Description logics

Description logics

- A family of knowledge representation languages
- Uses in different application areas (e.g., software management, configuration management, natural language processing, clinical information systems, information retrieval)
- Key technology for Ontologies and the Semantic Web

Ontologies, Description Logics and OWL terminology

Ontologies DL OWL

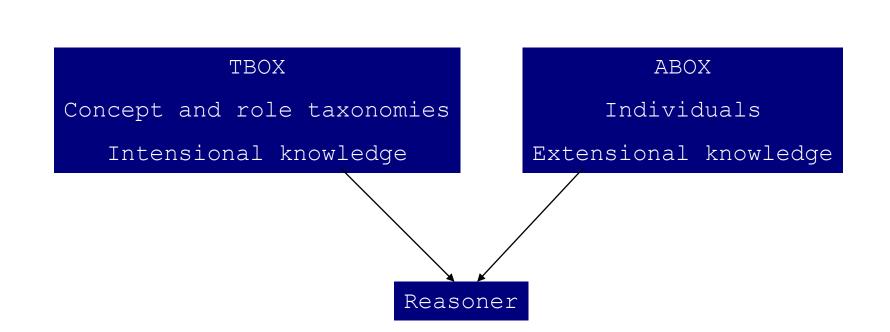
concept relation axiom instance concept class role (binary) property axiom axiom individual individual

Outline

- DL languages
 - syntax and semantics
- DL reasoning services
 - □ algorithms, complexity
- DL systems
- DLs for the web

DL SYNTAX

Tbox and Abox



AL

R atomic role, A atomic concept $C, D \rightarrow A$ | (atomic concept) T (universal concept, top) owl:thing \perp (bottom concept) owl:nothing -A (atomic negation) *owl:complementOf* owl:intersectionOf $C \cap D$ (conjunction) ∀R.C | (value restriction) owl:allValuesFrom (limited existential quantification) ∃R.T owl:someValuesFrom

 $\mathcal{A}\mathcal{L}|\mathcal{X}|$

- $C \neg C$ (concept negation) *owl:complementOf*
- \mathcal{U} C U D (disjunction)owl:unionOf \mathcal{E} $\exists \mathsf{R.C}$ (existential quantification)owl:someValuesFrom

 $\mathcal{N} \ge n R, \le n R$ (number restriction) owl:maxCardinality, owl:minCardinality $\mathcal{Q} \ge n R.C, \le n R.C$ (qualified number restriction) owl:maxQualifiedCardinality,owl:minQualifiedCardinality

Concepts and relations

Team ← Concept/class (Team) ¬Team (not Team) Relation/role/property Team ∩ ≥ 10 hasMember (Team and at least 10 members)

Team ∩ ≤ 10 hasMember (Team and at most 10 members)

Concepts and relations

Team ∩ ∀ hasMember.Football-player (Team and all members are football players)

Team ∩ ∃ hasMember.Football-player (Team and there is a member that is a football player)

$\mathcal{AL}[X]$

- $\mathcal{R} \quad \mathsf{R} \cap \mathsf{S}$ (role conjunction)
- *I* **R** (inverse roles)
- \mathcal{H} (role hierarchies)
- \mathcal{F} $u_1 = u_2, u_1 \neq u_2$ (feature (dis)agreements)

S[X]

S ALC + transitive roles

SHIQ ALC + transitive roles

+ role hierarchies
+ inverse roles
+ number restrictions

Tbox - Terminological axioms

■ C = D (R = S)

owl:equivalentClass / owl:equivalentProperty

C ⊆ D (R ⊆ S) rdfs:subClassOf / rdfs:subPropertyOf Football-player ⊆ Athlete (Every football player is an athlete)

(disjoint C D) owl:disjointWith

Tbox

- An equality whose left-hand side is an atomic concept is a definition.
- A finite set of definitions T is a Tbox (or terminology) if no symbolic name is defined more than once.

Example

Team \subseteq ≥ 2 hasMember Large-Team = Team \cap ≥ 10 hasMember Sports-team = Team \cap ∀ hasMember.Athlete Football-Team = Team \cap ≥ 11 hasMember \cap ∀ hasMember.Football-player Football-player \subseteq Athlete

DL as sublanguage of FOPL

Team(this) ^ ($\exists x_1,...,x_{11}$: hasMember(this,x1) ^ ... ^ hasMember(this,x11) ^ $x_1 \neq x_2$ ^ ... ^ $x_{10} \neq x_{11}$)

Λ

 $(\forall x: hasMember(this,x) \rightarrow Football-player(x))$

Abox

Assertions about individuals: C(a) R(a,b)

Football-Team(Real_Madrid) hasMember(Real_Madrid, Eden_Hazard)

Knowledge base

A knowledge base is a tuple < *T*, *A* > where *T* is a Tbox and *A* is an Abox.

Example

Team \subseteq ≥ 2 hasMember Large-Team = Team \cap ≥ 10 hasMember Sports-team = Team \cap ∀ hasMember.Athlete Football-Team = Team \cap ≥ 11 hasMember \cap ∀ hasMember.Football-player Football-player \subseteq Athlete

Football-Team(Real_Madrid) hasMember(Real_Madrid, Eden_Hazard)

Example - OWL

<Declaration> <ObjectProperty IRI="#hasmember"/> </Declaration>

<Declaration> <Class IRI="#football-player"/> </Declaration> <Declaration> <Class IRI="#athlete"/> </Declaration> <Declaration> <Class IRI="#team"/> </Declaration> <Declaration> <Class IRI="#large-team"/> </Declaration> <Declaration> <Class IRI="#sports-team"/> </Declaration> <Declaration> <Class IRI="#football-team"/> </Declaration>

<Declaration> <NamedIndividual IRI="#Real_Madrid"/> </Declaration> <Declaration> <NamedIndividual IRI="#Eden_Hazard"/> </Declaration>

Example - OWL

Large-Team = Team $\cap \ge 10$ hasMember

<EquivalentClasses>

<Class IRI="#large-team"/>

<ObjectIntersectionOf>

<Class IRI="#team"/>

<ObjectMinCardinality cardinality="10">

<ObjectProperty IRI="#hasmember"/>

</ObjectMinCardinality>

</ObjectIntersectionOf>

</EquivalentClasses>

Example - OWL

Football-Team = Team $\cap \ge 11$ hasMember $\cap \forall$ hasMember.Football-player

<EquivalentClasses>

<Class IRI="#football-team"/>

<ObjectIntersectionOf>

<Class IRI="#team"/>

<ObjectAllValuesFrom>

<ObjectProperty IRI="#hasmember"/>

<Class IRI="#football-player"/>

</ObjectAllValuesFrom>

<ObjectMinCardinality cardinality="11">

<ObjectProperty IRI="#hasmember"/>

</ObjectMinCardinality>

</ObjectIntersectionOf>

</EquivalentClasses>

DL SEMANTICS

AL (Semantics)

An interpretation I consists of a non-empty set $\Delta^{\mathcal{J}}$ (the domain of the interpretation) and an interpretation function \mathcal{I} which assigns to every atomic concept A a set $A^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}}$ and to every atomic role R a binary relation $\mathbb{R}^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}}$.

The interpretation function is extended to concept definitions using inductive definitions.

AL (Semantics)

- $C,D \rightarrow A$ | (atomic concept)
 - T | (universal concept)
 - \perp | (bottom concept) $\perp^{\mathcal{I}} = \emptyset$
 - $\neg A \mid \text{(atomic negation)} \quad (\neg A)^{\mathcal{I}} = \Delta^{\mathcal{I}} \land A^{\mathcal{I}}$
 - $C \cap D$ | (conjunction)
 - $\forall R.C \mid$ (value restriction)

 $T^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $\perp^{\mathcal{I}} = \emptyset$ $(\neg \mathsf{A})^{\mathcal{I}} = \Delta^{\mathcal{I}} \land \mathsf{A}^{\mathcal{I}}$ $(\mathsf{C} \cap \mathsf{D})^{\mathcal{I}} = \mathsf{C}^{\mathcal{I}} \cap \mathsf{D}^{\mathcal{I}}$ $(\forall \mathsf{R}.\mathsf{C})^{\mathcal{I}} =$

 $\{a \in \Delta^{\mathcal{J}} | \forall b.(a,b) \in \mathsf{R}^{\mathcal{J}} \rightarrow b \in \mathsf{C}^{\mathcal{J}} \}$

 $\exists R.T \mid \text{(limited existential } (\exists R.T)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists b.(a,b) \in R^{\mathcal{I}}\}\$ quantification)

$(\exists \mathsf{R}.\mathsf{C})^{\mathcal{I}} = \{ \mathsf{a} \in \Delta^{\mathcal{I}} \mid \exists \mathsf{b} \in \Delta^{\mathcal{I}} : (\mathsf{a},\mathsf{b}) \in \mathsf{R}^{\mathcal{I}} \land \mathsf{b} \in \mathsf{C}^{\mathcal{I}} \}$

- $(\leq n R)^{\mathcal{J}} = \{a \in \Delta^{\mathcal{J}} \mid \# \{b \in \Delta^{\mathcal{J}} \mid (a,b) \in R^{\mathcal{J}}\} \leq n \}$
- $(\geq n R)^{\mathcal{J}} = \{a \in \Delta^{\mathcal{J}} \mid \# \{b \in \Delta^{\mathcal{J}} \mid (a,b) \in R^{\mathcal{J}}\} \geq n \}$
- $(\mathsf{C} \mathsf{U} \mathsf{D})^{\mathcal{I}} = \mathsf{C}^{\mathcal{I}} \mathsf{U} \mathsf{D}^{\mathcal{I}}$
- $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
- ALC (Semantics)

Semantics

Individual i $\mathbf{i}^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Unique Name Assumption: if $i_1 \neq i_2$ then $i_1^{\mathcal{I}} \neq i_2^{\mathcal{I}}$

Semantics

An interpretation $J^{\mathcal{I}}$ is a model for a terminology T iff

 $C^{\mathcal{I}} = D^{\mathcal{I}}$ for all C = D in T

 $C^{\mathcal{J}} \subseteq D^{\mathcal{J}}$ for all a $C \subseteq D$ in T

 $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ for all (disjoint C D) in T

Semantics

An interpretation $J^{\mathcal{I}}$ is a model for a knowledge base < T, A > iff

.^{*J*} is a model for *T* $a^{\mathcal{J}} \in C^{\mathcal{J}}$ for all C(a) in *A* < $a^{\mathcal{J}}$, $b^{\mathcal{J}}$ > ∈ R^{*J*} for all R(a,b) in *A*

Bird = Animal $\cap \forall$ Skin.Feather

 $\Delta^{\mathcal{I}} = \{ \text{tweety, goofy, fea1, fur1} \}$ Animal^{\mathcal{I}} = \{ tweety, goofy \} Feather^{\mathcal{I}} = \{ fea1 \} Skin^{\mathcal{I}} = \{ <tweety, fea1 >, <goofy, fur1 > \}

 \rightarrow Bird^{*J*} = {tweety}

Exercise

Create an interpretation for:

Team \subseteq ≥ 2 hasMember Large-Team = Team \cap ≥ 10 hasMember Sports-team = Team \cap ∀ hasMember.Athlete Football-Team = Team \cap ≥ 11 hasMember \cap ∀ hasMember.Football-player Football-player \subseteq Athlete

Football-Team(Real_Madrid) hasMember(Real_Madrid, Eden_Hazard)

QuietPerson = Person $\cap \forall$ Friend.QuietPerson (A = F(A))

 $\Delta^{\mathcal{I}} = \{\text{john, sue, andrea, bill}\}$ Person $^{\mathcal{I}} = \{\text{john, sue, andrea, bill}\}$ Friend $^{\mathcal{I}} = \{<\text{john, sue}, <\text{andrea, bill}, <\text{bill, bill}\}$

→ QuietPerson^{\mathcal{I}} ={john, sue} → QuietPerson^{\mathcal{I}} ={john, sue, andrea, bill}

- Descriptive semantics: A = F(A) is a constraint stating that A has to be some solution for the equation.
- Not appropriate for defining concepts
- Necessary and sufficient conditions for concepts

Human = Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Human

Least fixpoint semantics: A = F(A) specifies that A is to be interpreted as the smallest solution (if it exists) for the equation.

Appropriate for inductively defining concepts

 $DG = EmptyDG \ U \ Non-Empty-DG$ $Non-Empty-DG = Node \ \bigcirc \ \forall \ Arc.Non-Empty-DG$

Human = Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Human \rightarrow Human = \bot

Greatest fixpoint semantics: A = F(A) specifies that A is to be interpreted as the greatest solution (if it exists) for the equation.

Appropriate for defining concepts whose individuals have circularly repeating structure

$FoB = Blond \cap \exists Child.FoB$

Human = Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Human Horse = Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Horse \rightarrow Human = Horse

Open world vs closed world semantics

Databases: closed world reasoning

database instance represents one interpretation

→ absence of information interpreted as negative information

"complete information"

query evaluation is finite model checking

DL: open world reasoning

Abox represents many interpretations (its models)

 \rightarrow absence of information is lack of information

"incomplete information"

query evaluation is logical reasoning

Open world vs closed world semantics

hasChild(Jocasta, Oedipus) hasChild(Jocasta, Polyneikes) hasChild(Oedipus, Polyneikes) hasChild(Polyneikes, Thersandros) patricide(Oedipus) -- patricide(Thersandros) *(not represented in DB)*

Does it follow from the Abox that \exists hasChild.(patricide $\cap \exists$ hasChild. \neg patricide)(Jocasta) ?

DL REASONING

Teams have at least two members, while large teams have at least 10 members. Sports teams are teams which have only athletes as members. A football team is a team which has at least 11 members and all the members are football players. Football players are athletes. Real Madrid is a football team that has Eden Hazard as a member.

Team \subseteq ≥ 2 hasMember Large-Team = Team \cap ≥ 10 hasMember Sports-team = Team \cap ∀ hasMember.Athlete Football-Team = Team \cap ≥ 11 hasMember \cap ∀ hasMember.Football-player Football-player \subseteq Athlete

Football-Team(Real_Madrid) hasMember(Real_Madrid, Eden_Hazard)

Every team has at least 2 members Every large team is a team and has at least 10 members Every sports team is a team and has only athletes as members Every football team is a team and has at least 11 members and has only football players as members Every football player is an athlete

Every team has at least 2 members Every large team is a team and has at least 10 members Every sports team is a team and has only athletes as members Every football team is a team and has at least 11 members and has only football players as members Every football player is an athlete

Reasoning:

Every football team is a large team Every football team is a sports team

Real Madrid is an instance of football team

Real Madrid has member Eden Hazard

Reasoning:

Real Madrid is an instance of football team Real Madrid is an instance of large team Real Madrid is an instance of team Real Madrid is an instance of sports team Real Madrid has at least 11 members All members in Real Madrid are football players All members in Real Madrid are athletes

Real Madrid has member Eden Hazard

Eden Hazard is an instance of football player Eden Hazard is an instance of athlete

- Satisfiability of concept
- Subsumption between concepts
- Equivalence between concepts
- Disjointness of concepts
- Classification
- Instance checking
- Realization
- Retrieval
- Knowledge base consistency

- Satisfiability of concept
 - \Box C is satisfiable w.r.t. \mathcal{T} if there is a model I of \mathcal{T} such that C^{I} is not empty.
- Subsumption between concepts □ C is subsumed by D w.r.t. \mathcal{T} if $C^{I} \subseteq D^{I}$ for every model I of \mathcal{T} .
- Equivalence between concepts
 □ C is equivalent to D w.r.t. T if C^I = D^I for every model I of T.
- Disjointness of concepts
 □ C and D are disjoint w.r.t. T´ if C^g∩ D^g = Ø for every model I of T.

Reduction to subsumption

- \square C is unsatisfiable iff C is subsumed by \bot
- C and D are equivalent iff C is subsumed by D and D is subsumed by C
- $\square\, C$ and D are disjoint iff C \cap D is subsumed by \bot

The statements also hold w.r.t. a Tbox.

Reduction to unsatisfiability

 $\Box\,C$ is subsumed by D iff C $\cap\,\neg D$ is unsatisfiable

C and D are equivalent iff

both (C $\cap \neg D)$ and (D $\cap \neg C)$ are unsatisfiable

 $\Box\,C$ and D are disjoint iff C \cap D is unsatisfiable

The statements also hold w.r.t. a Tbox.

Tableau algorithms

To prove that C subsumes D:

- □ If C subsumes D, then it is impossible for an individual to belong to D but not to C.
- Idea: Create an individual that belongs to D and not to C and see if it causes a contradiction.
- If always a contradiction (clash) then subsumption is proven. Otherwise, we have found a model that contradicts the subsumption.

Tableau algorithms

Based on constraint systems.

 $\Box \, S = \{ \, x: \neg C \, \cap \, D \, \}$

- Add constraints according to a set of propagation rules
- □ Until clash or no constraint is applicable

Tableau algorithms – de Morgan rules $\neg \neg C \rightarrow C$ \neg (A \cap B) \rightarrow \neg A U \neg B \neg (A U B) \rightarrow \neg A \cap \neg B \neg (\forall R.C) \rightarrow \exists R.(\neg C) \neg (\exists R.C) \rightarrow \forall R.(\neg C)

Tableau algorithms – constraint propagation rules $S \rightarrow \{x:C_1, x:C_2\} \cup S$

if x: $C_1 \cap C_2$ in S and either x: C_1 or x: C_2 is not in S

■ S \rightarrow_{\cup} {x:D} U S

if x: $C_1 \cup C_2$ in S and neither x: C_1 or x: C_2 is in S, and D = C_1 or D = C_2

Tableau algorithms – constraint propagation rules S → {y:C} U S

if x: \forall R.C in S and xRy in S and y:C is not in S

■ S \rightarrow \exists {xRy, y:C} U S

if x: \exists R.C in S and y is a new variable and there is no z such that both xRz and z:C are in S

- SBT => ST?
- S = { x:
 - \neg (Tournament $\cap \exists$ hasParticipant.Swedish)
 - \cap (Tournament
 - $\cap \exists hasParticipant.(Swedish \cap Belgian))$

■ S = { x: (¬Tournament $U \forall$ hasParticipant. \neg Swedish) \cap (Tournament $\cap \exists$ hasParticipant.(Swedish \cap Belgian))

∩-rule :
■ S = {
x: (¬Tournament
U ∀ hasParticipant.¬ Swedish)
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x: ¬Tournament
U ∀ hasParticipant.¬ Swedish,
x: Tournament,
x: \exists hasParticipant.(Swedish \cap Belgian)
}

- ∃ -rule:
- S = {
 - x: (\neg Tournament U \forall hasParticipant. \neg Swedish)
 - \cap (Tournament
 - $\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
 - x: ¬Tournament
 - $U \forall$ hasParticipant.¬ Swedish,
 - x: Tournament,
 - x: \exists hasParticipant.(Swedish \cap Belgian),

x hasParticipant y, y: (Swedish \cap Belgian)

\cap -rule:

S= {x: (¬Tournament U ∀ hasParticipant.¬ Swedish)
 ∩ (Tournament

- $\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
- x: \neg Tournament U \forall hasParticipant. \neg Swedish,
- x: Tournament,
- x: \exists hasParticipant.(Swedish \cap Belgian),

x hasParticipant y, y: (Swedish \cap Belgian),

y: Swedish, y: Belgian }

U-rule, choice 1

- S = { x: (¬Tournament U ∀ hasParticipant.¬ Swedish) ∩ (Tournament
 - \cap \exists hasParticipant.(Swedish \cap Belgian)),
 - x: \neg Tournament U \forall hasParticipant. \neg Swedish,
 - x: Tournament,
 - x: \exists hasParticipant.(Swedish \cap Belgian),
 - x hasParticipant y, y: (Swedish \cap Belgian),
 - y: Swedish, y: Belgian,

```
x: ¬Tournament
```

 \rightarrow clash

U-rule, choice 2

- S = {x: (¬Tournament U ∀ hasParticipant.¬ Swedish)
 ∩ (Tournament
 - \cap \exists hasParticipant.(Swedish \cap Belgian)),
 - x: \neg Tournament U \forall hasParticipant. \neg Swedish,
 - x: Tournament,
 - x: \exists hasParticipant.(Swedish \cap Belgian),
 - x hasParticipant y, y: (Swedish \cap Belgian),
 - y: Swedish, y: Belgian,
 - **x**: ∀ hasParticipant.¬ Swedish

- choice 2 continued \forall -rule
- S = {
- x: (¬Tournament U ∀ hasParticipant.¬ Swedish)
 - \cap (Tournament $\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
 - x: \neg Tournament U \forall hasParticipant. \neg Swedish,
 - x: Tournament,
 - x: \exists hasParticipant.(Swedish \cap Belgian),
 - x hasParticipant y, y: (Swedish \cap Belgian),
 - y: Swedish, y: Belgian,
 - x: \forall hasParticipant. \neg Swedish,

```
y: ¬ Swedish
```

\rightarrow clash

- ST => SBT?
- S = { x:
 - (Tournament
 - $\cap \exists$ hasParticipant.(Swedish \cap Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish)

 S = { x: (¬Tournament
 U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
 ∩ (Tournament ∩ ∃ hasParticipant.Swedish)
 }

\cap -rule

- S = {
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
 - x: Tournament,
 - x: 3 hasParticipant.Swedish

}

- ∃ -rule
- S = {
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
 - x: Tournament,
 - x: ∃ hasParticipant.Swedish,
 - x hasParticipant y, y: Swedish

]

- U –rule, choice 1
- S = {
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
 - x: Tournament,
 - x: ∃ hasParticipant.Swedish,
 - x hasParticipant y, y: Swedish,
 - x: ¬Tournament

```
\rightarrow clash
```

- U -- rule, choice 2
- S = {
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
 - x: Tournament,
 - x: ∃ hasParticipant.Swedish,
 - x hasParticipant y, y: Swedish,
 - x: \forall hasParticipant.(\neg Swedish U \neg Belgian)

}

choice 2 continued

 \forall -rule

- S = {
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
 - x: (¬Tournament
 - U \forall hasParticipant.(\neg Swedish U \neg Belgian)),

```
x: Tournament,
```

```
x: \exists hasParticipant.Swedish,
```

```
x hasParticipant y, y: Swedish,
```

```
x: \forall hasParticipant.(\neg Swedish U \neg Belgian),
```

```
y: (¬ Swedish U ¬ Belgian)
```

```
}
```

choice 2 continued U–rule, choice 2.1

■ S = {

- x: (¬Tournament
- U \forall hasParticipant.(\neg Swedish U \neg Belgian))
- \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
- x: (¬Tournament

U \forall hasParticipant.(\neg Swedish U \neg Belgian)),

x: Tournament,

- x: \exists hasParticipant.Swedish,
- x hasParticipant y, y: Swedish,
- x: \forall hasParticipant.(\neg Swedish U \neg Belgian),
- y: (\neg Swedish U \neg Belgian),

y: ¬ Swedish

 $\}$ \rightarrow clash

choice 2 continued U–rule, choice 2.2

■ S = {

- x: (¬Tournament
- U \forall hasParticipant.(\neg Swedish U \neg Belgian))
- \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
- x: (¬Tournament

U \forall hasParticipant.(\neg Swedish U \neg Belgian)),

x: Tournament,

- x: \exists hasParticipant.Swedish,
- x hasParticipant y, y: Swedish,
- x: \forall hasParticipant.(\neg Swedish U \neg Belgian),
- y: (\neg Swedish U \neg Belgian),
- y: ¬ Belgian
- $\} \rightarrow ok, model$

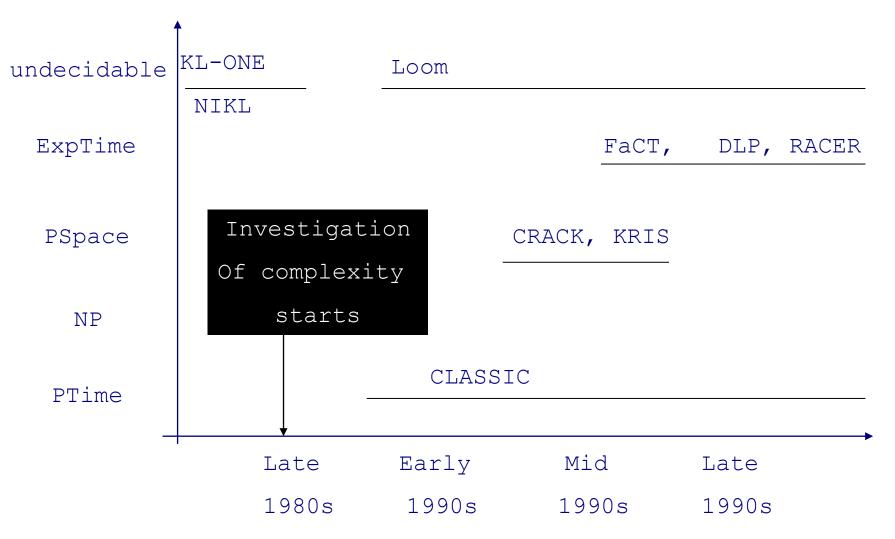
Complexity - languages

Overview available via the DL home page at <u>http://dl.kr.org</u>

Example tractable language: $A, T, \bot, \neg A, C \cap D, \forall R.C, \ge n R, \le n R$ Reasons for intractability: choices, e.g. C U D exponential size models, e.g interplay universal and existential quantification Reasons for undecidability: e.g. role-value maps R=S

DL SYSTEMS

Systems



Systems

- Overview available via the DL home page at <u>http://dl.kr.org</u>
- Current systems include: CEL, Cerebra Enginer, FaCT++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto, RacerPro, SHER

Extensions

- Time
- Defaults
- Part-of
- Knowledge and belief
- Uncertainty (fuzzy, probabilistic)

DL AND THE WEB

DAML+OIL Class Constructors

Constructor	DL Syntax	Example
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer
complementOf	$\neg C$	¬Male
oneOf	$\{x_1 \dots x_n\}$	{john, mary}
toClass	$\forall P.C$	∀hasChild.Doctor
hasClass	$\exists P.C$	∃hasChild.Lawyer
hasValue	$\exists P.\{x\}$	∃citizenOf.{USA}
minCardinalityQ	$\geq nP.C$	≥2hasChild.Lawyer
maxCardinalityQ	$\leq nP.C$	≼1hasChild.Male
cardinalityQ	=n P.C	=1 hasParent.Female

- XMLS datatypes as well as classes
- Arbitrarily complex nesting of constructors
 - E.g., Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

DAML+OIL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
sameClassAs	$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter 🗆 hasChild
samePropertyAs	$P_1 \equiv P_2$	$cost \equiv price$
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	${President_Bush} \equiv {G_W_Bush}$
disjointWith	$C_1 \sqsubseteq \neg C_2$	$Male \sqsubseteq \neg Female$
differentIndividualFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	${john} \sqsubseteq \neg {peter}$
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+ \sqsubseteq$ ancestor
uniqueProperty	$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
unambiguousProperty	$\top \sqsubseteq \leqslant \! 1P^-$	$\top \sqsubseteq \leqslant 1$ is Mother Of

Axioms (mostly) reducible to subClass/PropertyOf

OWL

- OWL-Lite, OWL-DL, OWL-Full: increasing expressivity
- A legal OWL-Lite ontology is a legal OWL-DL ontology is a legal OWL-Full ontology
- OWL-DL: expressive description logic, decidable
- XML-based
- RDF-based (OWL-Full is extension of RDF, OWL-Lite and OWL-DL are extensions of a restriction of RDF)

OWL-Lite

- Class, subClassOf, equivalentClass
- intersectionOf (only named classes and restrictions)
- **Property**, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty
- allValuesFrom, someValuesFrom (local restrictions)
- minCardinality, maxCardinality (only 0/1)
- **Individual**, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

- Type separation (class cannot also be individual or property, property cannot be also class or individual), Separation between DatatypeProperties and ObjectProperties
- **Class –complex classes**, subClassOf, equivalentClass, *disjointWith*
- intersectionOf, unionOf, complementOf
- Property, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty
- allValuesFrom, someValuesFrom (local restrictions), *oneOf, hasValue*
- <u>minCardinality, maxCardinality</u>
- **Individual**, sameAs, differentFrom, AllDifferent

(*) restricted

OWL2

OWL2 Full and OWL2 DLOWL2 DL compatible with SROIQ

Punning

- □ IRI may denote both class and individual
- □ For reasoning they are considered separate entities

OWL2 profiles

• OWL2 EL (based on EL++)

Essentially intersection and existential quantification
 SNOMED CT, NCI Thesaurus

OWL2 QL ("query language")
 Can be realized using relational database technology
 RDFS + small extensions

OWL2 RL ("rule language")

References

- Baader, Calvanese, McGuinness, Nardi, Patel-Schneider. *The Description Logic Handbook*. Cambridge University Press, 2003.
- Donini, Lenzerini, Nardi, Schaerf, Reasoning in description logics. *Principles of knowledge representation*. CSLI publications. pp 191-236. 1996.
- dl.kr.org

References

- https://www.w3.org/TR/2004/REC-owl-features-20040210/
- https://www.w3.org/TR/2012/REC-owl2-quickreference-20121211/
- https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

2,6