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Description logics

Description Logics

� A family of KR  formalisms, based on FOPL         
decidable, supported by automatic reasoning 
systems

� Used for modelling of application domains
� Classification of concepts and individuals                

concepts (unary predicates), subconcept 
(subsumption), roles (binary predicates), 
individuals (constants), constructors for building 
concepts, equality …

[Baader et al. 2002]

Applications

� software management
� configuration management
� natural language processing
� clinical information systems
� information retrieval 
� …

� Ontologies and the Web

Outline

� DL languages
� syntax and semantics

� DL reasoning services
� algorithms, complexity

� DL systems

� DLs for the web

Tbox and Abox

TBOX

Concept and role taxonomies

Intensional knowledge

ABOX

Individuals

Extensional knowledge

Reasoner

Syntax  - AL
R atomic role, A atomic concept
C,D → A  | (atomic concept)

T | (universal concept, top) 
⊥ |  (bottom concept) 

¬A |  (atomic negation) 
C ∩ D |  (conjunction)
∀R.C |  (value restriction) 
∃R.T (limited existential quantification)
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AL[X]

C ¬C   (concept negation)

U C U D   (disjunction)
E ∃R.C   (existential quantification)

N     ≥ n R,  ≤ n R        (number restriction)
Q     ≥ n R.C,  ≤ n R.C  (qualified number restriction)

Example

Team

Team ∩ ≥ 10 hasMember

Team ∩ ≥ 11 hasMember 
∩ ∀ hasMember.Soccer-player

AL[X]

R R ∩ S  (role conjunction)

I R- (inverse roles)
H (role hierarchies)

F u1 = u2, u1 ≠ u2 (feature (dis)agreements)

S[X]

S          ALC + transitive roles

SHIQ   ALC  + transitive roles

+ role hierarchies

+ inverse roles

+ number restrictions

Tbox

� Terminological axioms:
� C = D (R = S) 
� C ⊆ D (R ⊆ S) 
� (disjoint C D) 

� An equality whose left-hand side is an 
atomic concept is a definition.

� A finite set of definitions T is a Tbox (or 
terminology) if no symbolic name is 
defined more than once.

Example Tbox

Soccer-player ⊆ T

Team ⊆ ≥ 2 hasMember

Large-Team = Team ∩ ≥ 10 hasMember

S-Team = Team ∩ ≥ 11 hasMember 
∩ ∀ hasMember.Soccer-player
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DL as sublanguage of FOPL

Team(this) 
^

(∃ x1,...,x11: 
hasMember(this,x1) ̂  … ^ hasMember(this,x11) 
^ x1 ≠ x2 ^ … ^ x10 ≠ x11)

^
(∀ x: hasMember(this,x) � Soccer-player(x))

Abox

� Assertions about individuals:
�C(a)
�R(a,b)

Example

Ida-member(Sture)

Individuals in the description 
language

� O {i1, …, ik} (one-of) 

� R:a (fills)

Example

(S-Team ∩ hasMember:Sture)(IDA-FF)

Knowledge base

A knowledge base is a tuple < T, A > 
where T is a Tbox and A is an Abox.
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Example KB

Soccer-player ⊆ T
Team ⊆ ≥ 2 hasMember
Large-Team = Team ∩ ≥ 10 hasMember
S-Team = Team ∩ ≥ 11 hasMember 

∩ ∀ hasMember.Soccer-player

Ida-member(Sture)

(S-Team ∩ hasMember:Sture)(IDA-FF)

AL  (Semantics)
An interpretation I consists of a non-empty set 
∆I (the domain of the interpretation) and an 
interpretation function .I which assigns to 
every atomic concept A a set AI ⊆ ∆I and to 
every atomic role R a binary relation 
RI⊆ ∆I× ∆I.

The interpretation function is extended to 
concept definitions using inductive definitions.

AL  (Semantics)
C,D → A  | (atomic concept)  

T | (universal concept) 

⊥ | (bottom concept)

¬A | (atomic negation)
C ∩ D | (conjunction)

∀R.C | (value restriction)

∃R.T | (limited existential 
quantification)

TI =   ∆I

⊥I        =   Ø
(¬A)I = ∆I  \ AI

(C∩D)I =  CI∩DI

(∀ R.C)I =  
{a ∈ ∆I|∀b.(a,b) ∈RI→b ∈CI } 

(∃ R.T)I = {a ∈ ∆I| ∃b.(a,b) ∈RI}

ALC  (Semantics)

(¬ C)I = ∆I  \ CI 

(C U D)I = CI  U DI 

(≥ n R)I = {a ∈ ∆I| # {b ∈ ∆I | (a,b) ∈RI } ≥ n }

(≤ n R)I = {a ∈ ∆I| # {b ∈ ∆I | (a,b) ∈RI } ≤ n }

(∃ R.C)I = {a ∈ ∆I| ∃b ∈ ∆I : (a,b) ∈RI ^ b ∈ CI} 

Semantics
Individual i

iI ∈ ∆I

Unique Name Assumption:
if i1 ≠ i2 then i1I ≠ i2I

Semantics

An interpretation .I is a model for a 
terminology T iff

CI = DI for all C = D in T

CI ⊆ DI for all a C ⊆ D in T

CI∩ DI = Ø for all (disjoint C D) in T
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Semantics

An interpretation .I is a model for a 
knowledge base <T, A > iff 

.I is a model for T

aI ∈ CI for all C(a) in A
<aI,bI> ∈ RI for all R(a,b) in A

Semantics - acyclic Tbox

Bird = Animal ∩ ∀ Skin.Feather

∆I = {tweety, goofy, fea1, fur1}

AnimalI = {tweety, goofy}
FeatherI = {fea1}
SkinI = {<tweety,fea1>, <goofy,fur1>}

� BirdI = {tweety}

Semantics - cyclic Tbox

QuietPerson = Person ∩ ∀ Friend.QuietPerson
( A = F(A) )

∆I = {john, sue, andrea, bill}
PersonI = {john, sue, andrea, bill}
FriendI = {<john,sue>, <andrea,bill>, <bill,bill>}

� QuietPersonI ={john, sue}
� QuietPersonI ={john, sue, andrea, bill}

Semantics - cyclic Tbox

Descriptive semantics: A = F(A) is a 
constraint stating that A has to be some 
solution for the equation.

� Not appropriate for defining concepts
� Necessary and sufficient conditions for 

concepts

Human = Mammal ∩ ∃ Parent                
∩ ∀ Parent.Human

Semantics - cyclic Tbox

Least fixpoint semantics: A = F(A) specifies that A 
is to be interpreted as the smallest solution (if it 
exists) for the equation.

� Appropriate for inductively defining concepts

DAG = EmptyDAG U Non-Empty-DAG
Non-Empty-DAG = Node ∩ ∀ Arc.Non-Empty-DAG

Human = Mammal ∩ ∃ Parent ∩ ∀ Parent.Human 
� Human = ⊥

Semantics - cyclic Tbox

Greatest fixpoint semantics: A = F(A) specifies that 
A is to be interpreted as the greatest solution (if it 
exists) for the equation.

� Appropriate for defining concepts whose 
individuals have circularly repeating structure

FoB = Blond ∩ ∃ Child.FoB

Human = Mammal ∩ ∃ Parent ∩ ∀ Parent.Human
Horse = Mammal ∩ ∃ Parent ∩ ∀ Parent.Horse
� Human = Horse
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Open world vs closed 
world semantics

Databases: closed world reasoning
database instance represents one interpretation
� absence of information interpreted as negative 

information
“complete information”
query evaluation is finite model checking

DL: open world reasoning
Abox represents many interpretations (its models)   
� absence of information is lack of information
“incomplete information”
query evaluation is logical reasoning

Open world vs closed 
world semantics

hasChild(Jocasta, Oedipus)
hasChild(Jocasta, Polyneikes)
hasChild(Oedipus, Polyneikes)
hasChild(Polyneikes, Thersandros)
patricide(Oedipus)
¬ patricide(Thersandros)

Does it follow from the Abox that
∃hasChild.(patricide ∩ ∃hasChild. ¬ patricide)(Jocasta) ?

Reasoning services

� Satisfiability of concept
� Subsumption between concepts 
� Equivalence between concepts 
� Disjointness of concepts

� Classification

� Instance checking
� Realization
� Retrieval 
� Knowledge base consistency

Reasoning services

� Satisfiability of concept
� C is satisfiable w.r.t. T  if there is a model I of T such that CI

is not empty.

� Subsumption between concepts 
� C is subsumed by D w.r.t. T  if CI ⊆ DI for every model I of T.

� Equivalence between concepts 
� C is equivalent to D w.r.t. T  if CI = DI for every model I of T.

� Disjointness of concepts
� C and D are disjoint w.r.t. T  if CI∩ DI = Ø for every model I of

T.

Reasoning services

� Reduction to subsumption
�C is unsatisfiable iff C is subsumed by ⊥
�C and D are equivalent iff C is subsumed by D 

and D is subsumed by C

�C and D are disjoint iff C ∩ D is subsumed by ⊥

� The statements also hold w.r.t. a Tbox.

Reasoning services

� Reduction to unsatisfiability
�C is subsumed by D iff C ∩ ¬D is unsatisfiable
�C and D are equivalent iff 

both (C ∩ ¬D) and  (D ∩ ¬C) are 
unsatisfiable 

�C and D are disjoint iff C ∩ D is unsatisfiable

� The statements also hold w.r.t. a Tbox.
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Tableau algorithms

� To prove that C subsumes D:
� If C subsumes D, then it is impossible for an 

individual to belong to D but not to C.
� Idea: Create an individual that belongs to D 

and not to C and see if it causes a 
contradiction.

� If always a contradiction (clash) then 
subsumption is proven. Otherwise, we have 
found a model that contradicts the 
subsumption.

Tableau algorithms

� Based on constraint systems.

�S = { x: ¬C ∩ D }

�Add constraints according to a set of 
propagation rules

�Until clash or no constraint is applicable

Tableau algorithms –
de Morgan rules

¬ ¬ C � C

¬ (A ∩ B) � ¬ A U ¬ B

¬ (A U B) � ¬ A ∩ ¬ B

¬ (∀ R.C) � ∃ R.(¬ C)
¬ (∃ R.C) � ∀ R.(¬ C)

Tableau algorithms – constraint 
propagation rules

� S � ∩ {x:C1, x:C2} U S

if x: C1 ∩ C2 in S 

and either x:C1 or x:C2 is not in S

� S �U {x:D} U S

if x: C1 U C2 in S and neither x:C1 or x:C2

is in S, and D = C1 or D = C2

Tableau algorithms – constraint 
propagation rules

� S �∀ {y:C} U S

if x: ∀ R.C in S and xRy in S and y:C is not 
in S

� S � ∃ {xRy, y:C} U S

if x: ∃ R.C in S and y is a new variable and 
there is no z such that both xRz and z:C 
are in S 

Example

� ST: Tournament 

∩ ∃ hasParticipant.Swedish
� SBT: Tournament 

∩ ∃ hasParticipant.(Swedish ∩ Belgian)
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Example 1

� SBT => ST?

� S = { x: 
¬(Tournament ∩ ∃ hasParticipant.Swedish)
∩ (Tournament 

∩ ∃ hasParticipant.(Swedish ∩ Belgian))
}

Example 1

� S = { x: 

(¬Tournament 
U ∀ hasParticipant.¬ Swedish)

∩ (Tournament 

∩ ∃ hasParticipant.(Swedish ∩ Belgian))
}

Example 1

∩-rule:
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.¬ Swedish)

∩ (Tournament 
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament 

U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian)
}

Example 1

∃ -rule:
� S = {                                                                                     

x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)
∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),

x: ¬Tournament 
U ∀ hasParticipant.¬ Swedish,

x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),

x hasParticipant y, y: (Swedish ∩ Belgian)
}

Example 1

∩-rule:
� S= {x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,

x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),

x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian }

Example 1

U-rule, choice 1
� S = { x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian,
x: ¬Tournament

}

� clash
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Example 1
U-rule, choice 2
� S = {x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian,
x: ∀ hasParticipant.¬ Swedish

}

Example 1
choice 2 – continued
∀-rule

� S = { 
x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament ∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian,
x: ∀ hasParticipant.¬ Swedish,
y: ¬ Swedish

}

� clash

Example 2

� ST => SBT?

� S = { x: 
¬ (Tournament 
∩ ∃ hasParticipant.(Swedish ∩ Belgian))

∩ (Tournament ∩ ∃ hasParticipant.Swedish)
}

Example 2

� S = { x: 
(¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish)
}

Example 2

∩-rule
� S = {

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish
}

Example 2

∃ -rule
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish
}
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Example 2

U –rule, choice 1
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish,
x: ¬Tournament
}

� clash

Example 2

U –rule, choice 2
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish,
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian)
}

Example 2
choice 2 continued
∀–rule
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish, 
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
y: (¬ Swedish U ¬ Belgian)
}

Example 2
choice 2 continued
U–rule, choice 2.1
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish, 
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
y: (¬ Swedish U ¬ Belgian),
y: ¬ Swedish
}  � clash

Example 2
choice 2 continued
U–rule, choice 2.2
� S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish, 
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
y: (¬ Swedish U ¬ Belgian),
y: ¬ Belgian
}  � ok, model

Complexity - languages

� Overview available via the DL home page at 
http://dl.kr.org

Example tractable language: 
A, T,⊥ , ¬A, C ∩ D, ∀R.C, ≥ n R,  ≤ n R 

Reasons for intractability: 
choices, e.g. C U D
exponential size models, 

e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps R=S



11

Systems

Late 

1980s

Early 

1990s

Mid 

1990s

Late 

1990s

undecidable

ExpTime

PSpace

NP

PTime

KL-ONE

NIKL

CLASSIC

Loom

CRACK, KRIS

FaCT,   DLP, RACER

Investigation

Of complexity 

starts

Systems

� Overview available via the DL home page 
at http://dl.kr.org

� Current systems include: CEL, Cerebra 
Enginer, FaCT++, fuzzyDL, HermiT, 
KAON2, MSPASS, Pellet, QuOnto, 
RacerPro, SHER

Extensions

� Time

� Defaults
� Part-of
� Knowledge and belief

� Uncertainty (fuzzy, probabilistic)

OWL

� OWL-Lite, OWL-DL, OWL-Full: increasing 
expressivity

� A legal OWL-Lite ontology is a legal OWL-DL 
ontology is a legal OWL-Full ontology

� OWL-DL: expressive description logic, decidable
� XML-based
� RDF-based (OWL-Full is extension of RDF, OWL-

Lite and OWL-DL are extensions of a restriction of 
RDF)
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OWL-Lite

� Class, subClassOf, equivalentClass
� intersectionOf (only named classes and restrictions)
� Property, subPropertyOf, equivalentProperty
� domain, range (global restrictions)
� inverseOf, TransitiveProperty (*), SymmetricProperty, 

FunctionalProperty, InverseFunctionalProperty
� allValuesFrom, someValuesFrom (local restrictions)
� minCardinality, maxCardinality (only 0/1)
� Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

� Type separation (class cannot also be individual or property, property 
cannot be also class or individual), Separation between DatatypeProperties 
and ObjectProperties

� Class –complex classes, subClassOf, equivalentClass, disjointWith
� intersectionOf, unionOf, complementOf
� Property, subPropertyOf, equivalentProperty
� domain, range (global restrictions)
� inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, 

InverseFunctionalProperty
� allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue
� minCardinality, maxCardinality
� Individual, sameAs, differentFrom, AllDifferent

(*) restricted
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