosines

The following two notions are equivalent.
I Rank documents according to the angle between query and document

in decreasing order
I Rank documents according to cosine(query,document) in increasing

order

Cosine is a monotonically decreasing function of the angle for the
interval [0◦, 180◦]
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Cosine
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√∑

i x2
i

This maps vectors onto the unit sphere

As a result, longer documents and shorter documents have weights
of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself) from
earlier slide: they have identical vectors after length-normalization.
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Cosine similarity between query and
document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1 qidi√∑|V |

i=1 q2
i

√∑|V |
i=1 d2

i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently, the
cosine of the angle between ~q and ~d .
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Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot product
or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di

I (if ~q and ~d are length-normalized).
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Cosine: Example

How similar are
these novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering
Heights

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38
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Cosine: Example

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)
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Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?
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Computing the cosine score

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d ]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d ] = Scores[d ]/Length[d ]

10 return Top K components of Scores[]
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Components of tf-idf weighting
Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine)
1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d )

p (prob idf) max{0, log N−dft
dft
} u (pivoted

unique)
1/u

b (boolean)

{
1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tft,d )

1+log(avet∈d (tft,d ))

Best known combination of weighting options

Default: no weighting
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tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

document: logarithmic tf, no df weighting, cosine normalization

query: logarithmic tf, idf, no normalization

Isn’t it bad to not idf-weight the document?

Example query: “best car insurance”

Example document: “car insurance auto insurance”

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 50



tf-idf example: lnc.ltn
Query: “best car insurance”. Document: “car insurance auto insurance”. N = 1, 000.000.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term
frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the
term in the query or document, n’lized: document weights after cosine normalization, product: the
product of final query weight and final document weight
√

12 + 02 + 12 + 1.32 ≈ 1.92
1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08
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Resources

Chapter 1, 2, 6, 7 of
Introduction to Information Retrieval
Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze

Ebook: http://nlp.stanford.edu/IR-book/

Fang Wei-Kleiner ADIT/IDA LiU TDDD43 – Information Retrieval 52


	Introduction
	Inverted index
	Ranked Retrieval – tf-idf weighting
	Ranked Retrieval – vector space model

