### TDDDD43

Theme 2.2: Keyword Search in Databases

Fang Wei-Kleiner http://www.ida.liu.se/~TDDD43

### Keyword search

- Keyword search is a well known mechanism for retrieving relevant information from a set of documents.
  - Google is a familiar example!
- What about structured data?
  - Such as XML documents or Relational Databases?
- Current enterprise search engines in structured data requires:
  - Knowledge of schema
  - Knowledge of a query language
  - Knowledge of the role of the keywords
- Do users have all of the above **Knowledge**?

### Keyword search in rel. DB

• Users need a simple system that receives some **keywords** as input and returns a **set of nodes** that together cover all or part of the input keywords as output.

- Relational databases can be modeled using graphs:
  - Tuples are nodes of the graph.
  - Foreign key relationships are edges that connect two nodes (tuples) to each other.

### Keyword search in rel. DB

#### **Cities**

| ID | Name     | Country |
|----|----------|---------|
| 22 | Toronto  | CA      |
| 16 | New York | US 🕢    |

#### **Organizations**

| ID  | Name | Head Q. |
|-----|------|---------|
| 135 | UN   | 16      |
| 175 | EU   | 81      |

#### Countries

| Code | Name          |
|------|---------------|
| CA   | Canada 🗨      |
| US   | United States |

#### **Memberships**

| Country | Org. |  |
|---------|------|--|
| CA      | 135  |  |
| US      | 135  |  |

#### New York is Located in United States

#### Cities

| ID | Name     | Country |
|----|----------|---------|
| 22 | Toronto  | CA      |
| 16 | New York | US      |

#### **Countries**

| Code | Name          |
|------|---------------|
| CA   | Canada        |
| US   | United States |

#### **Organizations**

| ID  | Name | Head Q. |
|-----|------|---------|
| 135 | UN   | 16      |
| 175 | EU   | 81      |

#### **Memberships**

| Country | Org. |
|---------|------|
| CA      | 135  |
| US      | 135  |

Keywords: "New York" "United States"

#### New York hosts UN and Canada is a member

#### **Cities**

| ID | Name     | Country |
|----|----------|---------|
| 22 | Toronto  | CA      |
| 16 | New York | US      |

#### **Countries**

| Code | Name          |
|------|---------------|
| CA   | Canada        |
| US   | United States |

#### **Organizations**

| ID  | Name | Head Q. |
|-----|------|---------|
| 135 | UN   | 16      |
| 175 | EU   | 81      |

#### **Memberships**

| Country | Org. |
|---------|------|
| CA      | 135  |
| US      | 135  |

Keywords: "New York" "Canada"

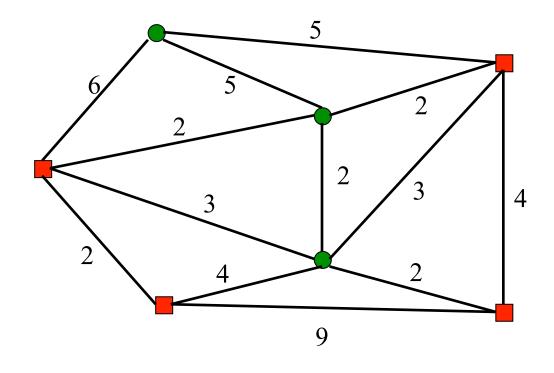
### Keyword search in DBs

- Database is modeled as a graph where vertices can be objects, tuples, etc.) and edges reflect the relationship between vertices.
  - o Undirected graph vs. directed graph
  - Weighted graph vs. un-weighted graph
  - o Labeled edges vs. non-labeled edges
- Keywords  $\rightarrow$  vertices in the graph
- Keyword search in DB → Steiner tree computation
- Ranked keyword search → ranked Steiner tree

## Steiner tree problem

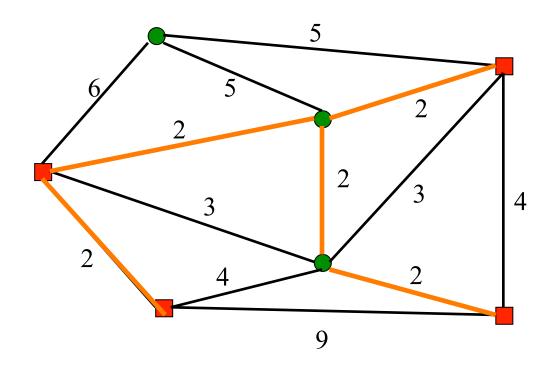
- Given a weighted graph G = (V, E) of order n = |V| and a set  $S \subseteq V$  of k = |S| to find a minimum cost subtree T = T(S) of G connecting (spanning) all terminal nodes.
  - $\circ$  Minimal cost  $\rightarrow$  the sum of weights of the edges in T is a minimum.

## Steiner tree example



terminals

# Steiner tree example



### Special cases

- k = 2, STP is a shortest path problem between the two given terminals.
- k = 3, for three given points z1, z2 and z3, STP is to find a vertex v that minimizes d(v; z1) + d(v; z2) + d(v; z3)
- k = n, STP is a minimal spanning tree problem (MSTP) of G

### Steiner tree: NP-hardness

Steiner tree problem is hard.

The decision problem:

Given an undirected graph G = (V,E), a subset Y of V and a value i, is there a Steiner tree T spanning Y with the length of T which is shorter than i?

is NP-hard.

# Dreyfuss-Wagner algorithm

- The Dreyfus–Wagner algorithm solves the Steiner tree problem for  $S \subseteq V$  by dynamic programming.
- It computes optimal trees  $T(X \cup v)$  for all  $X \subseteq S$  and  $v \in V$  recursively.
  - Assume first that v is a leaf of the (unknown) optimal tree  $T(X \cup v)$ .
  - Then v is joined in  $T(X \cup v)$  to some node w of  $T(X \cup v)$  along a shortest path Pvw, such that either  $w \in X$  or  $w \notin X$ . In both cases we have

$$T(X \cup v) = Pvw \cup T(X \cup w)$$

# Dreyfuss-Wagner algorithm

We can decompose

$$T(X \cup w) = T(X' \cup w) \cup T(X'' \cup w)$$

- for some nontrivial bipartition  $X = X' \cup X''$ .
- We may thus write

$$T(X \cup v) = \min(P_{vw} \cup T(X' \cup w) \cup T(X'' \cup w))$$

• where the minimum is taken over all  $w \in V$  and all nontrivial bipartitions  $X = X' \cup X''$ .

## Algorithm

Algorithm (Dreyfus-Wagner algorithm)

Step 1: Compute Pwv for all  $w, v \in V$ .

Step 2: For i = 2 to k - 1,

For any |X| = i and any  $w \in Y$ ,  $v \in V \setminus X$ 

 $T(X \cup v) = \min P_{vw} \cup T(X' \cup w) \cup T(X'' \cup w).$ 

**Complexity:**  $O(n . 3^k + n^2 . 2^k + n^3)$ 

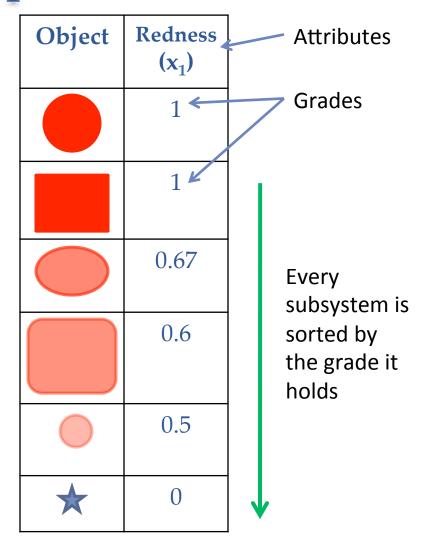
### Ranked queries

• Given a collection of objects, our goal is to find Top-k objects, whose scores are greater than the remaining objects.

### Example

| Object | Area (x <sub>3</sub> ) |
|--------|------------------------|
|        | 1                      |
|        | 0.95                   |
|        | 0.85                   |
|        | 0.75                   |
|        | 0.3                    |
| *      | 0.1                    |

| Object | Roundness (x <sub>2</sub> ) |
|--------|-----------------------------|
|        | 1                           |
|        | 1                           |
|        | 0.5                         |
|        | 0.2                         |
| *      | 0                           |
|        | 0                           |



## Top-k object problem

- Naïve algorithm
- Basic Idea:
  - For for each object, use the aggregation function to get the score
  - $\triangleright$  According to the scores, get the top k.
- Problem: inefficiency
- Question:
  - O Do we need to count the score for every object in the database?
  - Can we SAFELY ignore some objects whose scores are lower than what we already have?

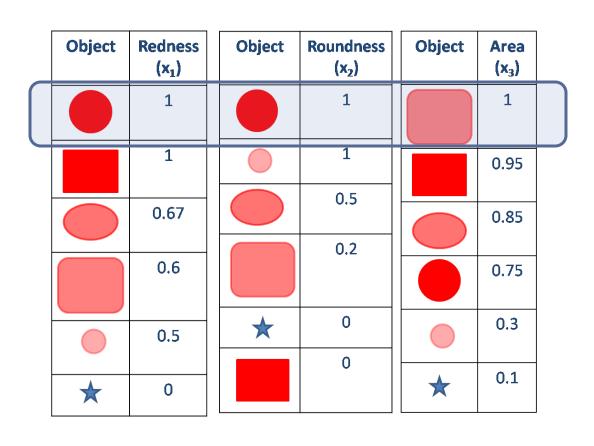
# Fagin's algorithm

- Do Sorted access in parallel at all the lists
- Stop when we have *k* objects which appear in all the lists
- Calculate score value of all the objects
- Compute Top-k objects

Objects appear in every list:

{ }

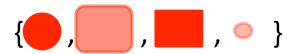




$$k = 3$$

Objects appear in every list:

{ }

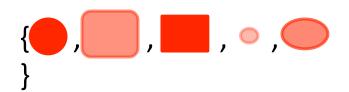


| Object | Redness<br>(x <sub>1</sub> ) | Object | Roundness (x <sub>2</sub> ) | Object | Area<br>(x <sub>3</sub> ) |  |
|--------|------------------------------|--------|-----------------------------|--------|---------------------------|--|
|        | 1                            |        | 1                           |        | 1                         |  |
|        | 1                            |        | 1                           |        | 0.95                      |  |
|        | 0.67                         |        | 0.5                         |        | 0.85                      |  |
|        | 0.6                          |        | 0.2                         |        | 0.75                      |  |
|        | 0.5                          | *      | 0                           |        | 0.3                       |  |
| *      | 0                            |        | 0                           | *      | 0.1                       |  |

$$k = 3$$

Objects appear in every list:

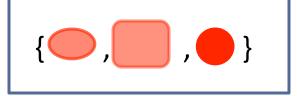




| Object | Redness<br>(x <sub>1</sub> ) | Object | Roundness (x <sub>2</sub> ) | Object | Area<br>(x <sub>3</sub> ) |  |
|--------|------------------------------|--------|-----------------------------|--------|---------------------------|--|
|        | 1                            |        | 1                           |        | 1                         |  |
|        | 1                            |        | 1                           |        | 0.95                      |  |
|        |                              |        | 0.5                         |        |                           |  |
|        | 0.67                         |        |                             |        | 0.85                      |  |
|        | 0.6                          |        | 0.2                         |        | 0.75                      |  |
|        | 0.5                          | *      | 0                           |        | 0.3                       |  |
|        |                              |        | 0                           |        | 0.1                       |  |
| *      | 0                            |        |                             | *      | 0.1                       |  |

$$k = 3$$

Objects appear in every list:



We got enough objects

| Object | Redness<br>(x <sub>1</sub> ) | Object | Roundness (x <sub>2</sub> ) | Object | Area<br>(x <sub>3</sub> ) |  |
|--------|------------------------------|--------|-----------------------------|--------|---------------------------|--|
|        | 1                            |        | 1                           |        | 1                         |  |
|        | 1                            |        | 1                           |        | 0.95                      |  |
|        | 0.67                         |        | 0.5                         |        | 0.85                      |  |
|        | 0.6                          |        | 0.2                         |        | 0.75                      |  |
|        | 0.5                          | *      | 0                           |        | 0.3                       |  |
| *      | 0                            |        | 0                           | *      | 0.1                       |  |

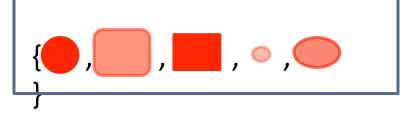
$$k = 3$$

Objects appear in every list:



We got enough objects

Objects seen so far:



| Object | Redness<br>(x <sub>1</sub> ) | Object | Roundness (x <sub>2</sub> ) | Object | Area<br>(x <sub>3</sub> ) |  |
|--------|------------------------------|--------|-----------------------------|--------|---------------------------|--|
|        | 1                            |        | 1                           |        | 1                         |  |
|        | 1                            |        | 1                           |        | 0.95                      |  |
|        | 0.67                         |        | 0.5                         |        | 0.85                      |  |
|        | 0.6                          |        | 0.2                         |        | 0.75                      |  |
|        | 0.5                          | *      | 0                           |        | 0.3                       |  |
| *      | 0                            |        |                             | *      | 0.1                       |  |

$$k = 3$$

For all these, calculate the score and get the Top-k



### Ranked Steiner tree with 3 terminals

• For three given points z1, z2 and z3, STP is to find a vertex v that minimizes d(v; z1) + d(v; z2) + d(v; z3)

### Ranked Steiner tree with 3 terminals

| v   | d(v,z1) |
|-----|---------|
| 12  | 1       |
| 256 | 3       |
| 9   | 4       |
| 55  | 6       |
| 137 | 7       |
| 474 | 8       |
| 987 | 10      |
| 33  | 12      |
| 787 | 15      |

| v   | d(v,z2) |
|-----|---------|
| 256 | 3       |
| 345 | 13      |
| 678 | 14      |
| 347 | 16      |
| 55  | 17      |
| 890 | 18      |
| 235 | 25      |
| 57  | 32      |
| 564 | 35      |

| v   | d(v,z3) |
|-----|---------|
| 999 | 20      |
| 64  | 21      |
| 954 | 22      |
| 332 | 23      |
| 256 | 24      |
| 55  | 24      |
| 687 | 26      |
| 1   | 37      |
| 33  | 40      |

Find the top-2 Steiner trees of terminals (z1, z2, z3)