
8/24/2010

1

June 17, 2009 1

Advanced databases and data models:

Theme1: Semi structured data

Lena Strömbäck

Internet

What is the problem?

• The user’s effort is not enough for the task

• The data describes complex real world objects

• The data is not easily human interpretable

• There is a need for integration and comparison of data

In this course:

• What are the particular requirements for storing data on
the web?

• Why are traditional databases not enough?

• Explore technologies for datamanagement on the web.
• Six themes

– Semi structured data

– Querying semistructured data

– Efficient storage for XML

– Object oriented data management

– Semantic web: Ontologies and OWL

– Data integration for the web

8/24/2010

2

Personell and Course Information:

Available at: www.ida.liu.se/~TDDD43

Today´s lecture

Introduction to semi-structured data

Technologies
XML/RDF

Defining the data model

Data model vs. Data guides
Technologies

DTD/XML Schema/RDF Schema

Data modeling in XML
Other DB models

Semi-structured data

Data is not just text, but is not as well-structured as data
in databases

Occurs often in web databanks

Occurs often in integration of databanks

Semi-structured data - properties

irregular structure

implicit structure

partial structure

8/24/2010

3

Semi-structured data - model

network of nodes

object model (oid)

OEM (Object Exchange Model)

Graph

Nodes: objects

oid

atomic or complex

- atoms: integer, string, gif, html, …

- value of a complex object is a set of

object references (label, oid)

Edges have labels

OEM is used by a number of systems (ex. Lorel)

OEM example

12 Guide

19 35 54 77

17 13 14

gourmet Chef Chu

44 15 16

El Camino Real Palo Alto 92310

18 23 2566 55 79 80

Vietnamese Saigon Mountain
View

Menlo Park cheap fast food Sandra

92310

restaurant restaurant cafe

nearby

nearby

nearby

category name address

street city zipcode

zipcode

category name address address price price category name

Restaurant Guide Represent the relations below using the OEM data model.

Exercise 1

r_id name

r1 Hamlet
r2 Normandie
r3 McDonald's

c_id name
c1 Linkoping
c2 Norkoping

r_id c_id street
r1 c1 Storgatan
r2 c1 St.Larsgatan
r3 c2 Kungsgatan

Restaurants
Cities

Restaurants&Cities

8/24/2010

4

Technologies: XML and RDF

Why not relational databases?

Technologies:

XML

RDF

Definition of datamodel:

DTD
XMLschema

RDFSchema

Semantic models: Ontoligies and OWL later in the course.

Example

Relational
representation

Compartment

Id Name

Blood Inblood

Cell Musclecell

Species

Id Name Compartment

Sug1 Sugar Blood

Ins Insulin Blood

Sug2 Suga Cell

En Energy Cell

Reaction

Id Name

Tocell Sugartocell

Move Makemovement

Reactant

Reaction Species

ToCell Sug1

ToCell Ins

Move Sug2

Product

Reaction Species

ToCell Sug2

Move En

Relational model - drawbacks

• Far from semi-structured proposal
• Not suitable for descibing tree structure

• Too general or many tables

• Static – all attributes typed

• All data entries atomic – in principle

8/24/2010

5

XML representation

•Ordered tree
Similar to semi-structured proposal

•Element vs. Attribute

•Extensible
New kinds of data can be integrated

•Flexible
Easy to mix different kinds of data

<?xml version="1.0" encoding="UTF-8"?>
<minimodel name="sugartransport"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="minimodel.xsd">
<listOfCompartments>

<compartment id="blood" name="inblood" />
<compartment id="cell" name="musclecell" />

</listOfCompartments>
<listOfSpecies>

<species id="sug1" name="sugar" compartment="blood" />
<species id="ins" name="insulin" compartment ="blood"/>
<species id="sug2" name="sugar" compartment ="cell"/>
<species id="en" name="energy" compartment ="cell"/>

</listOfSpecies>
<listOfReactions>

<reaction id="tocell" name="sugartocell">
<listOfReactants>

<speciesReference species="sug1"/>
<speciesReference species="ins"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="sug2"/>
</listOfProducts>

</reaction>
<reaction id="move" name="makemovement">

<listOfReactants>
<speciesReference species="sug2"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="en"/>
</listOfProducts>

</reaction>
</listOfReactions>

</minimodel>

RDF: Resource Description Framework

Framework for describing resources on the web

Designed to be read and understood by computers

Not designed for being displayed to people

Written in XML

RDF is a W3C Recommendation

RDF: Resource Description Framework

<?xml version="1.0" encoding="UTF-8"?>

<species metaid="_506372" id="E1" name="MAPKKK activator"
compartment="compartment"
initialConcentration="3e-05">
<annotation>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"
xmlns:bqmodel="http://biomodels.net/model-qualifiers/">
<rdf:Description rdf:about="#_506372">
<bqbiol:isVersionOf>

<rdf:Bag>
<rdf:li rdf:resource="http://www.ebi.ac.uk/interpro/#IPR003577"/>

</rdf:Bag>
</bqbiol:isVersionOf>

</rdf:Description>
</rdf:RDF>

</annotation>

</species>

RDF Data model: Triples

A Resource is anything that can have a URI, such as
our molecule "_506372 "

A Property is a Resource that has a name, such as
“isVersionof"

A Property value is the value of a Property, such as

" IPR003577 "

(note that a property value can be another resource)

Suitable for semi-structured data.

8/24/2010

6

Part of our example model as RDF triples

1 blood #name "in blood"

3 sug1 #name "sugar in blood"

4 sug1 #compartment blood

11 st #name "sugartransport"

12 genid:A71987 #type Bag

13 st #reactants genid:A71987

14 genid:A71987 1 sug1

15 genid:A71987 2 ins

16 genid:A71988 #type #Bag

17 st #products genid:A7 1988

18 genid:A71988 1 sug2

Semi-structured data - properties

Data model/guide changes commonly

Object can change type/class

The distinction between data and schema is blurred

Semi-structured data –
data models vs data guides

a posteriori ’data guide’ versus a priori schema

Data model/data guide could be supportive or a hinder
while querying

Definition of data model for XML – DTD or XML Schema

Data model for RDF – RDF schema

Data Guides

A structural summary over a databank that is used as
a dynamic schema

Is used in query formulation and optimization

Is often created a posteriori

Properties:
concise
accurate
convenient

8/24/2010

7

Defining the XML model: DTD

A Document Type Definition (DTD) defines the legal building
blocks of an XML document.

It defines the document structure with a list of legal elements
and attributes.

In the DTD all XML documents are one of:

Elements

Attributes
Entities

PCDATA

CDATA

Defining the XML model: XML Schema

The XML Schema defines the legal building blocks of an
XML document.

An XML Schema:
defines elements

defines attributes

defines which elements are child elements
defines the order of child elements

defines the number of child elements

defines data types for elements and attributes
defines default and fixed values for elements and
attributes

XML Schema vs. DTD

XML Schemas are extensible to future additions

extend element definitions

XML Schemas are richer and more powerful than DTDs

XML Schemas are written in XML

XML Schemas support data types

XML Schemas support namespaces

RDF Schema –
define relations between objects

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description rdf:ID="species">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdf:Description>

<rdf:Description rdf:ID="protein">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:resource="#species"/>

</rdf:Description>

</rdf:RDF>

8/24/2010

8

Data modelling with XML

• Element s vs. Attributes

• Keys
• Many to many relations

Lab exercises:

Construct a data model in relational model and XML.

Answer questions, compare and write report.

Tools: Oxygen XML and MS Server

NoSQL – non relational databases

Examples:
Document store: CouchDB, ApacheDB
XML database: Marklogic Server, eXist

Graph: AllegroGraph, Neo4j

Object database: GemStone/S
Key/value store on disk: BigTable

Eventually consistent key-value store: Cassandra

Ordered Key-value store: Berkeley DB
Tabular: BigTable, HyperTable, Hbase

Tuple store: Apache River

Neo

Neo4j is a graph database. It is an embedded,
disk-based, fully transactional Java persistence
engine that stores data structured in graphs
rather than in tables.

Linköping related company.

Interesting for semi-structured data.

8/24/2010

9

The Neo Persistence Engine

Primitives:
nodes,

relationships

properties

Features
ACID transaction

Durable persistence

Transaction recovery

Implementation
Java

Representing XML in Neo:
Basic solution

Representing XML in Neo:
Customizations

Yahoo!: A web of concepts

• Concept: Things of interest to the users of the web.

• Concept represented as:
• Id

• meta-data (attributes with values)

• Goals: Concept centric data organization

• What to support:
• Nested structure?

• Provenance, versions uncertainty?

• Relations between concepts?

8/24/2010

10

What do we search for?

Individual concepts: 60-70% Sets of concepts 10-20%

Attributes of a concept:
Rather small correlation (restaurant menu 3%)

Aggreation: 59% of users click on more than one URL.

Concepts vs. Browsing: Follow paths of how user browsed.
Easy to find patterns of what users commonly visit.

