

Description Logics

- A family of KR formalisms, based on FOPL decidable, supported by automatic reasoning systems
- Used for modelling of application domains
- Classification of concepts and individuals concepts (unary predicates), subconcept (subsumption), roles (binary predicates), individuals (constants), constructors for building concepts, equality ...

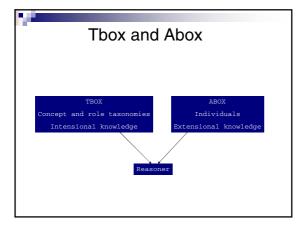
[Baader et al. 2002]

Applications

- software management
- configuration management
- natural language processing
- clinical information systems
- information retrieval
- **...**
- Ontologies and the Web

Outline

- DL languages
 - □ syntax and semantics
- DL reasoning services
 - □ algorithms, complexity
- DL systems
- DLs for the web



Syntax - AL R atomic role, A atomic concept C,D → A | (atomic concept) T | (universal concept, top) ⊥ | (bottom concept) ¬A | (atomic negation) C ∩ D | (conjunction) ∀R.C | (value restriction)

(limited existential quantification)

AL[X]

 $C \neg C$ (concept negation)

U CUD (disjunction)

 \mathcal{F} $\exists R.C$ (existential quantification)

 $\mathcal{N} \ge n R, \le n R$ (number restriction)

 $Q \ge n R.C, \le n R.C$ (qualified number restriction)

Example

Team

Team ∩ ≥ 10 hasMember

Team ∩ ≥ 11 hasMember

 $\cap \forall$ hasMember.Soccer-player

AL[X]

 $\mathcal{R} \cap S$ (role conjunction)

I R- (inverse roles)

 \mathcal{H} (role hierarchies)

 \mathcal{F} $u_1 = u_2$, $u_1 \neq u_2$ (feature (dis)agreements)

S[X]

S ALC + transitive roles

SHIQ ALC + transitive roles

+ role hierarchies

+ inverse roles

+ number restrictions

Tbox

■ Terminological axioms:

 \square C = D (R = S)

□ C⊆ D (R⊆ S)

□ (disjoint C D)

An equality whose left-hand side is an atomic concept is a definition.

A finite set of definitions T is a Tbox (or terminology) if no symbolic name is defined more than once.

Example Tbox

 $Soccer\text{-}player \subseteq T$

Team ⊆≥2 hasMember

Large-Team = Team ∩ ≥ 10 hasMember

S-Team = Team ∩ ≥ 11 hasMember

 $\ \ \, \cap \, \forall \,\, \text{hasMember.Soccer-player}$

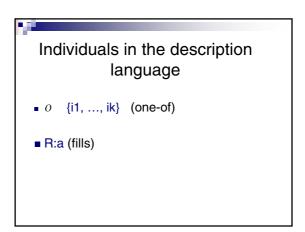
DL as sublanguage of FOPL Team(this) ^ (∃ x₁,...,x₁₁: hasMember(this,x1)^...^hasMember(this,x11) ^ x₁ ≠ x₂ ^...^x₁₀ ≠ x₁₁) ^ (∀ x: hasMember(this,x) → Soccer-player(x))

```
Abox

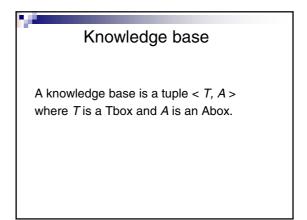
Assertions about individuals:

C(a)
R(a,b)
```

Example Ida-member(Sture)



Example (S-Team ∩ hasMember:Sture)(IDA-FF)



Example KB

 $\begin{aligned} & Soccer\text{-player} \subseteq T \\ & Team \ \subseteq \geq 2 \text{ hasMember} \\ & Large\text{-}Team = Team \ \cap \geq 10 \text{ hasMember} \\ & S\text{-}Team = Team \ \cap \geq 11 \text{ hasMember} \\ & \cap \ \forall \text{ hasMember.Soccer-player} \end{aligned}$ | Ida-member(Sture)

 $(S\text{-}Team \cap hasMember:Sture)(IDA\text{-}FF)$

\mathcal{AL} (Semantics)

An interpretation I consists of a non-empty set $\Delta^{\mathcal{I}}$ (the domain of the interpretation) and an interpretation function $.^{\mathcal{I}}$ which assigns to every atomic concept A a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and to every atomic role R a binary relation $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

The interpretation function is extended to concept definitions using inductive definitions.

AL (Semantics)

 $\begin{array}{lll} \text{C,D} \rightarrow \text{A I (atomic concept)} & \text{T}^{\mathcal{I}} &= \Delta^{\mathcal{I}} \\ & \text{I (universal concept)} & \text{T}^{\mathcal{I}} &= \Delta^{\mathcal{I}} \\ & \text{I I (bottom concept)} & \text{L}^{\mathcal{I}} &= \emptyset \\ & -\text{A I (atomic negation)} & (-\text{A})^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus \text{A}^{\mathcal{I}} \\ & \text{C} \cap \text{D I (conjunction)} & (\text{C} \cap \text{D})^{\mathcal{I}} &= \text{C}^{\mathcal{I}} \cap \text{D}^{\mathcal{I}} \\ & \forall \text{R.C I (value restriction)} & (\forall \text{ R.C})^{\mathcal{I}} &= \\ & \text{A} \in \Delta^{\mathcal{I}} \mid \forall \text{b.} (\text{a,b}) \in \text{R}^{\mathcal{I}} \rightarrow \text{b} \in \text{C}^{\mathcal{I}} \\ & \exists \text{R.T I (limited existential } & (\exists \text{ R.T})^{\mathcal{I}} &= \{\text{a} \in \Delta^{\mathcal{I}} \mid \exists \text{b.} (\text{a,b}) \in \text{R}^{\mathcal{I}} \} \\ & \text{quantification)} & \end{array}$

ALC (Semantics)

 $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$

 $(C \cup D)^j = C^j \cup D^j$

 $(\ge n R)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \# \{b \in \Delta^{\mathcal{I}} \mid (a,b) \in R^{\mathcal{I}}\} \ge n \}$

 $(\leq n R)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \#\{b \in \Delta^{\mathcal{I}} \mid (a,b) \in R^{\mathcal{I}}\} \leq n \}$

 $(\exists \mathsf{R.C})^{\jmath} = \{ a \in \Delta^{\jmath} | \exists b \in \Delta^{\jmath} : (a,b) \in \mathsf{R}^{\jmath} \land b \in \mathsf{C}^{\jmath} \}$

Semantics

Individual i

 $\mathbf{i}^{\mathcal{I}}\!\in\Delta^{\mathcal{I}}$

Unique Name Assumption:

if $i_1 \neq i_2$ then $i_1^{J} \neq i_2^{J}$

Semantics

An interpretation $.^{\mathcal{I}}$ is a model for a terminology T iff

 $C^{\mathcal{I}} = D^{\mathcal{I}}$ for all C = D in T

 $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all a $C \subseteq D$ in T

 $C^{\jmath} \cap D^{\jmath} = \emptyset$ for all (disjoint C D) in T

Semantics

An interpretation $.^{J}$ is a model for a knowledge base < T, A > iff

 $.^{J}$ is a model for T $a^{J} \in C^{J}$ for all C(a) in A $< a^{J}, b^{J} > \in R^{J}$ for all R(a,b) in A

Semantics - acyclic Tbox

Bird = Animal $\cap \forall$ Skin.Feather

 $\Delta^{\mathcal{I}} = \{ \text{tweety, goofy, fea1, fur1} \}$ $Animal^{\mathcal{I}} = \{ \text{tweety, goofy} \}$ $Feather^{\mathcal{I}} = \{ \text{fea1} \}$ $Skin^{\mathcal{I}} = \{ \text{-tweety,fea1} >, \text{-goofy,fur1} > \}$

 \rightarrow Bird^{\mathcal{I}} = {tweety}

Semantics - cyclic Tbox

 $\label{eq:QuietPerson} \mbox{QuietPerson} \cap \forall \mbox{ Friend.QuietPerson} \\ (\mbox{ A = F(A) })$

$$\begin{split} & \Delta^{\mathcal{I}} = \{\text{john, sue, andrea, bill}\} \\ & \text{Person}^{\mathcal{I}} = \{\text{john, sue, andrea, bill}\} \\ & \text{Friend}^{\mathcal{I}} = \{\text{-john, sue-}, \text{--andrea, bill-}\}, \text{--bill, bill-}\} \end{split}$$

- → QuietPerson^f ={john, sue}
- → QuietPerson^g ={john, sue, andrea, bill}

Semantics - cyclic Tbox

Descriptive semantics: A = F(A) is a constraint stating that A has to be some solution for the equation.

- Not appropriate for defining concepts
- Necessary and sufficient conditions for concepts

 $\begin{aligned} \text{Human} &= \text{Mammal} \cap \exists \ \text{Parent} \\ &\quad \cap \ \forall \ \text{Parent.Human} \end{aligned}$

Semantics - cyclic Tbox

Least fixpoint semantics: A = F(A) specifies that A is to be interpreted as the smallest solution (if it exists) for the equation.

Appropriate for inductively defining concepts

$$\label{eq:defDAG} \begin{split} \mathsf{DAG} &= \mathsf{EmptyDAG} \ \mathsf{U} \ \mathsf{Non\text{-}Empty\text{-}DAG} \\ \mathsf{Non\text{-}Empty\text{-}DAG} &= \mathsf{Node} \ \cap \ \forall \ \mathsf{Arc.Non\text{-}Empty\text{-}DAG} \end{split}$$

Human = Mammal \cap \exists Parent \cap \forall Parent.Human \Rightarrow Human = \bot

Semantics - cyclic Tbox

Greatest fixpoint semantics: A = F(A) specifies that A is to be interpreted as the greatest solution (if it exists) for the equation.

 Appropriate for defining concepts whose individuals have circularly repeating structure

 $FoB = Blond \cap \exists Child.FoB$

Human = Mammal \cap ∃ Parent \cap \forall Parent.Human Horse = Mammal \cap ∃ Parent \cap \forall Parent.Horse \rightarrow Human = Horse

Open world vs closed world semantics

Databases: closed world reasoning

database instance represents one interpretation

→ absence of information interpreted as negative information

"complete information"

query evaluation is finite model checking

DL: open world reasoning

Abox represents many interpretations (its models)

→ absence of information is lack of information

"incomplete information"

query evaluation is logical reasoning

Open world vs closed world semantics

hasChild(Jocasta, Oedipus) hasChild(Jocasta, Polyneikes) hasChild(Oedipus, Polyneikes) hasChild(Polyneikes, Thersandros)

patricide(Oedipus)

patricide(Thersandros)

Does it follow from the Abox that

 \exists hasChild.(patricide $\cap \exists$ hasChild. \neg patricide)(Jocasta) ?

Reasoning services

- Satisfiability of concept
- Subsumption between concepts
- Equivalence between concepts
- Disjointness of concepts
- Classification
- Instance checking
- Retrieval
- Knowledge base consistency

Reasoning services

- Satisfiability of concept
 - $\ \square$ C is satisfiable w.r.t. $\mathcal T$ if there is a model I of $\mathcal T$ such that $\mathsf C^I$ is not empty.
- Subsumption between concepts
 - \square C is subsumed by D w.r.t. $\overrightarrow{\mathcal{T}}$ if $C^I \subseteq D^I$ for every model I of \mathscr{T} .
- Equivalence between concepts
 - \square C is equivalent to D w.r.t. $\overset{\cdot}{\mathcal{T}}$ if \mathbf{C}^I = \mathbf{D}^I for every model I of \mathcal{T} .
- Disjointness of concepts
 - □ C and D are disjoint w.r.t. \mathcal{T} if $\mathbb{C}^g \cap \mathbb{D}^g = \emptyset$ for every model I of \mathcal{T} .

Reasoning services

- Reduction to subsumption
 - \Box C is unsatisfiable iff C is subsumed by \bot
 - □ C and D are equivalent iff C is subsumed by D and D is subsumed by C
 - \Box C and D are disjoint iff C \cap D is subsumed by \bot
- The statements also hold w.r.t. a Tbox.

Reasoning services

- Reduction to unsatisfiability
 - $\hfill\Box C$ is subsumed by D iff C $\cap \, \neg D$ is unsatisfiable
 - □C and D are equivalent iff

both $(C \cap \neg D)$ and $(D \cap \neg C)$ are unsatisfiable

- $\hfill\Box \, C$ and D are disjoint iff $C \cap D$ is unsatisfiable
- The statements also hold w.r.t. a Tbox.

Tableau algorithms

- To prove that C subsumes D:
 - ☐ If C subsumes D, then it is impossible for an individual to belong to D but not to C.
 - Idea: Create an individual that belongs to D and not to C and see if it causes a contradiction.
 - If always a contradiction (clash) then subsumption is proven. Otherwise, we have found a model that contradicts the subsumption.

Tableau algorithms

- Based on constraint systems.
 - $\square \, S = \{ \, x \colon \neg C \, \cap \, D \, \}$
 - ☐ Add constraints according to a set of propagation rules
 - Until clash or no constraint is applicable

Tableau algorithms – de Morgan rules

- $\neg \neg C \rightarrow C$
- $\neg (A \cap B) \rightarrow \neg A \cup \neg B$
- \neg (A U B) $\rightarrow \neg$ A $\cap \neg$ B
- $\neg (\forall R.C) \rightarrow \exists R.(\neg C)$
- $\neg (\exists R.C) \rightarrow \forall R.(\neg C)$

Tableau algorithms – constraint propagation rules

 \blacksquare S \rightarrow \bigcirc {x:C₁, x:C₂} U S

if x: $C_1 \cap C_2$ in S and either x: C_1 or x: C_2 is not in S

■ $S \rightarrow_U \{x:D\} \cup S$

if x: C_1 U C_2 in S and neither x: C_1 or x: C_2 is in S, and D = C_1 or D = C_2

Tableau algorithms – constraint propagation rules

 $\blacksquare \ S \to_\forall \ \{y:C\} \ U \ S$

if x: \forall R.C in S and xRy in S and y:C is not in S

■ S \rightarrow 3 {xRy, y:C} U S

if $x: \exists \ R.C$ in S and y is a new variable and there is no z such that both xRz and z:C are in S

Example

- ST: Tournament
 - $\cap \exists$ hasParticipant.Swedish
- SBT: Tournament
 - $\cap \exists$ hasParticipant.(Swedish \cap Belgian)

Example 1 SBT => ST? S = { x: ¬(Tournament ∩ ∃ hasParticipant.Swedish) ∩ (Tournament ∩ ∃ hasParticipant.(Swedish ∩ Belgian)) }

```
Example 1

∩-rule:
S = {
x: (¬Tournament
U ∀ hasParticipant.¬ Swedish)
∩ (Tournament
∩∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament
U ∀ hasParticipant.¬ Swedish,
x: Tournament,
x: ∃ hasParticipant.(Swedish ∩ Belgian)
}
```

```
Example 1

∩-rule:

■ S= {X: (¬Tournament U ∀ hasParticipant.¬ Swedish)

∩ (Tournament

∩ ∃ hasParticipant.(Swedish ∩ Belgian)),

x: ¬Tournament U ∀ hasParticipant.¬ Swedish,

x: Tournament,

x: ∃ hasParticipant.(Swedish ∩ Belgian),

x hasParticipant y, y: (Swedish ∩ Belgian),

y: Swedish, y: Belgian }
```

```
Example 2

■ ST => SBT?

■ S = { x:

¬ (Tournament

∩ ∃ hasParticipant.(Swedish ∩ Belgian))

∩ (Tournament ∩ ∃ hasParticipant.Swedish)
}
```

```
Example 2

■ S = { x:
  (¬Tournament
  U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
  ∩ (Tournament ∩ ∃ hasParticipant.Swedish)
  }
```

```
Example 2

∩-rule
■ S = {
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
    ∩ (Tournament ∩ ∃ hasParticipant.Swedish),
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
    x: Tournament,
    x: ∃ hasParticipant.Swedish
    }
```

```
Example 2

∃-rule
■ S = {
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
    ∩ (Tournament ∩ ∃ hasParticipant.Swedish),
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
    x: Tournament,
    x: ∃ hasParticipant.Swedish,
    x hasParticipant y, y: Swedish
    }
```

```
Example 2

U -rule, choice 1
■ S = {
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
    ∩ (Tournament ∩ ∃ hasParticipant.Swedish),
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
    x: Tournament,
    x: ∃ hasParticipant.Swedish,
    x hasParticipant y, y: Swedish,
    x: ¬Tournament
    }
    → clash
```

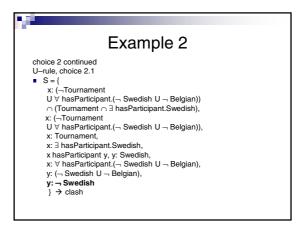
```
Example 2

U -rule, choice 2

S = {
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
    ∩ (Tournament ∩ ∃ hasParticipant.Swedish),
    x: (¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
    x: Tournament,
    x: ∃ hasParticipant.Swedish,
    x hasParticipant y, y: Swedish,
    x hasParticipant.(¬ Swedish U ¬ Belgian)
}
```

```
Example 2

choice 2 continued
∀-rule
■ S = {
    x: ⟨¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
    ¬(Tournament ∩ ∃ hasParticipant.Swedish),
    x: ⟨¬Tournament
    U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
    x: Tournament,
    x: ∃ hasParticipant.Swedish,
    x hasParticipant.Swedish,
    x hasParticipant.U¬ Swedish,
    x hasParticipant.(¬ Swedish,
    x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
    y: ⟨¬ Swedish U ¬ Belgian)
}
```



Complexity - languages

■ Overview available via the DL home page at http://dl.kr.org

Example tractable language:

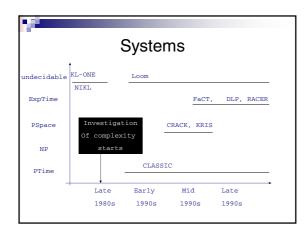
A, T, ⊥, ¬A, C ∩ D, ∀R, C, ≥ n R, ≤ n R

Reasons for intractability:

choices, e.g. C U D

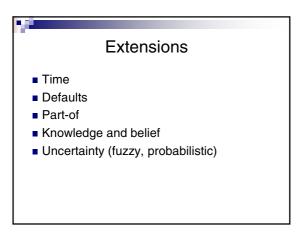
exponential size models,
e.g interplay universal and existential quantification

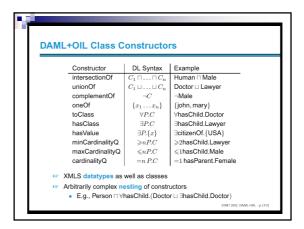
Reasons for undecidability:
e.g. role-value maps R=S

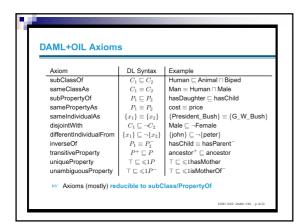


Systems

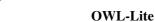
- Overview available via the DL home page at http://dl.kr.org
- Current systems include: CEL, Cerebra Enginer, FaCT++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto, RacerPro, SHER







OWL OWL-Lite, OWL-DL, OWL-Full: increasing expressivity A legal OWL-Lite ontology is a legal OWL-DL ontology is a legal OWL-Full ontology OWL-DL: expressive description logic, decidable XML-based RDF-based (OWL-Full is extension of RDF, OWL-Lite and OWL-DL are extensions of a restriction of RDF)



- Class, subClassOf, equivalentClass
- intersectionOf (only named classes and restrictions)
- **Property**, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, Functional Property, Inverse Functional Property
- allValuesFrom, someValuesFrom (local restrictions)
- minCardinality, maxCardinality (only 0/1)
- Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

- Type separation (class cannot also be individual or property, property cannot be also class or individual), Separation between DatatypeProperties and ObjectProperties

 Class—complex classes, subClassOf, equivalentClass, disjointWith

- Class complex classes, sub-class Or, equivalent Class, asyonivitin intersection Of, union Of, complement Of
 Property, subProperty Of, equivalent Property
 domain, range (global restrictions)
 inverse Of, Transitive Property (*), Symmetric Property, Functional Property,
 Inverse Functional Property
 all Values From, some Values From (local restrictions), one Of, has Value

- minCardinality, maxCardinality
 Individual, sameAs, differentFrom, AllDifferent

References

- Baader, Calvanese, McGuinness, Nardi, Patel-Schneider. The Description Logic Handbook. Cambridge University Press, 2003.
- Donini, Lenzerini, Nardi, Schaerf, Reasoning in description logics. Principles of knowledge representation. CSLI publications. pp 191-236. 1996.
- dl.kr.org
- www.daml.org
- www.w3.org (owl)

