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IR Models
Modeling in IR is a complex process aimed at
producing a ranking function

Ranking function : a function that assigns scores to documents
with regard to a given query

This process consists of two main tasks:

The conception of a logical framework for representing
documents and queries

The definition of a ranking function that allows quantifying the
similarities among documents and queries
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Modeling and Ranking
IR systems usually adopt index terms to index and
retrieve documents

Index term:
In a restricted sense: it is a keyword that has some meaning on
its own; usually plays the role of a noun

In a more general form: it is any word that appears in a document

Retrieval based on index terms can be implemented
efficiently

Also, index terms are simple to refer to in a query

Simplicity is important because it reduces the effort of
query formulation

Chap 03: Modeling, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition – p. 3



Introduction
Information retrieval process

documents

information 
need

index terms

match

ranking

3

1

2

...

docs terms

query terms

Chap 03: Modeling, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition – p. 4



Introduction
A ranking is an ordering of the documents that
(hopefully) reflects their relevance to a user query

Thus, any IR system has to deal with the problem of
predicting which documents the users will find relevant

This problem naturally embodies a degree of
uncertainty, or vagueness
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IR Models
An IR model is a quadruple [D, Q, F , R(qi, dj)] where

1. D is a set of logical views for the documents in the collection

2. Q is a set of logical views for the user queries

3. F is a framework for modeling documents and queries

4. R(qi, dj) is a ranking function
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A Taxonomy of IR Models
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Retrieval: Ad Hoc x Filtering
Ad Hoc Retrieval:

Collection��� � �� �� �
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Retrieval: Ad Hoc x Filtering
Filtering

documents stream
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Basic Concepts
Each document is represented by a set of
representative keywords or index terms

An index term is a word or group of consecutive words
in a document

A pre-selected set of index terms can be used to
summarize the document contents

However, it might be interesting to assume that all
words are index terms (full text representation)
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Basic Concepts
Let,

t be the number of index terms in the document collection

ki be a generic index term

Then,
The vocabulary V = {k1, . . . , kt} is the set of all distinct index
terms in the collection

k ( k ) k * k + , -. / 01 2 /3 4 - 5678 9: ; <: 3 =>V= ? ? ?
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Basic Concepts
Documents and queries can be represented by
patterns of term co-occurrences

V= @ @ @A B B B@ @ @
A A A A@ @ @

CD CE CF CG@ @ @ HI J JKL M JN I JL K HL K O K M J O PQ RS T K M J O UI M PV S K L W K O X Y W JN JN K JKL T Z[ I M P MQ Q JN KLHI J JKL M JN I JL K HL K O K M J O PQ RS T K M J OUI M P V S K L W K O X Y W JN I \ \ W M P K ] JK L T O^^^
Each of these patterns of term co-occurence is called a
term conjunctive component

For each document dj (or query q) we associate a
unique term conjunctive component c(dj) (or c(q))
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The Term-Document Matrix
The occurrence of a term ki in a document dj

establishes a relation between ki and dj

A term-document relation between ki and dj can be
quantified by the frequency of the term in the document

In matrix form, this can written as

d1 d2

k1

k2

k3






f1,1 f1,2

f2,1 f2,2

f3,1 f3,2






where each fi,j element stands for the frequency of
term ki in document dj
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Basic Concepts
Logical view of a document: from full text to a set of
index terms

_ `ab cad e _fgh i ` _j_b fg k il j h `g g a i `d a mh ena g f op m fd q_ `h r r k i li a p i ld a p b _

e a g p rh i `
_ `d p g `pd hd h g a l i k ` k a i

sp m m `h t ` ` f ta i a r quh q c ad e __ `d p g `p d h
`h t `v_ `d p g `pd h `h t `
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The Boolean Model
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The Boolean Model
Simple model based on set theory and boolean
algebra

Queries specified as boolean expressions

quite intuitive and precise semantics

neat formalism

example of query

q = ka ∧ (kb ∨ ¬kc)

Term-document frequencies in the term-document
matrix are all binary

wij ∈ {0, 1}: weight associated with pair (ki, dj)

wiq ∈ {0, 1}: weight associated with pair (ki, q)
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The Boolean Model
A term conjunctive component that satisfies a query q is
called a query conjunctive component c(q)

A query q rewritten as a disjunction of those
components is called the disjunct normal form qDNF

To illustrate, consider
query q = ka ∧ (kb ∨ ¬kc)

vocabulary V = {ka, kb, kc}
Then

qDNF = (1, 1, 1) ∨ (1, 1, 0) ∨ (1, 0, 0)

c(q): a conjunctive component for q
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The Boolean Model
The three conjunctive components for the query
q = ka ∧ (kb ∨ ¬kc)

Ka

Kb

Kc

(1,1,1)
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The Boolean Model
This approach works even if the vocabulary of the
collection includes terms not in the query

Consider that the vocabulary is given by
V = {ka, kb, kc, kd}
Then, a document dj that contains only terms ka, kb,
and kc is represented by c(dj) = (1, 1, 1, 0)

The query [q = ka ∧ (kb ∨ ¬kc)] is represented in
disjunctive normal form as

qDNF = (1, 1, 1, 0) ∨ (1, 1, 1, 1) ∨
(1, 1, 0, 0) ∨ (1, 1, 0, 1) ∨
(1, 0, 0, 0) ∨ (1, 0, 0, 1)
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The Boolean Model
The similarity of the document dj to the query q is
defined as

sim(dj , q) =

{

1 if ∃c(q) | c(q) = c(dj)

0 otherwise

The Boolean model predicts that each document is
either relevant or non-relevant
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Drawbacks of the Boolean Model
Retrieval based on binary decision criteria with no
notion of partial matching

No ranking of the documents is provided (absence of a
grading scale)

Information need has to be translated into a Boolean
expression, which most users find awkward

The Boolean queries formulated by the users are most
often too simplistic

The model frequently returns either too few or too many
documents in response to a user query
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Term Weighting
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Term Weighting
The terms of a document are not equally useful for
describing the document contents

In fact, there are index terms which are simply vaguer
than others

There are properties of an index term which are useful
for evaluating the importance of the term in a document

For instance, a word which appears in all documents of a
collection is completely useless for retrieval tasks
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Term Weighting
To characterize term importance, we associate a weight
wi,j > 0 with each term ki that occurs in the document dj

If ki that does not appear in the document dj , then wi,j = 0.

The weight wi,j quantifies the importance of the index
term ki for describing the contents of document dj

These weights are useful to compute a rank for each
document in the collection with regard to a given query
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Term Weighting
Let,

ki be an index term and dj be a document

V = {k1, k2, ..., kt} be the set of all index terms

wi,j > 0 be the weight associated with (ki, dj)

Then we define ~dj = (w1,j, w2,j, ..., wt,j) as a weighted
vector that contains the weight wi,j of each term ki ∈ V in
the document dj
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Term Weighting
The weights wi,j can be computed using the frequencies
of occurrence of the terms within documents

Let fi,j be the frequency of occurrence of index term ki in
the document dj

The total frequency of occurrence Fi of term ki in the
collection is defined as

Fi =
N∑

j=1

fi,j

where N is the number of documents in the collection
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Term Weighting
The document frequency ni of a term ki is the number
of documents in which it occurs

Notice that ni ≤ Fi.

For instance, in the document collection below, the
values fi,j, Fi and ni associated with the term do are

f(do, d1) = 2
f(do, d2) = 0
f(do, d3) = 3
f(do, d4) = 3

F (do) = 8

n(do) = 3

To do is to be.
To be is to do. To be or not to be.

I am what I am.

I think therefore I am.
Do be do be do.

d1 d2

d3

Do do do, da da da.
Let it be, let it be.

d4
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Term-term correlation matrix
For classic information retrieval models, the index term
weights are assumed to be mutually independent

This means that wi,j tells us nothing about wi+1,j

This is clearly a simplification because occurrences of
index terms in a document are not uncorrelated

For instance, the terms computer and network tend to
appear together in a document about computer
networks

In this document, the appearance of one of these terms attracts
the appearance of the other

Thus, they are correlated and their weights should reflect this
correlation.
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Term-term correlation matrix
To take into account term-term correlations, we can
compute a correlation matrix

Let ~M = (mij) be a term-document matrix t × N where
mij = wi,j

The matrix ~C = ~M ~M t is a term-term correlation matrix

Each element cu,v ∈ C expresses a correlation between
terms ku and kv, given by

cu,v =
∑

dj

wu,j
× wv,j

Higher the number of documents in which the terms ku

and kv co-occur, stronger is this correlation
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Term-term correlation matrix
Term-term correlation matrix for a sample collection

d1 d2 k1 k2 k3

k1

k2

k3







w1,1 w1,2

w2,1 w2,2

w3,1 w3,2







d1

d2

[

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

]

M × MT

︸ ︷︷ ︸

⇓
k1 k2 k3

k1

k2

k3







w1,1w1,1 + w1,2w1,2 w1,1w2,1 + w1,2w2,2 w1,1w3,1 + w1,2w3,2

w2,1w1,1 + w2,2w1,2 w2,1w2,1 + w2,2w2,2 w2,1w3,1 + w2,2w3,2

w3,1w1,1 + w3,2w1,2 w3,1w2,1 + w3,2w2,2 w3,1w3,1 + w3,2w3,2






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TF-IDF Weights
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TF-IDF Weights
TF-IDF term weighting scheme:

Term frequency (TF)

Inverse document frequency (IDF)

Foundations of the most popular term weighting scheme in IR
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Term-term correlation matrix
Luhn Assumption . The value of wi,j is proportional to
the term frequency fi,j

That is, the more often a term occurs in the text of the document,
the higher its weight

This is based on the observation that high frequency
terms are important for describing documents

Which leads directly to the following tf weight
formulation:

tfi,j = fi,j
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Term Frequency (TF) Weights
A variant of tf weight used in the literature is

tfi,j =

{

1 + log fi,j if fi,j > 0

0 otherwise

where the log is taken in base 2

The log expression is a the preferred form because it
makes them directly comparable to idf weights, as we
later discuss
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Term Frequency (TF) Weights
Log tf weights tfi,j for the example collection

Vocabulary tfi,1 tfi,2 tfi,3 tfi,4

1 to 3 2 - -
2 do 2 - 2.585 2.585
3 is 2 - - -
4 be 2 2 2 2
5 or - 1 - -
6 not - 1 - -
7 I - 2 2 -
8 am - 2 1 -
9 what - 1 - -
10 think - - 1 -
11 therefore - - 1 -
12 da - - - 2.585
13 let - - - 2
14 it - - - 2
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Inverse Document Frequency
We call document exhaustivity the number of index
terms assigned to a document

The more index terms are assigned to a document, the
higher is the probability of retrieval for that document

If too many terms are assigned to a document, it will be retrieved
by queries for which it is not relevant

Optimal exhaustivity . We can circumvent this problem
by optimizing the number of terms per document

Another approach is by weighting the terms differently,
by exploring the notion of term specificity
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Inverse Document Frequency
Specificity is a property of the term semantics

A term is more or less specific depending on its meaning

To exemplify, the term beverage is less specific than the

terms tea and beer

We could expect that the term beverage occurs in more
documents than the terms tea and beer

Term specificity should be interpreted as a statistical
rather than semantic property of the term

Statistical term specificity . The inverse of the number
of documents in which the term occurs
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Inverse Document Frequency
Terms are distributed in a text according to Zipf’s Law

Thus, if we sort the vocabulary terms in decreasing
order of document frequencies we have

n(r) ∼ r−α

where n(r) refer to the rth largest document frequency
and α is an empirical constant

That is, the document frequency of term ki is an
exponential function of its rank.

n(r) = Cr−α

where C is a second empirical constant
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Inverse Document Frequency
Setting α = 1 (simple approximation for english
collections) and taking logs we have

log n(r) = log C − log r

For r = 1, we have C = n(1), i.e., the value of C is the
largest document frequency

This value works as a normalization constant

An alternative is to do the normalization assuming
C = N , where N is the number of docs in the collection

log r ∼ log N − log n(r)
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Inverse Document Frequency
Let ki be the term with the rth largest document
frequency, i.e., n(r) = ni. Then,

idfi = log
N

ni

where idfi is called the inverse document frequency
of term ki

Idf provides a foundation for modern term weighting
schemes and is used for ranking in almost all IR
systems
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Inverse Document Frequency
Idf values for example collection

term ni idfi = log(N/ni)

1 to 2 1
2 do 3 0.415
3 is 1 2
4 be 4 0
5 or 1 2
6 not 1 2
7 I 2 1
8 am 2 1
9 what 1 2
10 think 1 2
11 therefore 1 2
12 da 1 2
13 let 1 2
14 it 1 2
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TF-IDF weighting scheme
The best known term weighting schemes use weights
that combine idf factors with term frequencies

Let wi,j be the term weight associated with the term ki

and the document dj

Then, we define

wi,j =

{
(1 + log fi,j) × log N

ni
if fi,j > 0

0 otherwise

which is referred to as a tf-idf weighting scheme
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TF-IDF weighting scheme
Tf-idf weights of all terms present in our example
document collection

d1 d2 d3 d4

1 to 3 2 - -
2 do 0.830 - 1.073 1.073
3 is 4 - - -
4 be - - - -
5 or - 2 - -
6 not - 2 - -
7 I - 2 2 -
8 am - 2 1 -
9 what - 2 - -
10 think - - 2 -
11 therefore - - 2 -
12 da - - - 5.170
13 let - - - 4
14 it - - - 4
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Variants of TF-IDF
Several variations of the above expression for tf-idf
weights are described in the literature

For tf weights, five distinct variants are illustrated below

tf weight

binary {0,1}

raw frequency fi,j

log normalization 1 + log fi,j

double normalization 0.5 0.5 + 0.5
fi,j

maxifi,j

double normalization K K + (1 − K)
fi,j

maxifi,j
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Variants of TF-IDF
Five distinct variants of idf weight

idf weight

unary 1

inverse frequency log N
ni

inv frequency smooth log(1 + N
ni

)

inv frequeny max log(1 + maxini

ni
)

probabilistic inv frequency log N−ni

ni
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Variants of TF-IDF
Recommended tf-idf weighting schemes

weighting scheme document term weight query term weight

1 fi,j ∗ log N
ni

(0.5 + 0.5
fi,q

maxi fi,q
) ∗ log N

ni

2 1 + log fi,j log(1 + N
ni

)

3 (1 + log fi,j) ∗ log N
ni

(1 + log fi,q) ∗ log N
ni
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TF-IDF Properties
Consider the tf, idf, and tf-idf weights for the Wall Street
Journal reference collection

To study their behavior, we would like to plot them
together

While idf is computed over all the collection, tf is
computed on a per document basis. Thus, we need a
representation of tf based on all the collection, which is
provided by the term collection frequency Fi

This reasoning leads to the following tf and idf term
weights:

tfi = 1 + log
N∑

j=1

fi,j idfi = log
N

ni
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TF-IDF Properties
Plotting tf and idf in logarithmic scale yields

We observe that tf and idf weights present power-law
behaviors that balance each other

The terms of intermediate idf values display maximum
tf-idf weights and are most interesting for ranking
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Document Length Normalization
Document sizes might vary widely

This is a problem because longer documents are more
likely to be retrieved by a given query

To compensate for this undesired effect, we can divide
the rank of each document by its length

This procedure consistently leads to better ranking, and
it is called document length normalization
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Document Length Normalization
Methods of document length normalization depend on the
representation adopted for the documents:

Size in bytes : consider that each document is represented
simply as a stream of bytes

Number of words : each document is represented as a single
string, and the document length is the number of words in it

Vector norms : documents are represented as vectors of
weighted terms
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Document Length Normalization
Documents represented as vectors of weighted terms

Each term of a collection is associated with an orthonormal unit
vector ~ki in a t-dimensional space

For each term ki of a document dj is associated the term vector
component wi,j × ~ki
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Document Length Normalization

The document representation ~dj is a vector composed
of all its term vector components

~dj = (w1,j, w2,j , ..., wt,j)

The document length is given by the norm of this vector,
which is computed as follows

|~dj | =

√
√
√
√

t∑

i

w2
i,j
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Document Length Normalization
Three variants of document lengths for the example
collection

d1 d2 d3 d4

size in bytes 34 37 41 43

number of words 10 11 10 12

vector norm 5.068 4.899 3.762 7.738
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The Vector Model
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The Vector Model
Boolean matching and binary weights is too limiting

The vector model proposes a framework in which
partial matching is possible

This is accomplished by assigning non-binary weights
to index terms in queries and in documents

Term weights are used to compute a degree of
similarity between a query and each document

The documents are ranked in decreasing order of their
degree of similarity
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The Vector Model
For the vector model:

The weight wi,j associated with a pair (ki, dj) is positive and
non-binary

The index terms are assumed to be all mutually independent

They are represented as unit vectors of a t-dimensionsal space (t
is the total number of index terms)

The representations of document dj and query q are
t-dimensional vectors given by

~dj = (w1j, w2j , . . . , wtj)
~q = (w1q, w2q, . . . , wtq)
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The Vector Model
Similarity between a document dj and a query q

j

i

d �

q

cos(θ) =
~dj•~q

|~dj |×|~q|

sim(dj , q) =
∑t

i=1
wi,j×wi,q

√
∑t

i=1
w2

i,j×
√
∑t

j=1
w2

i,q

Since wij > 0 and wiq > 0, we have 0 6 sim(dj , q) 6 1
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The Vector Model
Weights in the Vector model are basically tf-idf weights

wi,q = (1 + log fi,q) × log
N

ni

wi,j = (1 + log fi,j) × log
N

ni

These equations should only be applied for values of
term frequency greater than zero

If the term frequency is zero, the respective weight is
also zero

Chap 03: Modeling, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition – p. 58



The Vector Model
Document ranks computed by the Vector model for the
query “to do” (see tf-idf weight values in Slide 43)

doc rank computation rank

d1
1∗3+0.415∗0.830

5.068
0.660

d2
1∗2+0.415∗0

4.899
0.408

d3
1∗0+0.415∗1.073

3.762
0.118

d4
1∗0+0.415∗1.073

7.738
0.058
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The Vector Model
Advantages:

term-weighting improves quality of the answer set

partial matching allows retrieval of docs that approximate the
query conditions

cosine ranking formula sorts documents according to a degree of
similarity to the query

document length normalization is naturally built-in into the ranking

Disadvantages:
It assumes independence of index terms
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Probabilistic Model
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Probabilistic Model
The probabilistic model captures the IR problem using a
probabilistic framework

Given a user query, there is an ideal answer set for
this query

Given a description of this ideal answer set, we could
retrieve the relevant documents

Querying is seen as a specification of the properties of
this ideal answer set

But, what are these properties?
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Probabilistic Model
An initial set of documents is retrieved somehow

The user inspects these docs looking for the relevant
ones (in truth, only top 10-20 need to be inspected)

The IR system uses this information to refine the
description of the ideal answer set

By repeating this process, it is expected that the
description of the ideal answer set will improve
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Probabilistic Ranking Principle
The probabilistic model

Tries to estimate the probability that a document will be relevant
to a user query

Assumes that this probability depends on the query and
document representations only

The ideal answer set, referred to as R, should maximize the
probability of relevance

But,
How to compute these probabilities?

What is the sample space?

Chap 03: Modeling, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition – p. 64



The Ranking
Let,

R be the set of relevant documents to query q

R be the set of non-relevant documents to query q

P (R|~dj) be the probability that dj is relevant to the query q

P (R|~dj) be the probability that dj is non-relevant to q

The similarity sim(dj , q) can be defined as

sim(dj, q) =
P (R|~dj)

P (R|~dj)
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The Ranking
Using Bayes’ rule,

sim(dj , q) =
P (~dj |R, q) × P (R, q)

P (~dj |R, q) × P (R, q)
∼ P (~dj |R, q)

P (~dj |R, q)

where

P (~dj |R, q) : probability of randomly selecting the document

dj from the set R

P (R, q) : probability that a document randomly selected

from the entire collection is relevant to query q

P (~dj |R, q) and P (R, q) : analogous and complementary
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The Ranking
Assuming that the weights wi,j are all binary and
assuming independence among the index terms:

sim(dj , q) ∼
(
∏

ki|wi,j=1 P (ki|R, q)) × (
∏

ki|wi,j=0 P (ki|R, q))

(
∏

ki|wi,j=1 P (ki|R, q)) × (
∏

ki|wi,j=0 P (ki|R, q))

where

P (ki|R, q): probability that the term ki is present in a

document randomly selected from the set R

P (ki|R, q): probability that ki is not present in a document

randomly selected from the set R

probabilities with R: analogous to the ones just described
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The Ranking
To simplify our notation, let us adopt the following
conventions

piR = P (ki|R, q)

qiR = P (ki|R, q)

Since

P (ki|R, q) + P (ki|R, q) = 1

P (ki|R, q) + P (ki|R, q) = 1

we can write:

sim(dj , q) ∼
(
∏

ki|wi,j=1 piR) × (
∏

ki|wi,j=0(1 − piR))

(
∏

ki|wi,j=1 qiR) × (
∏

ki|wi,j=0(1 − qiR))
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The Ranking
Taking logarithms, we write

sim(dj , q) ∼ log
∏

ki|wi,j=1

piR + log
∏

ki|wi,j=0

(1 − piR)

− log
∏

ki|wi,j=1

qiR − log
∏

ki|wi,j=0

(1 − qiR)
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The Ranking
Summing up terms that cancel each other, we obtain

sim(dj , q) ∼ log
∏

ki|wi,j=1

piR + log
∏

ki|wi,j=0

(1 − pir)

− log
∏

ki|wi,j=1

(1 − pir) + log
∏

ki|wi,j=1

(1 − pir)

− log
∏

ki|wi,j=1

qiR − log
∏

ki|wi,j=0

(1 − qiR)

+ log
∏

ki|wi,j=1

(1 − qiR) − log
∏

ki|wi,j=1

(1 − qiR)
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The Ranking
Using logarithm operations, we obtain

sim(dj , q) ∼ log
∏

ki|wi,j=1

piR

(1 − piR)
+ log

∏

ki

(1 − piR)

+ log
∏

ki|wi,j=1

(1 − qiR)

qiR
− log

∏

ki

(1 − qiR)

Notice that two of the factors in the formula above are a
function of all index terms and do not depend on
document dj . They are constants for a given query and
can be disregarded for the purpose of ranking
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The Ranking
Further, assuming that

∀ ki 6∈ q, piR = qiR

and converting the log products into sums of logs, we
finally obtain

sim(dj , q) ∼ ∑

ki∈q∧ki∈dj
log
(

piR

1−piR

)

+ log
(

1−qiR

qiR

)

which is a key expression for ranking computation in the
probabilistic model
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Term Incidence Contingency Table
Let,

N be the number of documents in the collection

ni be the number of documents that contain term ki

R be the total number of relevant documents to query q

ri be the number of relevant documents that contain term ki

Based on these variables, we can build the following
contingency table

relevant non-relevant all docs

docs that contain ki ri ni − ri ni

docs that do not contain ki R − ri N − ni − (R − ri) N − ni

all docs R N − R N
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Ranking Formula
If information on the contingency table were available
for a given query, we could write

piR = ri

R

qiR = ni−ri

N−R

Then, the equation for ranking computation in the
probabilistic model could be rewritten as

sim(dj , q) ∼
∑

ki[q,dj ]

log

(
ri

R − ri
× N − ni − R + ri

ni − ri

)

where ki[q, dj ] is a short notation for ki ∈ q ∧ ki ∈ dj
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Ranking Formula
In the previous formula, we are still dependent on an
estimation of the relevant dos for the query

For handling small values of ri, we add 0.5 to each of
the terms in the formula above, which changes
sim(dj , q) into

∑

ki[q,dj ]

log

(
ri + 0.5

R − ri + 0.5
× N − ni − R + ri + 0.5

ni − ri + 0.5

)

This formula is considered as the classic ranking
equation for the probabilistic model and is known as the
Robertson-Sparck Jones Equation
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Ranking Formula
The previous equation cannot be computed without
estimates of ri and R

One possibility is to assume R = ri = 0, as a way to
boostrap the ranking equation, which leads to

sim(dj , q) ∼
∑

ki[q,dj ] log
(

N−ni+0.5
ni+0.5

)

This equation provides an idf-like ranking computation

In the absence of relevance information, this is the
equation for ranking in the probabilistic model
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Ranking Example
Document ranks computed by the previous probabilistic
ranking equation for the query “to do”

doc rank computation rank

d1 log 4−2+0.5
2+0.5 + log 4−3+0.5

3+0.5 - 1.222

d2 log 4−2+0.5
2+0.5 0

d3 log 4−3+0.5
3+0.5 - 1.222

d4 log 4−3+0.5
3+0.5 - 1.222
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Ranking Example
The ranking computation led to negative weights
because of the term “do”

Actually, the probabilistic ranking equation produces
negative terms whenever ni > N/2

One possible artifact to contain the effect of negative
weights is to change the previous equation to:

sim(dj , q) ∼
∑

ki[q,dj ]

log

(
N + 0.5

ni + 0.5

)

By doing so, a term that occurs in all documents
(ni = N ) produces a weight equal to zero

Chap 03: Modeling, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition – p. 78



Ranking Example
Using this latest formulation, we redo the ranking
computation for our example collection for the query “to
do” and obtain

doc rank computation rank

d1 log 4+0.5
2+0.5 + log 4+0.5

3+0.5 1.210

d2 log 4+0.5
2+0.5 0.847

d3 log 4+0.5
3+0.5 0.362

d4 log 4+0.5
3+0.5 0.362
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Estimaging ri and R

Our examples above considered that ri = R = 0

An alternative is to estimate ri and R performing an
initial search:

select the top 10-20 ranked documents

inspect them to gather new estimates for ri and R

remove the 10-20 documents used from the collection

rerun the query with the estimates obtained for ri and R

Unfortunately, procedures such as these require human
intervention to initially select the relevant documents
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Improving the Initial Ranking
Consider the equation

sim(dj , q) ∼
∑

ki∈q∧ki∈dj

log

(
piR

1 − piR

)

+ log

(
1 − qiR

qiR

)

How obtain the probabilities piR and qiR ?

Estimates based on assumptions:
piR = 0.5

qiR = ni

N
where ni is the number of docs that contain ki

Use this initial guess to retrieve an initial ranking

Improve upon this initial ranking
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Improving the Initial Ranking
Substituting piR and qiR into the previous Equation, we
obtain:

sim(dj , q) ∼
∑

ki∈q∧ki∈dj

log

(
N − ni

ni

)

That is the equation used when no relevance
information is provided, without the 0.5 correction factor

Given this initial guess, we can provide an initial
probabilistic ranking

After that, we can attempt to improve this initial ranking
as follows
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Improving the Initial Ranking
We can attempt to improve this initial ranking as follows

Let
D : set of docs initially retrieved
Di : subset of docs retrieved that contain ki

Reevaluate estimates:
piR = Di

D

qiR = ni−Di

N−D

This process can then be repeated recursively
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Improving the Initial Ranking

sim(dj , q) ∼
∑

ki∈q∧ki∈dj

log

(
N − ni

ni

)

To avoid problems with D = 1 and Di = 0:

piR =
Di + 0.5

D + 1
; qiR =

ni − Di + 0.5

N − D + 1

Also,

piR =
Di + ni

N

D + 1
; qiR =

ni − Di + ni

N

N − D + 1
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Pluses and Minuses
Advantages:

Docs ranked in decreasing order of probability of
relevance

Disadvantages:
need to guess initial estimates for piR

method does not take into account tf factors
the lack of document length normalization
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Comparison of Classic Models
Boolean model does not provide for partial matches
and is considered to be the weakest classic model

There is some controversy as to whether the
probabilistic model outperforms the vector model

Croft suggested that the probabilistic model provides a
better retrieval performance

However, Salton et al showed that the vector model
outperforms it with general collections

This also seems to be the dominant thought among
researchers and practitioners of IR.
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