Semi-structured data

Patrick Lambrix

Department of Computer and Information Science

Linköpings universitet

Semi-structured data

- Data is not just text, but is not as wellstructured as data in databases
- Occurs often in web databanks
- Occurs often in integration of databanks

Example

Semi-structured data - properties

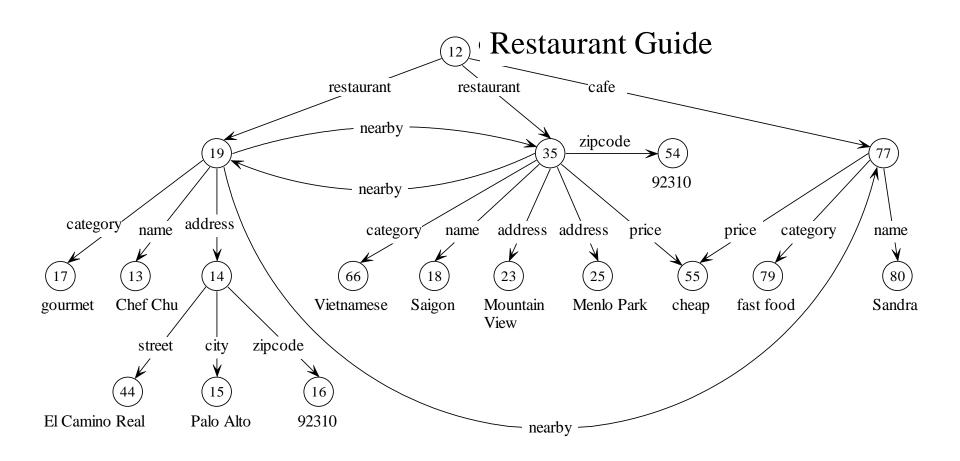
- irregular structure
- implicit structure
- partial structure
- a posteriori 'data guide' versus a priori schema
- large data guides

- It should be possible to ignore the data guide upon querying
- Data guide changes fast
- object can change type/class
- difference between data guide and data is blurred

Semi-structured data - model

- network of nodes
- object model (oid)
- query: path search in the network

OEM (Object Exchange Model)


- Graph
- Nodes: objects

oid

atomic or complex

- atoms: integer, string, gif, html, ...
- value of a complex object is a set of object references (label, oid)
- Edges have labels
- OEM is used by a number of systems (ex. Lorel)

OEM example

Lorel query language

1. Find all places to eat Vietnamese food select P from RestaurantGuide.% P where P.category grep "ietnamese"

2. Find the names and streets of all restaurants in Palo Alto

select R.name, A.street from RestaurantGuide.restaurant{R}.address A where A.city = "Palo Alto"

Lorel query language

3. Find all restaurants to eat with zipcode 92310 select RestaurantGuide.restaurant where

RestaurantGuide.restaurant(.address)?.zipcode = 92310

Wildcards and variables

- ? 0 or 1 path
- + 1 or more paths
- * 0 or more paths
- # any path
- % 0 or more chars

- object variablesselect P from Guide.% Pselect A from #.address{A}
- path variablesselect Guide.#@P.name

Data Guides

- A structural summary over a data source that is used as a dynamic schema
- Is used in query formulation and optimization
- Is often created a posteriori
- Properties:
 - concise
 - accurate
 - convenient

Data Guides - definitions

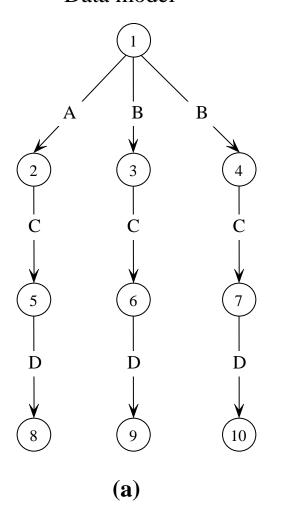
Label path: sequence of labels L1.L2....Ln

Data path: alternating sequence of labels and oid:s L1.o1.L2.o2.Ln.on

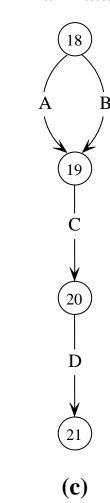
Data path d is an instance of label path l if the sequences of labels are identical in l and d.

Data Guides - definitions

A data guide for object s is an object d such that every label path of s has exact one data path instance in d, and each label path in d is a label path of s.


Data Guides

 A data source can have several data guides


Minimal data guides the smallest data guides

Data Guides - example

Data model

minimal Data Guide

Minimal Data Guides

Concise

May be hard to maintain

Example: child node for 10 with label E

Strong Data Guides

Intuitively:

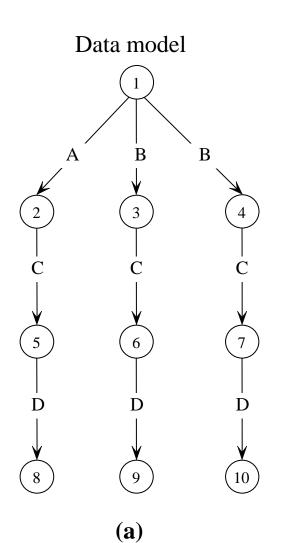
"label paths that reach the same set of objects in the data model = label paths that reach the same objects in the data guide"

Strong Data Guides - definitions

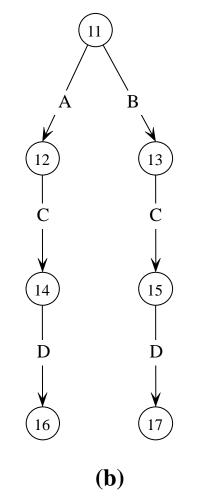
An object o can be reached from s via l if there is a data path of s that is an instance of l and that has o as last oid (L1.o1.L2.o2. ... Ln.o)

The target set for label path *l* in object *s* is the set of objects that can be reached from *s* via *l*. Notation: *T*(*s*,*l*)

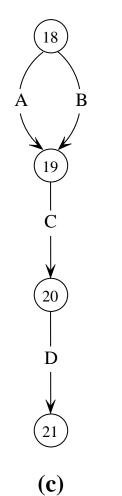
L(s,l): set of label paths of s that have the same target set in s as l.


Strong Data Guides - definitions

Definition:


d is a strong data guide for s if for all label paths l of s it holds that L(s,l) = L(d,l)

There is a 1-1-mapping between target sets in the data model and nodes in a strong data guide.


Data Guides - example

strong Data Guide

minimal Data Guide

.

Strong Data Guides - algorithm

Implementation:

- Traverse data model depth-first.
- Each time you find a new target set for label path *I*, create a new object in the data guide.

If the target set is already represented in the data guide, do not create a new object, but link to the existing object.

- Easier to maintain
- Used as path index for query optimization

Semi-structured data

exercises

Exercise 1

Represent the relations below using the OEM data model.

r_id	name	
r1	Hamlet	
r2	Normandie	
r3	McDonald's	

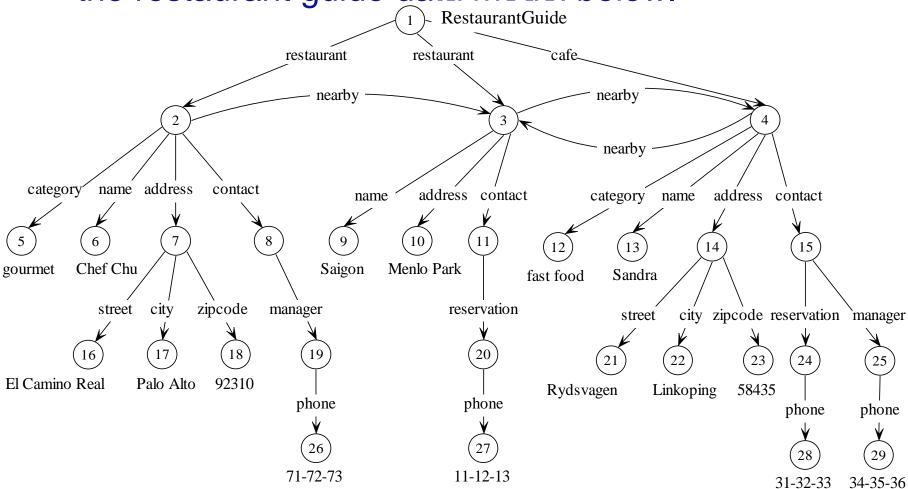
c_id name
c1 Linkoping
c2 Norkoping

Cities

Restaurants

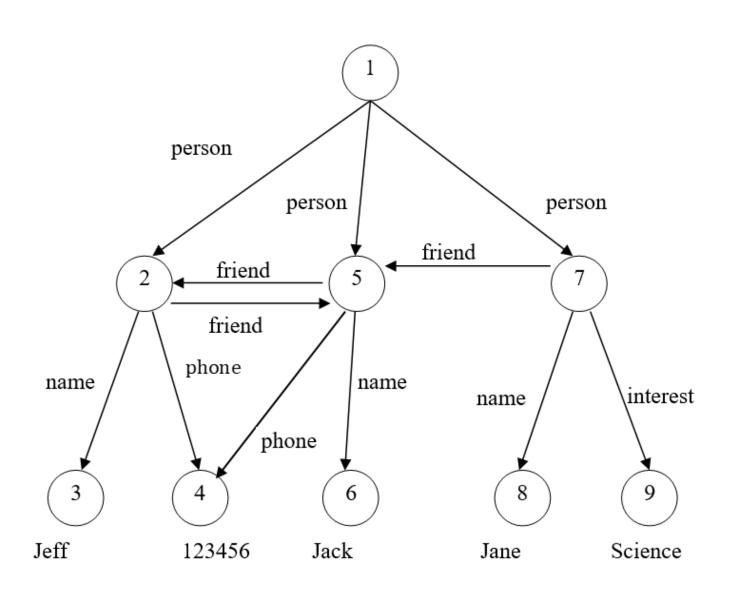
r_id	c_id	street
r1	с1	Storgatan
r2	с1	St.Larsgatan
r3	c2	Kungsgatan

Restaurants&Cities



Exercise 2

- Using the data model from the previous question, formulate the following queries using Lorel:
 - ☐ find all the restaurants that are located in Linkoping
 - find the address (city and street) of the "Hamlet" restaurant
 - □ list the restaurants by city (equivalent of GROUP BY)


Exercise 3

Draw the strong Data Guide for the restaurant guide data model below.

7

Draw a strong data guide for the data model below.

