
 Version 2017-10-27 14:54:00

Lab exercises for theme 5 – Ontology Alignment

Aim

After completing this lab you should be familiar with a tool for performing ontology alignments,

the Alignment API http://alignapi.gforge.inria.fr/. In the first part of the lab you will go through a

tutorial where the Alignment API is used as a tool by invoking it from the command line. In the

second part of the lab you will extend the Alignment API itself by working with its source (which is

written in Java) in an Eclipse project. We will be using version 4.0 of the Alignment API.

1. Alignment API tutorial

The first task is to go through the Alignment API tutorial that can be found at:

http://alignapi.gforge.inria.fr/tutorial/tutorial1/index.html

Before you start you need to do the following preparations (and you should ignore the

preparation step in the tutorial).

The command-line environment we will use in the tutorial is Windows PowerShell

(Accessories -> Windows PowerShell). A tip that might be useful when following the

instructions below is how to paste into a PowerShell window: that's done using the right

mouse button. When you start PowerShell, its current directory should be in your home

directory. If it's not, you can always change to your home directory with the following

command:

cd ~

When you've made sure you're standing in your home directory, it's time to create a new

directory named aligntut for holding files related to the tutorial:

mkdir aligntut

(this is a local folder which can be accessed in file explorer by typing c:\users\%username%)

In that directory, create a directory called results:

mkdir aligntut\results

In the tutorial linked above, in the section labeled The Data, download the two OWL-files,

myOnto.owl and edu.mit.visus.bibtex.owl and place them in the aligntut directory. Make sure

you download the RDF/XML versions that have the .owl-extension and not the HTML

versions. You might have to right-click the links and select something like ”Save Target

As...” to prevent the browser from rendering the OWL-files. This depends on the browser

used and its settings. If you are using Internet Explorer, make sure you save the files with

their original .owl extension and not .xml. Apart from the two OWL-files, you also need the

file data.xml which you can find a link to in the section named Output (almost at the end of

the section) and, finally, you need the file refalign.rdf which you can find under the section

named Evaluating (in the beginning of the section).

To be able to follow the tutorial, some paths and such need to be set-up. We would have

liked to provide a PowerShell script that could help with this, but due to security restrictions

it's not possible to execute PowerShell scripts on the lab computers.

java.exe should already be in the path on the lab computers (which you can confirm by

issuing the command java -version), but if it isn't, you must add it to the path with the

following command (adapt the command if needed according to the java version and

location):

$env:Path += ”;C:\Program Files\Java\jre8\bin"

The next step is to create a shell variable pointing out procalign:

$procalign = ”C:\Program Files (x86)\align-4.0\lib\procalign.jar”

http://alignapi.gforge.inria.fr/
http://alignapi.gforge.inria.fr/tutorial/tutorial1/index.html

 Version 2017-10-27 14:54:00

We also need a variable that holds the absolute path to the tutorial directory and that path

must not contain any backslashes. First we need to make sure you are standing in the

aligntut directory that you created in your home directory earlier. To change to that

directory, no matter what the current directory is, you can issue the following command:

cd ~\aligntut

Now we can create the variable we need:

$cwd = $pwd.toString().Replace('\', '/')

If you did that correctly then the variable $cwd should now contain the absolute path to the

aligntut directory (which should be directly under your home directory) and all backslashes

should have been replaced with forward slashes. You can check the value of a variable by

simply typing its name, like $cwd.

Now we are ready to start the actual tutorial. The commands we will enter will differ slightly

from what is shown in the tutorial, so therefore we will show how to write the first

command and from that you should be able to do the rest:

java -jar $procalign file:///$cwd/myOnto.owl file:///$cwd/edu.mit.visus.bibtex.owl

Notice that we use three forward slashes in the URI:s passed to procalign instead of two that

is used in the tutorial. Note also the paths used in the examples and change them where is

needed.

Do the following sections: Matching, Manipulating, Output, and Evaluating, but skip the

last section Embedding. In parts of sections Manipulating, Output and Evaluating a package

fr.inrialpes.exmo.align.cli is needed. This package is not available in the

version used for the labs, so change it to fr.inrialpes.exmo.align.util .

In some sections there are parts marked as More Work that you can do if you want, but skip

any parts labeled Advanced that involves WordNet since that's not installed on the lab

computers.

In the last step in the Output section you have to add the directory where xsltproc is located

to the path for the shell to find it and you do that by issuing the following command:

$env:Path += ”;c:\Program Files\Oxygen XML Editor 18”

You don't have to demonstrate or write a report about the tutorial, but please go through it

carefully anyway.

See the next page for part two of this lab.

 Version 2017-10-27 14:54:00

2. Alignment API matcher

In this part of the lab you will extend the Alignment API with your own matcher. You will

also write a test program for it. We have prepared an Eclipse project named Theme 5

Alignment API

http://www.ida.liu.se/~TDDD43/themes/theme4labmaterial/theme_5_alignment_api.zip for

you. Download it and import into Eclipse the same way you imported the Jena project in the

previous theme.

The matcher you will implement belongs to the family of string distance matchers, this one

works on substrings. It calculates the similarity between two strings. Notice that the

matchers return similarity values. However the algorithms calculate distances, so proper

actions are needed to convert the distances into similarities.

Here's how a string distance algorithm should work:

 If the strings are equal, return 0 (yes, 0, because we are calculating distance not

equality).

 If the strings are not equal, create two sets, one for each string. The sets should contain

the 1-, 2-, and 3-grams for its respective string. When both sets have been constructed

you must determine their intersection. For each intersecting element add its length to a

counter, that we can call totalLength, which would contain the total length of all

intersecting elements. When you have totalLength, you can calculate:

abs(1.0 – (totalLength / ((s1.length() + s2.length()) * 2)))

Here s1 and s2 denote the two strings being compared. The formula above is written in

pseudo code, in the Java version you want to make sure that you cast any integers to

doubles where appropriate.

You must figure out to which class your matcher belongs. You can create helper methods for

the matcher if you like, just make sure they are only visible inside the class.

For rendering the results you should use an HTMLRendererVisitor.

For ideas how the test program can be constructed you can look here

http://alignapi.gforge.inria.fr/tutorial/tutorial2/index.html.

Don't worry about writing a fast implementation of the matcher, but do make sure you write

clean and readable code.

Also, when performing alignments, it's important to understand that aligning A and B is not

the same as aligning B and A. Say you start with the unmodified university ontology from

the previous lab and align that with your slightly extended version. In this case, every class

and instance from the unmodified university ontology can find a perfect match in your

extended ontology. However, if you do the alignment the other way around, there will be

objects in your extended ontology that have no perfect match in the unmodified university

ontology.

E-mail a report with all code you have written and the (rendered) HTML code of its output

when run on the same ontologies you used in the tutorial.

http://www.ida.liu.se/~TDDD43/themes/theme4labmaterial/theme_5_alignment_api.zip
http://alignapi.gforge.inria.fr/tutorial/tutorial2/index.html

