Ontology Alignment

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

Ontologies in biomedical research

- many biomedical ontologies
 e.g. GO, OBO, SNOMED-CT
- practical use of biomedical ontologies
 - e.g. databases annotated with GO

GENE ONTOLOGY (GO)

immune response i- acute-phase response i- anaphylaxis i- antigen presentation i- antigen processing i- cellular defense response i- cvtokine metabolism i- cytokine biosynthesis synonym cytokine production p-regulation of cytokine biosynthesis i-B-cell activation i- B-cell differentiation i- B-cell proliferation i- cellular defense response i- T-cell activation i- activation of natural killer cell activity

Ontologies with overlapping information

GENE ONTOLOGY (GO) SIGNAL-ONTOLOGY (SigO) immune response **Immune Response** i- acute-phase response i- Allergic Response Antigen Processing and Presentation i- anaphylaxis i- antigen presentation i-B Cell Activation i- antigen processing B Cell Development i- Complement Signaling i- cellular defense response i- cytokine metabolism • synonym complement activation i- Cytokine Response i- cytokine biosynthesis synonym cytokine production i- Immune Suppression i- Inflammation p- regulation of cytokine. i- Intestinal Immunity biosynthesis i- Leukotriene Response i- Leukotriene Metabolism Natural Killer Cell Response i-B-cell activation **T** Cell Activation i- B-cell differentiation i- T Cell Development i- B-cell proliferation i- T Cell Selection in Thymus i- cellular defense response i- T-cell activation i- activation of natural killer

Ontologies with overlapping information

- Use of multiple ontologies
 - custom-specific ontology + standard ontology
 - □ different views over same domain
 - overlapping domains
- Bottom-up creation of ontologies experts can focus on their domain of expertise

→ important to know the inter-ontology relationships

GENE ONTOLOGY (GO)

SIGNAL-ONTOLOGY (SigO)

Immune Response

immune response
i- acute-phase response
i- anaphylaxis
i- antigen presentation
i- antigen processing
i- cellular defense response
i- cytokine metabolism
i- cytokine biosynthesis
synonym cytokine production
...
p- regulation of cytokine
biosynthesis
...
i- B-cell activation

i- B-cell differentiationi- B-cell proliferationi- cellular defense response

i- T-cell activationi- activation of natural killer cell activity

. . .

i- Allergic Response
i- Antigen Processing and Presentation
i- B Cell Activation
i- B Cell Development
i- Complement Signaling synonym complement activation
i- Cytokine Response
i- Immune Suppression
i- Inflammation
i- Intestinal Immunity
i- Leukotriene Response
i- Leukotriene Metabolism
i- Natural Killer Cell Response
i- T Cell Activation
i- T Cell Development

i- T Cell Selection in Thymus

Ontology Alignment

Defining the relations between the terms in different ontologies

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

An Alignment Framework

Classification

- According to input
 - □ KR: OWL, UML, EER, XML, RDF, ...
 - □ components: concepts, relations, instance, axioms
- According to process
 - □ What information is used and how?
- According to output
 - □ 1-1, m-n
 - Similarity vs explicit relations (equivalence, is-a)
 confidence

Preprocessing

Preprocessing

For example,

- Selection of features
- Selection of search space

Matchers

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-bas
- Instance-based
- Use of auxiliar

Edit distance

- Number of deletions, insertions, substitutions required to transform one string into another
- \Box aaaa \rightarrow baab: edit distance 2

N-gram

- □ N-gram : N consecutive characters in a string
- Similarity based on set comparison of n-grams
- aaaa : {aa, aa, aa}; baab : {ba, aa, ab}

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based
- Instance-based st
- Use of auxiliary

Propagation of similarity valuesAnchored matching

Propagation of similarity valuesAnchored matching

Propagation of similarity valuesAnchored matching

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based approaches
- Instance-based
- Use of auxiliary

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based approaches
- Instance-based
- Use of auxiliary

- Similarities between data types
 Similarities based on cordinalities
- Similarities based on cardinalities

Matcher Strategies

- Strategies based on linguisti
- Structure-based strategies
- Constraint-based approached
- Instance-based strategies

- Instance-based
- Use life science literature as instances

Structure-based extensions

Learning matchers – instancebased strategies

Basic intuition

A similarity measure between concepts can be computed based on the probability that documents about one concept are also about the other concept and vice versa.

- Intuition for structure-based extensions
 Documents about a concept are also about their super-concepts.
 - (No requirement for previous alignment results.)

Learning matchers - steps

- Generate corpora
 - □ Use concept as query term in PubMed
 - Retrieve most recent PubMed abstracts
- Generate text classifiers
 - □ One classifier per ontology / One classifier per concept
- Classification
 - Abstracts related to one ontology are classified by the other ontology's classifier(s) and vice versa
- Calculate similarities

Basic Naïve Bayes matcher

- Generate corpora
- Generate classifiers
 - Naive Bayes classifiers, one per ontology
- Classification
 - Abstracts related to one ontology are classified to the concept in the other ontology with highest posterior probability P(C|d)
- Calculate similarities

$$sim(C_1, C_2) = \frac{n_{NBC2}(C_1, C_2) + n_{NBC1}(C_2, C_1)}{n_D(C_1) + n_D(C_2)}$$

Basic Support Vector Machines matcher

- Generate corpora
- Generate classifiers
 - □ SVM-based classifiers, one per concept
- Classification
 - Single classification variant: Abstracts related to concepts in one ontology are classified to the concept in the other ontology for which its classifier gives the abstract the highest positive value.
 - Multiple classification variant: Abstracts related to concepts in one ontology are classified all the concepts in the other ontology whose classifiers give the abstract a positive value.
- Calculate similarities

$$\frac{n_{SVMC-C_2}(C_1, C_2) + n_{SVMC-C_1}(C_2, C_1)}{n_D(C_1) + n_D(C_2)}$$

Matcher Strategies

- Strategies based linguist
- Structure-based strategie
- Constraint-based approa
- Instance-based strategies
- Use of auxiliary information

Use of WordNet

- Use WordNet to find synonyms
- Use WordNet to find ancestors and descendants in the isa hierarchy
- Use of Unified Medical Language System (UMLS)
 - Includes many ontologies
 - Includes many alignments (not complete)
 - Use UMLS alignments in the computation of the similarity values

	linguistic	structure	constraints	instances	auxiliary
\mathbf{ArtGen}	name	parents, children		domain	WordNet
				specific	
				documents	
ASCO	name,	parents, children,			WordNet
	label	siblings,			
	description	path from root			
Chimaera	name	parents, children			
• • • • • • • • • • • • • • • • • • • •		p ======; ========			
FCA-Merge	name			domain	
8-				specific	
				documents	
FOAM	name	parents children	equivalence	documents	
FOAM	label	parents, cinturen	equivalence		
CLUE	label	111 . 1 1		• - +	
GLUE	name	neighborhood		instances	
HOONE					*** 15* .
HCONE	name	parents, children			WordNet
IF-Map				instances	a reference
					ontology
iMapper		leaf, non-leaf,	domain,	instances	WordNet
		children,	range		
		related node			
OntoMapper		parents, children		documents	
(Anchor-)	name	direct graphs			
PROMPT					
SAMBO	name,	is-a and part-of,		domain	WordNet,
	synonym	descendants		specific	UMLS
		and ancestors		documents	
S-Match	label	path from root	semantic		WordNet
		* · · ·	relations		
			codified		
			in labels		
			111 100010		

Combinations

Combination Strategies

- Usually weighted sum of similarity values of different matchers
- Maximum of similarity values of different matchers

Filtering techniques

Threshold filtering

Pairs of concepts with similarity higher or equal than threshold are alignment suggestions

Filtering techniques

Double threshold filtering

- (1) Pairs of concepts with similarity higher than or equal to **upper** threshold are alignment suggestions
- (2) Pairs of concepts with similarity between **lower** and **upper** thresholds are alignment suggestions if they make sense with respect to the structure of the ontologies and the suggestions according to (1)

Example alignment system SAMBO – matchers, combination, filter

			Align Concept in mouse and h	iuman	
matchers:	1.0NGram1.0TermBasic1.0TermWN1.0UMLSM1.0Naive Bayes	single threshold: double threshold:	0.6 • upper 0.6 lower 0.4 •	weighted-sum combination maximum-based combination	use preprocessed data
Start Computation	Finish Computation	Interrupt Computation	interrupt at: 1000	J	

comments to sambo@ida.liu.se

Example alignment system SAMBO – suggestion mode

nose_MA	nose_MeSH		
nasal_cavity_epithelium definition: MA:0001324 synonym: nasal mucosa part-of: nasal_cavity	nasal_mucosa definition: MESH:A.04.531.520 synonym: nasal epithelium part-of:		
nasal_cavity_epithelium nasal_mucosa			
= Equiv. Concepts ≤ Sub-Concept ≥	Super-Concept << Undo >> Skip to Next		

Example alignment system SAMBO – manual mode

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

Evaluation measures

Precision:

correct mapping suggestions

mapping suggestions

• Recall:

correct mapping suggestions

correct mappings

F-measure: combination of precision and recall

Ontology Alignment Evaluation Initiative

http://oaei.ontologymatching.org/

- Since 2004
- Evaluation of systems
- Different tracks (2017)
 - anatomy, conference, large biomedical ontologies, disease and phenotype
 - multilingual: multifarm (9 languages)
 - □ process model
 - □ interactive
 - □ instance
 - □ link discovery for spatial data

Evaluation measures
 Precision/recall/f-measure
 recall of non-trivial mappings

□ full / partial golden standard

- 17 systems participated
 - □ benchmark (13)
 - ASMOV: p = 0.95, r = 0.90
 - \square anatomy (11)
 - AOAS: f = 0.86, r+ = 0.50
 - SAMBO: f =0.81, r+ = 0.58
 - \Box library (3)
 - Thesaurus merging: FALCON: p = 0.97, r = 0.87
 - Annotation scenario:

□ FALCON: pb =0.65, rb = 0.49, pa = 0.52, ra = 0.36, Ja = 0.30

 \Box Silas: pb = 0.66, rb= 0.47, pa = 0.53, ra = 0.35, Ja = 0.29

□ directory (9), food (6), environment (2), conference (6)

OAEI 2008 – anatomy track

Align

- □ Mouse anatomy: 2744 terms
- NCI-anatomy: 3304 terms
- □ Mappings: 1544 (of which 934 'trivial')

Tasks

- □ 1. Align and optimize f
- □ 2-3. Align and optimize p / r
- 4. Align when partial reference alignment is given and optimize f

OAEI 2008 – anatomy track#1

- 9 systems participated
- SAMBO
 - □ p=0.869, r=0.836, r+=0.586, f=0.852
- SAMBOdtf
 - □ p=0.831, r=0.833, r+=0.579, f=0.832
- Use of TermWN and UMLS

OAEI 2008 – anatomy track#4

Can we use given mappings when computing suggestions?

→ partial reference alignment given with all trivial and 50 non-trivial mappings

SAMBO

□ p=0.636 \rightarrow 0.660, r=0.626 \rightarrow 0.624, f=0.631 \rightarrow 0.642

- SAMBOdtf
 - □ $p=0.563 \rightarrow 0.603$, $r=0.622 \rightarrow 0.630$, $f=0.591 \rightarrow 0.616$

(measures computed on non-given part of the reference alignment)

- 11 systems
- Anatomy:
 - □ best system f=0.943, p=0.95, r=0.936, r+=0.832, 47 seconds
 - □ 5 systems produce coherent mappings

OAEI Anatomy Track 2007-2016*

Components

- Almost all systems implement preprocessing, matchers, combination, filtering components
- Debugging component and GUI rarely implemented
- Matching strategies
 - Variety of string-based strategies
 - □ Most often string and structured-based strategies
- Use of background knowledge
 - □ Almost all systems use sources of background knowledge

^{*} Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the</u> <u>Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017.

Evaluation of algorithms

Cases

□ GO vs. SigO

GO: 70 terms	SigO: 15 terms
GO-immune defense	SigO-immune defense

GO: 60 terms	
GO-behavior	

SigO: 10 terms SigO-behavior

Evaluation of matchers

Matchers

Term, TermWN, Dom, Learn (Learn+structure), Struc

Parameters

Quality of suggestions: precision/recall Threshold filtering : 0.4, 0.5, 0.6, 0.7, 0.8 Weights for combination: 1.0/1.2

KitAMO

(http://www.ida.liu.se/labs/iislab/projects/KitAMO)

Terminological matchers

Basic learning matcher (Naïve Bayes)

Naive Bayes slightly better recall, but slightly worse precision than SVM-single SVM-multiple (much) better recall, but worse precision than SVM-single

Domain matcher (using UMLS)

- Comparison of the matchers $CS_TermWN \supseteq CS_Dom \supseteq CS_Learn$
- Combinations of the different matchers
 - combinations give often better results
 - no significant difference on the quality of suggestions for different weight assignments in the combinations
 (but: did not check for large variations for the weights)
- Structural matcher did not find (many) new correct alignments (but: good results for systems biology schemas SBML – PSI MI)

Evaluation of filtering

Matcher

TermWN

Parameters

Quality of suggestions: precision/recall Double threshold filtering using structure: Upper threshold: 0.8 Lower threshold: 0.4, 0.5, 0.6, 0.7, 0.8

The precision for double threshold filtering with upper threshold 0.8 and lower threshold T is higher than for threshold filtering with threshold T

The recall for double threshold filtering with upper threshold 0.8 and lower threshold T is about the same as for threshold filtering with threshold T

Complementary evaluation

Alignment cubes

- Interactive visualization of alignments
- Region-level, mapping level
- Missing mappings
- Often found mappings
- http://www.ida.liu.se/~patla00/research/AlignmentCubes/

Alignment cubes

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

Challenges

- Large-scale matching evaluation
- Efficiency of matching techniques
 - parallellization
 - distribution of computation
 - approximation of matching results (not complete)
 - modularization of ontologies
 - optimization of matching methods

Challenges

Matching with background knowledge
 partial alignments
 reuse of previous matches
 use of domain-specific corpora
 use of domain-specific ontologies

Matcher selection, combination and tuning
 recommendation of algorithms and settings

Challenges

User involvement
 visualization
 user feedback

- Explanation of matching results
- Social and collaborative matching
- Alignment management: infrastructure and support

Further reading

Starting points for further studies

<u>http://www.ontologymatching.org</u>
 (plenty of references to articles and systems)

 Ontology alignment evaluation initiative: <u>http://oaei.ontologymatching.org</u> (home page of the initiative)

- Euzenat, Shvaiko, *Ontology Matching*, Springer, 2007.
- Shvaiko, Euzenat, Ontology Matching: state of the art and future challenges, *IEEE Transactions on Knowledge and Data Engineering* 25(1):158-176, 2013.
- Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017.

Systems at LiU / IDA / ADIT

 Lambrix, Tan, SAMBO – a system for aligning and merging biomedical ontologies, *Journal of Web Semantics*, 4(3):196-206, 2006.
 (description of the SAMBO tool and overview of evaluations of different matchers)

Lambrix, Tan, A tool for evaluating ontology alignment strategies, *Journal on Data Semantics*, VIII:182-202, 2007.
 (description of the KitAMO tool for evaluating matchers)

- Lambrix P, Kaliyaperumal R, <u>A Session-based Ontology Alignment Approach</u> <u>enabling User Involvement</u>, *Semantic Web Journal* 8(2):225-251, 2017.
- Ivanova V, Bach B, Pietriga E, Lambrix P, <u>Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments</u>, 16th International Semantic Web Conference, 400-417, 2017.

 Chen, Tan, Lambrix, Structure-based filtering for ontology alignment, *IEEE WETICE workshop on semantic technologies in collaborative applications*, 364-369, 2006.

(double threshold filtering technique)

- Tan, Lambrix, A method for recommending ontology alignment strategies, *International Semantic Web Conference*, 494-507, 2007.
 Ehrig, Staab, Sure, Bootstrapping ontology alignment methods with APFEL, *International Semantic Web Conference*, 186-200, 2005.
 Mochol, Jentzsch, Euzenat, Applying an analytic method for matching approach selection, *International Workshop on Ontology Matching*, 2006.
 (recommendation of alignment strategies)
- Lambrix, Liu, Using partial reference alignments to align ontologies, *European Semantic Web Conference*, 188-202, 2009.
 (use of partial alignments in ontology alignment)

Lambrix, Strömbäck, Tan, Information integration in bioinformatics with ontologies and standards, chapter 8 in Bry, Maluszynski (eds), *Semantic Techniques for the Web*, Springer, 2009. ISBN: 978-3-642-04580-6.

(largest overview of systems)

Ontology Debugging
Defects in ontologies

- Syntactic defects
 - E.g. wrong tags or incorrect format
- Semantic defects
 - E.g. unsatisfiable concepts, incoherent and inconsistent ontologies
- Modeling defects
 - □ E.g. wrong or missing relations

Example - incoherent ontology

Example: DICE ontology

 Brain ⊑ CentralNervousSystem п BodyPart п ∃systempart.NervousSystem п ∃ region.HeadAndNeck п ∀region.HeadAndNeck

A brain is a central nervous system and a body part which has a system part that is a nervous system and that is in the head and neck region.

CentralNervousSystem ⊑ NervousSystem

A central nervous system is a nervous system.

BodyPart ⊑¬NervousSystem

Nothing can be at the same time a body part and a nervous system.

Slide from G. Qi

Example - inconsistent ontology

Example from Foaf:

- Person(timbl)
- Homepage(timbl, <u>http://w3.org/</u>)
- Homepage(w3c, <u>http://w3.org/</u>)
- Organization(w3c)
- InverseFunctionalProperty(Homepage)
- DisjointWith(Organization, Person)
- Example from OpenCyc:
 - ArtifactualFeatureType(PopulatedPlace)
 - ExistingStuffType(PopulatedPlace)
 - DisjointWith(ExistingObjectType,ExistingStuffType)
 - ArtifactualFeatureType
 ExistingObjectType

Example - missing is-a relations

- In 2008 Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, task 4
 - □ Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
 - Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
 - □ 988 mappings between MA and NCI-A
 - 121 missing is-a relations in MA
 - 83 missing is-a relations in NCI-A

Influence of missing structure

Ontology-based querying.

Influence of missing structure

Incomplete results from ontology-based queries

Publed.gov U.S. National Library of Medicine National Institutes of Health	Search: PubMed Limits Scleral Diseases" [MeSH]	Advanced search Help Search Clear
Medical Subject Headings (MeSH) All MeSH Categories Diseases Category		return 1617 articles return 695 articles 57% results are missed
 Eye Diseases Scleral Diseas Scleritis 	<u>es</u>	

Defects in ontologies and ontology networks

- Ontologies and ontology networks with defects, although often useful, also lead to problems when used in semantically-enabled applications.
- → Wrong conclusions may be derived or valid conclusions may be missed.

Overview of debugging approach

Debugging semantic defects

Example : an Incoherent Ontology

Consider the following TBox \mathcal{T}^* , where A, B and C are primitive and A_1, \ldots, A_7 defined concept names:

 $\begin{array}{ll} ax_1:A_1 \stackrel{.}{\sqsubseteq} \neg A \sqcap A_2 \sqcap A_3 & ax_2:A_2 \stackrel{.}{\sqsubseteq} A \sqcap A_4 \\ ax_3:A_3 \stackrel{.}{\sqsubseteq} A_4 \sqcap A_5 & ax_4:A_4 \stackrel{.}{\boxminus} \forall s.B \sqcap C \\ ax_5:A_5 \stackrel{.}{\sqsubseteq} \exists s. \neg B & ax_6:A_6 \stackrel{.}{\sqsubseteq} A_1 \sqcup \exists r.(A_3 \sqcap \neg C \sqcap A_4) \\ ax_7:A_7 \stackrel{.}{\sqsubseteq} A_4 \sqcap \exists s. \neg B \end{array}$

The ontology is incoherent!

The set of unsatisfiable concepts are : $\{A_1, A_3, A_6, A_7\}$.

What are the root causes of these defects?

Explain the Semantic Defects

• We need to identify the sets of axioms which are necessary for causing the logic contradictions.

• For example, for the unsatisfiable concept "*A*₁", there are two sets of axioms.

 $ax_1:A_1 \sqsubseteq \neg A \sqcap A_2 \sqcap A_3$ $ax_2:A_2 \sqsubseteq A \sqcap A_4$

$$ax_{1}:A_{1} \stackrel{\models}{=} \neg A \sqcap A_{2} \sqcap A_{3}$$
$$ax_{3}:A_{3} \stackrel{\models}{=} A_{4} \sqcap A_{5}$$
$$ax_{4}:A_{4} \stackrel{\models}{=} \forall s.B \sqcap C$$
$$ax_{5}:A_{5} \stackrel{\models}{=} \exists s. \neg B$$

Minimal Unsatisfiability Preserving Sub-TBoxes (MUPS)

Definition 1 Let A be a concept which is unsatisfiable in a TBox \mathcal{T} . A set $\mathcal{T}' \subseteq \mathcal{T}$ is a *minimal unsatisfiability-preserving sub-TBox (MUPS)* of \mathcal{T} if

- A is unsatisfiable in \mathcal{T}' , and
- A is satisfiable in every sub-TBox $\mathcal{T}'' \subset \mathcal{T}'$.

We will abbreviate the set of MUPS of \mathcal{T} and A by $mups(\mathcal{T}, A)$. $mups(\mathcal{T}^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}$

• The MUPS of an unsatisfiable concept imply the solutions for repairing.

 \rightarrow Remove at least one axiom from each axiom set in the MUPS

Example

$$mups(\mathcal{T}^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}$$

$$mups(\mathcal{T}^*, A_3) = \{\{ax_3, ax_4, ax_5\}\}$$

$$mups(\mathcal{T}^*, A_6) = \{\{ax_1, ax_2, ax_4, ax_6\},$$

$$\{ax_1, ax_3, ax_4, ax_5, ax_6\}\}$$

$$mups(\mathcal{T}^*, A_7) = \{\{ax_4, ax_7\}\}$$

• Possible ways of repairing all the unsatisfiable concepts in the ontology:

$$\{ax_1, ax_3, ax_4\}$$

How to represent all these possibilities?

Minimal Incoherence Preserving Sub-TBox (MIPS)

Definition 2 Let \mathcal{T} be an incoherent TBox. A TBox $\mathcal{T}' \subseteq \mathcal{T}$ is a minimal incoherencepreserving sub-TBox (MIPS) of \mathcal{T} if

- \mathcal{T}' is incoherent, and
- every sub-TBox $\mathcal{T}'' \subset \mathcal{T}'$ is coherent.

$$\begin{split} mups(\mathcal{T}^*, A_1) &= \{ \{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\} \} \\ mups(\mathcal{T}^*, A_3) &= \{ \{ax_3, ax_4, ax_5\} \} \\ mups(\mathcal{T}^*, A_6) &= \{ \{ax_1, ax_2, ax_4, ax_6\}, \\ \{ax_1, ax_3, ax_4, ax_5, ax_6\} \} \\ mups(\mathcal{T}^*, A_7) &= \{ \{ax_4, ax_7\} \} \end{split}$$

We will abbreviate the set of MIPS of \mathcal{T} by $mips(\mathcal{T})$. For \mathcal{T}^* we get three MIPS:

$$mips(\mathcal{T}^*) = \{ \{ax_1, ax_2\}, \{ax_3, ax_4, ax_5\}, \{ax_4, ax_7\} \}$$

A possible repairing is $\{ax_i\} \cup \{ax_j\} \cup \{ax_k\}$, where

- $ax_i \in \{ax_1, ax_2\}$
- $ax_j \in \{ax_3, ax_4, ax_5\}$
- $ax_k \in \{ax_4, ax_7\}$

Completing the is-a structure of ontologies

Repairing actions:

- {Endocarditis \sqsubseteq PathologicalPhenomenon, GranulomaProcess \doteq NonNormalProcess}
- {Carditis \doteq CardioVascularDisease, GranulomaProcess \doteq PathologicalProcess}
- {Carditis \sqsubseteq Fracture, GranulomaProcess \doteq NonNormalProcess}

Description logic EL

Concepts

Atomic concept	Α
Universal concept	T
Intersection of concepts	СпD
Existential restriction	∃r.C

Terminological axioms: equivalence and subsumption

Generalized Tbox Abduction Problem – GTAP(**T**,**C**,Or,M)

- Given
 - □**T** a Tbox in EL
 - □C- a set of atomic concepts in T
 - $\Box M = \{Ai \subseteq Bi\}_{i=1..n} and \forall i:1..n: Ai, Bi \in \boldsymbol{C}$
 - $\Box \text{ Or: } \{\text{Ci} \subseteq \text{Di} \mid \text{Ci, Di} \in \textbf{C}\} \rightarrow \{\text{true, false}\}$

Find

□ S = {E_i ⊆ F_i}_{i=1..k} such that \forall i:1..k: E_i, F_i ∈ C and Or(E_i ⊆ F_i) = true and T U S is consistent and T U S |= M

GTAP - example

 $C = \{$ GranulomaProcess, CardioVascularDisease, PathologicalPhenomenon, Fracture, Endocarditis, Carditis, InflammationProcess, PathologicalProcess, NonNormalProcess} $\}$

 $T = \{ \text{ GranulomaProcess } \sqsubseteq \top, \text{ hasAssociatedProcess } \trianglerighteq \top \times \top, \\ \text{CardioVascularDisease } \trianglerighteq \text{ PathologicalPhenomenon, Fracture } \textcircled{} \text{ PathologicalPhenomenon,} \\ \exists \text{hasAssociatedProcess.PathologicalProcess } \trianglerighteq \text{ PathologicalPhenomenon,} \\ \text{Endocarditis } \underrightarrow{} \text{Carditis, Endocarditis } \underrightarrow{} \exists \text{hasAssociatedProcess.InflammationProcess,} \\ \text{PathologicalProcess } \end{bmatrix}$

 $M = \{$ Endocarditis \doteq PathologicalPhenomenon, GranulomaProcess \doteq NonNormalProcess $\}$

Preference criteria

There can be many solutions for GTAP

Preference criteria

There can be many solutions for GTAP

Not all are equally interesting.

More informative

- Let S and S' be two solutions to GTAP(T,C,Or,M). Then,
- S is more informative than S' iff $\mathbf{T} \cup S \models S'$ but not $\mathbf{T} \cup S' \models S$
- S is equally informative as S' iff $\mathbf{T} \cup S \models S'$ and $\mathbf{T} \cup S' \models S$

More informative

Blue' solution is more informative than 'green' solution

Semantic maximality

A solution S to GTAP(T,C,Or,M) is semantically maximal iff there is no solution S' which is more informative than S.

Subset minimality

A solution S to GTAP(T,C,Or,M) is subset minimal iff there is no proper subset S' of S that is a solution.

Combining with priority for semantic maximality

A solution S to GTAP(T,C,Or,M) is maxmin optimal iff S is semantically maximal and there is no other semantically maximal solution that is a proper subset of S.

Combining with priority for subset minimality

A solution S to GTAP(T,C,Or,M) is minmax optimal iff S is subset minimal and there is no other subset minimal solution that is more informative than S.

Combining with equal preferences

- A solution S to GTAP(T,C,Or,M) is skyline optimal iff there is no other solution that is a proper subset of S and that is equally informative than S.
 - All subset minimal, minmax optimal and maxmin optimal solutions are also skyline optimal solutions.
 - Semantically maximal solutions may or may not be skyline optimal.

Preference criteria - conclusions

- In practice it is not clear how to generate maxmin or semantically maximal solutions (the preferred solutions)
- Skyline optimal solutions are the next best thing and are easy to generate

Approach

Input

- □ Normalized EL TBox
- Set of missing is-a relations (correct according to the domain)
- Output a skyline-optimal solution to GTAP
- Iteration of three main steps:
 - Creating solutions for individual missing is-a relations
 - Combining individual solutions
 - Trying to improve the result by finding a solution which introduces additional new knowledge (more informative)

Intuition 1

Intuitions 2/3

Example – repairing single is–a relation

Example – repairing single is–a relation

GranulomaProcess GranulomaProcess GranulomaProcess

Algorithm - Repairing multiple is-a relations

- Combine solutions for individual missing is-a relations
- Remove redundant relations while keeping the same level of informativness
- Resulting solution is a skyline optimal solution

{InflammationProcess \sqsubseteq PathologicalProcess, Carditis \doteq CardioVascularDisease, GranulomaProcess \doteq PathologicalProcess}

Algorithm – improving solution

- Solution S from previous step may contain relations which are not derivable from the ontology.
- These can be seen as new missing is-a relations.
- We can solve a new GTAP problem: GTAP(T U S, C, Or, S)
Example – improving solutions

$GranulomaProcess \stackrel{.}{\sqsubseteq} InflammationProcess$

{InflammationProcess \sqsubseteq PathologicalProcess, Carditis \doteq CardioVascularDisease, GranulomaProcess \doteq InflammationProcess}

Algorithm properties

Sound

Skyline optimal solutions

Experiments

Two use-cases

Case 1: given missing is-a relations
 AMA and a fragment of NCI-A ontology – OAEI 2013

- AMA (2744 concepts) 94 missing is-a relations
 → 3 iterations, 101 in repairing (47 additional new knowledge)
- NCI-A (3304 concepts) 58 missing is-a relations
 → 3 iterations, 54 in repairing (10 additional new knowledge)
- Case 2: no given missing is-a relations Modified BioTop ontology
 - Biotop (280 concepts, 42 object properties) randomly choose is-a relations and remove them: 47 'missing' → 4 iterations, 41 in repairing (40 additional new knowledge)

Further reading

Starting points for further studies

Further reading ontology debugging

Semantic defects

- Schlobach S, Cornet R. Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies. 18th International Joint Conference on Artificial Intelligence - IJCAI03, 355-362, 2003.
- Schlobach S. <u>Debugging and Semantic Clarification by Pinpointing</u>. 2nd European Semantic Web Conference - ESWC05, LNCS 3532, 226-240, 2005.

Further reading ontology debugging

Completing ontologies

- Fang Wei-Kleiner, Zlatan Dragisic, Patrick Lambrix. <u>Abduction Framework</u> for Repairing Incomplete EL Ontologies: Complexity Results and <u>Algorithms</u>. 28th AAAI Conference on Artificial Intelligence - AAAI 2014, 1120-1127, 2014.
- Lambrix P, Ivanova V, <u>A unified approach for debugging is-a structure and mappings in networked taxonomies</u>, *Journal of Biomedical Semantics* 4:10, 2013.
- Lambrix P, Liu Q, <u>Debugging the missing is-a structure within taxonomies</u> <u>networked by partial reference alignments</u>, *Data & Knowledge Engineering* 86:179-205, 2013.