## Ontology Alignment

## **Ontology Alignment**

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

#### **Ontologies in biomedical research**

- many biomedical ontologies
   e.g. GO, OBO, SNOMED-CT
- practical use of biomedical ontologies
  - e.g. databases annotated with GO

#### GENE ONTOLOGY (GO)

immune response i- acute-phase response i- anaphylaxis i- antigen presentation i- antigen processing i- cellular defense response i- cvtokine metabolism i- cytokine biosynthesis synonym cytokine production p-regulation of cytokine biosynthesis i-B-cell activation i- B-cell differentiation i- B-cell proliferation i- cellular defense response i- T-cell activation i- activation of natural killer cell activity . . .

## **Ontologies with overlapping information**

#### **GENE ONTOLOGY (GO)** SIGNAL-ONTOLOGY (SigO) immune response **Immune Response** i- acute-phase response i- Allergic Response i- anaphylaxis Antigen Processing and Presentation i- antigen presentation i-B Cell Activation i- antigen processing B Cell Development i- Complement Signaling i- cellular defense response i- cytokine metabolism • synonym complement activation i- cytokine biosynthesis i- Cytokine Response synonym cytokine production i- Immune Suppression i- Inflammation p- regulation of cytokine. i- Intestinal Immunity biosynthesis i- Leukotriene Response i- Leukotriene Metabolism \*Natural Killer Cell Response i-B-cell activation **T** Cell Activation i- B-cell differentiation i- T Cell Development i- T Cell Selection in Thymus i- B-cell proliferation i- cellular defense response i- T-cell activation i- activation of natural killer . . .

## **Ontologies with overlapping information**

- Use of multiple ontologies
  - custom-specific ontology + standard ontology
  - different views over same domain
  - overlapping domains
- Bottom-up creation of ontologies experts can focus on their domain of expertise
- → important to know the inter-ontology relationships

#### GENE ONTOLOGY (GO)

#### SIGNAL-ONTOLOGY (SigO)

immune response
i- acute-phase response
i- anaphylaxis
i- antigen presentation
i- antigen processing
i- cellular defense response
i- cytokine metabolism
i- cytokine biosynthesis
synonym cytokine production
...
p- regulation of cytokine
biosynthesis
...
i- B-cell activation

i- B-cell differentiation
i- B-cell proliferation
i- cellular defense response
...
i- T-cell activation

i- activation of natural killer cell activity

•••

Immune Response

- i- Allergic Response
- i- Antigen Processing and Presentation
- i- B Cell Activation
- i- B Cell Development
- i- Complement Signaling synonym complement activation
- i- Cytokine Response
- i- Immune Suppression
- i- Inflammation
- i- Intestinal Immunity
- i- Leukotriene Response
  - i- Leukotriene Metabolism
- i- Natural Killer Cell Response
- i- T Cell Activation
- i- T Cell Development
- i- T Cell Selection in Thymus

#### **Ontology Alignment**



Defining the relations between the terms in different ontologies

## **Ontology Alignment**

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

#### An Alignment Framework



## Preprocessing

#### Preprocessing

#### For example,

- Selection of features
- Selection of search space

## Matchers

#### **Matcher Strategies**

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-bas
- Instance-based
- Use of auxiliar



#### Edit distance

- Number of deletions, insertions, substitutions required to transform one string into another
- $\Box$  aaaa  $\rightarrow$  baab: edit distance 2

#### N-gram

- N-gram : N consecutive characters in a string
- Similarity based on set comparison of n-grams
- aaaa : {aa, aa, aa}; baab : {ba, aa, ab}

### **Matcher Strategies**

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based
- Instance-based st
- Use of auxiliary



# Propagation of similarity valuesAnchored matching



# Propagation of similarity valuesAnchored matching



# Propagation of similarity valuesAnchored matching



## **Matcher Strategies**

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based approaches
- Instance-based
- Use of auxiliary



### **Matcher Strategies**

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based approaches
- Instance-based
- Use of auxiliary



- Similarities between data types
   Similarities based on cordinalities
- Similarities based on cardinalities

## **Matcher Strategies**

- Strategies based on linguisti
- Structure-based strategies
- Constraint-based approached
- Instance-based strategies
- Use of auxiliary information



- Instance-based
- Use life science literature as instances

## Learning matchers – instancebased strategies

- Basic intuition
  - A similarity measure between concepts can be computed based on the probability that documents about one concept are also about the other concept and vice versa.

#### **Learning matchers - steps**

- Generate corpora
  - □ Use concept as query term in PubMed
  - Retrieve most recent PubMed abstracts
- Generate text classifiers
  - □ One classifier per ontology / One classifier per concept
- Classification
  - Abstracts related to one ontology are classified by the other ontology's classifier(s) and vice versa
- Calculate similarities

#### **Basic Naïve Bayes matcher**

- Generate corpora
- Generate classifiers
  - Naive Bayes classifiers, one per ontology
- Classification
  - Abstracts related to one ontology are classified to the concept in the other ontology with highest posterior probability P(C|d)
- Calculate similarities

$$sim(C_1, C_2) = \frac{n_{NBC2}(C_1, C_2) + n_{NBC1}(C_2, C_1)}{n_D(C_1) + n_D(C_2)}$$

#### **Matcher Strategies**

- Strategies based linguist
- Structure-based strategie
- Constraint-based approa
- Instance-based strategies
- Use of auxiliary information



#### Use of WordNet

- Use WordNet to find synonyms
- Use WordNet to find ancestors and descendants in the isa hierarchy
- Use of Unified Medical Language System (UMLS)
  - Includes many ontologies
  - □ Includes many alignments (not complete)
  - Use UMLS alignments in the computation of the similarity values

| System                | String-based strategies              | Structure-based strategies | Constraint-based strategies | Instance-based strategie |
|-----------------------|--------------------------------------|----------------------------|-----------------------------|--------------------------|
| AgreementMaker        | SubString, Edit-Distance, TF-IDF     | 1                          | 1                           | 1                        |
| ALIN                  | SimMetrics APP , WS4J APP            | √                          | -                           | -                        |
| AML                   | Jaccard, I-Sub                       | ✓                          | ✓                           | 1                        |
| Anchor-Flood          | Jaro-Winkler                         | 1                          | -                           | 1                        |
| AOAS                  | Jaro-Winkler                         | 1                          | -                           | -                        |
| AOT, AOTL             | Edit-Distance, Block-Distance,       |                            |                             |                          |
|                       | SLIM-Winkler, Jaro-Winkler,          | -                          | -                           | -                        |
|                       | Smith-Winkler, Needleman-Wunsch      |                            |                             |                          |
| AROMA                 | Jaro-Winkler                         | ✓                          | ✓                           | -                        |
| ASMOV                 | Edit-Distance                        | 1                          | 1                           | 1                        |
| BLOOMS                | Jaccard, Exact Match, Lin,           | -                          | -                           | -                        |
|                       | Jaro-Winkler                         |                            |                             |                          |
| CIDER-CL              | Soft TF-IDF, Jaro-Winkler            | 1                          | -                           | -                        |
| CODI                  | Edit-Distance, Jaro-Winider, Cosine, |                            |                             |                          |
|                       | Smith-Waterman, Jaccard,             | ✓                          | ✓                           | 1                        |
|                       | Overtap coefficient                  |                            |                             |                          |
| COMMAND               | UMBC similarity Model                | 1                          | -                           | -                        |
| CroMatcher            | N-Gram, TE-IDE                       | ✓                          | ✓                           | 1                        |
| CSA                   | Edit-Distance, Wu-Paimer, TF-IDF     | ✓                          | -                           | 1                        |
| DKP-AOM, DKP-AOM-Lite | SimMetrics APP                       | ✓                          | ✓                           | -                        |
| DSSim                 | Jaccard, Jaro-Winkler                | ✓                          | -                           | -                        |
| Eff2Match             | Exact Match, TF-IDF                  | ✓                          | -                           | -                        |
| Falcon-AO             | I-Sub, TF-IDF                        | 1                          | -                           | -                        |
| FCA-Map               | Exact Match                          | ✓                          | -                           | -                        |
| GeRoMeSuite+SMB       | Edit-Distance, Jaro-Winkler,         | ✓                          | -                           | 1                        |
|                       | I-Sub, Soft TF-IDF,                  |                            |                             |                          |
|                       | SecondString Library <sup>C</sup>    |                            |                             |                          |
| GMap                  | Edit-Distance, TF-IDF                | 1                          | -                           | -                        |
| Gomma, gomma-bk       | Exact Match, N-gram                  | √                          | -                           | 1                        |
| Hertuda               | Damerau-Levenshtein <sup>d</sup>     | -                          | -                           | -                        |
| HotMatch              | Damerau-Levenshtein <sup>d</sup>     | 1                          | 1                           | 1                        |
| IAMA                  | Edit-Distance                        |                            |                             | 1                        |

Table 7 Matching Strategies in the participating systems - 1

#### Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017

| System         | String-based strategies                           |   | Constraint-based<br>strategies | Instance-based<br>strategies |  |
|----------------|---------------------------------------------------|---|--------------------------------|------------------------------|--|
| JarvisOM       | Cosine, WuPatmer, Lin, N-gram                     | - | -                              | -                            |  |
| KOSIMap        | SimMetrics APP, Degree of commonality coefficient |   | ✓                              | -                            |  |
| Lily           | Edit-Distance                                     | 1 | ✓                              | ~                            |  |
| LogMap         | I-Sub                                             | 1 | -                              | ~                            |  |
| LPHOM          | I-Sub, Mongue-Elkan,                              | - | -                              | -                            |  |
|                | 3-Gram, Jaccard, Lin                              |   |                                |                              |  |
| LYAM++         | SOFT TE-IDE, Jaccard                              | 1 | -                              | -                            |  |
| MaasMatch      | Cosine, Edit-Distance, Jaccard,                   | 1 | -                              | ×                            |  |
|                | 3-Gram, Longest Common Substring                  |   |                                |                              |  |
| MapSSS         | Edit-Distance, Choice based on [10]               | 1 | 1                              | -                            |  |
| NBJLM          | Set of words-level                                | 1 | -                              | -                            |  |
| DDGOMS         | Longest Common Subsequence, SMOA, TF-IDF          | × | -                              | -                            |  |
| Optima+        | Lin, Smith-Waterman,                              | 1 | -                              | -                            |  |
|                | Needleman-Wunsch                                  |   |                                |                              |  |
|                | Inverse Edit-Distance                             |   |                                |                              |  |
| Prior+         | Edit-Distance                                     | √ | -                              | -                            |  |
| RIMOM          | Edit-Distance, Cosine                             | 1 | -                              | ~                            |  |
| RSDLWB         | Jaccard, Substring                                | 1 | 1                              | -                            |  |
| AMBO, SAMBOdtf | Edit-Distance, 3-Gram                             | √ | -                              | 1                            |  |
| ServOMap       | Edit-Distance,                                    | 1 | -                              | -                            |  |
|                | I-Sub, Q-Gram, TF-IDF,                            |   |                                |                              |  |
|                | Monge-Elikan, Jaccard                             |   |                                |                              |  |
| SOBOM          | I-Sub                                             | × | -                              | -                            |  |
| StringsAuto    | Choice based on [10]                              | - | -                              | -                            |  |
| ГахоМар        | Lin, 3-gram                                       | 1 | ~                              | -                            |  |
|                | Degree of commonality coefficient                 |   |                                |                              |  |
| OAST           | √ <sup>b</sup>                                    | 1 | -                              | -                            |  |
| WeSeE          | Edit-Distance, TF-IDF                             | - | -                              | -                            |  |
| WikiMatch      | Jaccard                                           | - | -                              | -                            |  |
| (-SOM          | Edit-Distance, Jaro                               | 1 | -                              | √                            |  |
| КМар           | Edit distance, Jaro-Winkler,                      | × | ✓                              | -                            |  |
|                | N-gram, Jaccard, Cosine                           |   |                                |                              |  |
| YAM++          | Tversky <sup>c</sup> , TF-IDF                     | 1 | -                              | 1                            |  |

#### Table 8 Matching strategies in the participating systems - 2

Month and a second seco

| System         | Background knowledge |        |           |      |     |         |                                     |  |
|----------------|----------------------|--------|-----------|------|-----|---------|-------------------------------------|--|
|                | UMLS                 | Uberon | BioPortal | MeSH | FMA | WordNet | Other                               |  |
| greementMaker  | √                    | 1      | -         | -    | -   | ~       | -                                   |  |
| UN             | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| ML             | √                    | ~      |           | <    |     | ~       | -                                   |  |
| inchor-Flood   | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| NOAS           | √                    | -      | -         | -    | ~   | -       | -                                   |  |
| OT, AOTL       | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| SMOV           | ✓                    | -      | -         | -    | -   | ~       | -                                   |  |
| OMMAND         | ~                    | -      | -         | -    | -   | ~       | -                                   |  |
| roMatcher      | -                    | ~      | -         | -    | -   | ~       | -                                   |  |
| SA             | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| KP-AOM         | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| 25Sim          | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| ff2Match       | -                    |        | -         | -    | -   | ~       | -                                   |  |
| OMMA           | ~                    | ~      | -         | -    | ~   | -       | -                                   |  |
| eRoMeSuite+SMB | -                    |        | -         | -    | -   | 1       | -                                   |  |
| loumatch       | -                    |        | -         | -    | -   | -       | API tanes <sup>a</sup> , WikiPedia, |  |
|                |                      |        |           |      |     |         | Big Huge Thesaurus <sup>b</sup>     |  |
| arvisOM        | -                    |        | -         | -    | -   | 1       | Apache Lucene <sup>c</sup>          |  |
| AMA            | -                    | -      | -         | -    | -   | -       | Apache Lucene <sup>c</sup>          |  |
| ily            | -                    | -      | -         | -    | -   | -       | Web search (Google)                 |  |
| ogMapBio       | -                    |        | ~         | -    | -   | -       | -                                   |  |
| YAM++          | -                    | 1      | -         | -    | -   | -       | BabelNet <sup>d</sup>               |  |
| MaasMatch      | -                    | -      | -         | -    | -   | ~       | -                                   |  |
| MapSSS         | -                    |        | -         | -    | _   | _       | Google                              |  |
| BILM           | -                    |        | -         | -    | -   | ~       | -                                   |  |
| )ptima+        | -                    | -      | -         | -    | -   | 1       | -                                   |  |
| MOM            | ~                    |        | -         | -    | _   | 1       | Wiki Pages                          |  |
| SDLWB          | -                    | -      | -         | -    | -   | 1       | DBpedia <sup>e</sup>                |  |
| AMBO           | ~                    | -      | -         | -    | -   | ~       | -                                   |  |
| ervOMap        | -                    |        | -         | -    | -   | 1       | Apache Lucene <sup>c</sup>          |  |
| ахоМар         | -                    | -      | -         | -    | -   | 1       | -                                   |  |
| OAST           | -                    | -      | -         | -    | -   | 1       | -                                   |  |
| VeSeE          |                      |        |           | -    | _   |         | Microsoft Bing Search               |  |
|                |                      |        |           |      |     |         | JFreeWebSearch                      |  |
| VikiMatch      |                      |        |           | -    | -   |         | WikiPedia                           |  |
| Мар            | 1                    |        |           | -    | -   | ~       | _                                   |  |
| SOM            |                      |        | _         | -    | _   | ~       | Google                              |  |
| XM++           |                      |        |           |      |     |         | Apache Lucene <sup>c</sup>          |  |

#### Table 9 Use of auxiliary information by the participating systems

## Combinations

#### **Combination Strategies**

- Usually weighted sum of similarity values of different matchers
- Maximum of similarity values of different matchers

# Filtering

### **Filtering techniques**

Threshold filtering

Pairs of concepts with similarity higher or equal than threshold are alignment suggestions



## **Filtering techniques**

#### Double threshold filtering

- (1) Pairs of concepts with similarity higher than or equal to **upper** threshold are alignment suggestions
- (2) Pairs of concepts with similarity between **lower** and **upper** thresholds are alignment suggestions if they make sense with respect to the structure of the ontologies and the suggestions according to (1)


### Example alignment system SAMBO – matchers, combination, filter



## **Example alignment system SAMBO** – suggestion mode

| nose_MA                                                                                             | nose_MeSH                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| nasal_cavity_epithelium<br>definition: MA:0001324<br>synonym: nasal mucosa<br>part-of: nasal_cavity | nasal_mucosa<br>definition: MESH:A.04.531.520<br>synonym: nasal epithelium<br>part-of: |  |  |
| nasal_cavity_epithelium<br>nasal_mucosa                                                             |                                                                                        |  |  |
| new name for the equivalent conce                                                                   | epts:                                                                                  |  |  |
| = Equiv. Concepts < Sub-Concept                                                                     | Super-Concept << Undo >> Skip to Next                                                  |  |  |

| Systems               | Basic processes              |          |             |           |           |                   |
|-----------------------|------------------------------|----------|-------------|-----------|-----------|-------------------|
|                       | Preprocessing <sup>D/R</sup> | Matching | Combination | Filtering | Debugging | User interaction  |
| AgreementMaker        | -                            | √        | 1           | -√        | -         | 18                |
| ALIN                  | -                            | ~        | ~           | ~         | -         | 1                 |
| AML, AML_bk           | D                            | 1        | ~           | √         | ~         | 1                 |
| Anchor-Flood          | D                            | ~        | 1           | √         | -         | -                 |
| AOAS                  | -                            | ~        | ×           | ~         | -         | -                 |
| AOT, AOTL             | -                            | 1        | ~           | √         | -         | -                 |
| AROMA                 | D                            | ~        | 1           | √         | -         | -                 |
| ASMOV                 | -                            | ~        | ~           | ~         | ~         | 1                 |
| BLOOMS                | D                            | ~        | ~           | √         | -         | -                 |
| CIDER-CL              | D                            | ~        | ~           | √         | -         | -                 |
| CODI                  | D                            | ~        | ~           | √         | ×         | -                 |
| COMMAND               | -                            | ~        | ~           | √         | -         | -                 |
| CroMatcher            | D                            | ~        | 1           | √         | -         | -                 |
| CSA                   | D                            | ~        | ×           | ~         | -         | -                 |
| DKP-AOM, DKP-AOM-Lite | D                            | ~        | ~           | √         | ~         | -                 |
| DSSim                 | R                            | ~        | ~           | √         | -         | -                 |
| Eff2March             | D                            | ~        | ~           | √         | -         | -                 |
| Falcon-AO             | R                            | ~        | ~           | √         | -         | 1                 |
| FCA-Map               | D                            | ~        | -           | -         | 1         | -                 |
| GeRoMeSuite+SMB       | -                            | ~        | ~           | √         | 1         | 1                 |
| GMap                  | -                            | ~        | ~           | √         | -         | -                 |
| GOMMA, GOMMAbk        | R                            | 1        | ~           | √         | 1         | √( <sup>0</sup> ) |
| Herruda               | D                            | √        | -           | √         | -         | ×                 |
| HotMatch              | D                            | ~        | ~           | ~         | -         | -                 |
| IAMA                  | D                            | 1        | 1           | √         | -         | -                 |
|                       |                              |          |             |           |           |                   |

#### Table 6 Analysis of the components of the participating systems

#### Dragisic Z, Ivanova V, Li H, Lambrix P,

Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative, Journal of Biomedical Semantics 8:56, 2017

| JarvisOM               | D   | ~ | < | ✓ | - | 1  |
|------------------------|-----|---|---|---|---|----|
| KOSIMap                | D   | ~ | 1 | ✓ | √ | -  |
| Lity                   | D   | ~ | 1 | ~ | √ | 1  |
| LogMap, LogMapBio,     |     |   |   |   |   |    |
| LogMapC, LogMapLite    | D,R | ~ | 1 | 1 | × | ~  |
| LPHOM                  | D   | ✓ | 1 | ✓ | - | -  |
| LYAM++                 | D   | ~ | - | ~ | - | -  |
| MaasMatch              | D   | ~ | 1 | ~ | - | -  |
| MapSSS                 | -   | ✓ | 1 | ✓ | - | -  |
| NBJLM                  | -   | ~ | ∢ | ~ | - | -  |
| ODGOMS                 | D   | ~ | 1 | ~ | - | -  |
| Optima+                | -   | ✓ | < | ✓ | - | -  |
| Prior+                 | D   | ~ | ∢ | ✓ | - | -  |
| RIMOM                  | D   | ~ | 1 | 1 | - | -  |
| RSDLWB                 | D   | ~ | 1 | - | - | 1  |
| SAMBO, SAMBOatf        | -   | ✓ | < | ✓ | √ | <* |
| ServOMap(L), ServOMBI  | D   | ~ | 1 | ~ | 1 | 1  |
| SOBOM                  | -   | √ | √ | √ | - | -  |
| StringsAuto            | -   | 1 | √ | 1 | - | -  |
| ТахоМар                | D,R | 1 | 1 | 1 | - | -  |
| TOAST                  | -   | 1 | - | - | - | -  |
| WeSeE                  | D   | √ | - | 1 | - | √  |
| WikiMatch              | D   | 1 | - | 1 | - | -  |
| X-SOM                  | -   | 1 | 1 | 1 | √ | -  |
| XMap, XMAPGen, XMAPSig | -   | √ | 1 | 1 | - | 1  |
| YAM++                  | D   | 1 | 1 | 1 | √ | -  |
|                        |     |   |   |   |   |    |

b e

## **Ontology Alignment**

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

#### **Evaluation measures**

Precision:

# correct mapping suggestions

# mapping suggestions

• Recall:

# correct mapping suggestions

# correct mappings

F-measure: combination of precision and recall

#### Ontology Alignment Evaluation Initiative

http://oaei.ontologymatching.org/

#### OAEI

Since 2004, Evaluation of systems

#### Different tracks (2020)

- Ontologies
  - Anatomy, conference, large biomedical ontologies, disease and phenotype, biodiversity and ecology
  - Multilingual: multifarm (9 languages)
  - Complex
  - Interactive
- □ Instance matching and link discovery
- Knowledge graphs

### OAEI

Evaluation measures
 Precision/recall/f-measure
 recall of non-trivial mappings

□ full / partial golden standard

#### **OAEI 2019**

12 systems

#### Anatomy:

- □ best system f=0.943, p=0.95, r=0.936, r+=0.832, 76 seconds (42s in 2018)
- 4 systems produce coherent mappings (5 in 2018)

#### OAEI Anatomy Track 2007-2016\*

#### Components

- Almost all systems implement preprocessing, matchers, combination, filtering components
- Debugging component and GUI rarely implemented
- Matching strategies
  - □ Variety of string-based strategies
  - □ Most often string and structured-based strategies
- Use of background knowledge
  - □ Almost all systems use sources of background knowledge

<sup>\*</sup> Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the</u> <u>Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017.

#### Complementary evaluation

Alignment cubes

- Interactive visualization of alignments
- Region-level, mapping level
- Missing mappings
- Often found mappings
- http://www.ida.liu.se/~patla00/research/AlignmentCubes/

#### Alignment cubes



## **Ontology Alignment**

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

## Challenges

- Large-scale matching evaluation
- Efficiency of matching techniques
  - parallellization
  - distribution of computation
  - approximation of matching results (not complete)
  - modularization of ontologies
  - optimization of matching methods

## Challenges

Matching with background knowledge
partial alignments
reuse of previous matches
use of domain-specific corpora
use of domain-specific ontologies

Matcher selection, combination and tuning
 recommendation of algorithms and settings

# Challenges

User involvement
 visualization
 user feedback

- Explanation of matching results
- Social and collaborative matching
- Alignment management: infrastructure and support

#### **Further reading**

Starting points for further studies

<u>http://www.ontologymatching.org</u>
 (plenty of references to articles and systems)

 Ontology alignment evaluation initiative: <u>http://oaei.ontologymatching.org</u> (home page of the initiative)

- Euzenat, Shvaiko, *Ontology Matching*, Springer, 2007.
- Shvaiko, Euzenat, Ontology Matching: state of the art and future challenges, *IEEE Transactions on Knowledge and Data Engineering* 25(1):158-176, 2013.
- Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017.

Systems at LiU / IDA / ADIT

 Lambrix, Tan, SAMBO – a system for aligning and merging biomedical ontologies, *Journal of Web Semantics*, 4(3):196-206, 2006.
 (description of the SAMBO tool and overview of evaluations of different matchers)

Lambrix, Tan, A tool for evaluating ontology alignment strategies, *Journal on Data Semantics*, VIII:182-202, 2007.
 (description of the KitAMO tool for evaluating matchers)

- Lambrix P, Kaliyaperumal R, <u>A Session-based Ontology Alignment Approach</u> <u>enabling User Involvement</u>, *Semantic Web Journal* 8(2):225-251, 2017.
- Ivanova V, Bach B, Pietriga E, Lambrix P, <u>Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments</u>, 16th International Semantic Web Conference, 400-417, 2017.

 Chen, Tan, Lambrix, Structure-based filtering for ontology alignment, *IEEE WETICE workshop on semantic technologies in collaborative applications*, 364-369, 2006.

(double threshold filtering technique)

- Tan, Lambrix, A method for recommending ontology alignment strategies, *International Semantic Web Conference*, 494-507, 2007.
   Ehrig, Staab, Sure, Bootstrapping ontology alignment methods with APFEL, *International Semantic Web Conference*, 186-200, 2005.
   Mochol, Jentzsch, Euzenat, Applying an analytic method for matching approach selection, *International Workshop on Ontology Matching*, 2006.
   (recommendation of alignment strategies)
- Lambrix, Liu, Using partial reference alignments to align ontologies, *European* Semantic Web Conference, 188-202, 2009.
   (use of partial alignments in ontology alignment)

User Involvement

- Li H, Dragisic Z, Faria D, Ivanova V, Jimenez-Ruiz E, Lambrix P, Pesquita C, User validation in ontology alignment: functional assessment and impact, *The Knowledge Engineering Review*, 2019.
- Ivanova V, Lambrix P, Åberg J, <u>Requirements for and Evaluation of User Support</u> for Large-Scale Ontology Alignment, 12th Extended Semantic Web Conference -ESWC 2015, <u>LNCS 9088</u>, 3-20, 2015.

# Ontology Completion and Debugging

#### Defects in ontologies

- Syntactic defects
  - □ E.g. wrong tags or incorrect format
- Semantic defects
  - E.g. unsatisfiable concepts, incoherent and inconsistent ontologies
- Modeling defects
  - □ E.g. wrong or missing relations

#### Example - incoherent ontology

#### Example: DICE ontology

 Brain ⊑ CentralNervousSystem п BodyPart п ∃systempart.NervousSystem п ∃ region.HeadAndNeck п ∀region.HeadAndNeck

A brain is a central nervous system and a body part which has a system part that is a nervous system and that is in the head and neck region.

■ CentralNervousSystem ⊑ NervousSystem

A central nervous system is a nervous system.

■ BodyPart ⊑¬NervousSystem

Nothing can be at the same time a body part and a nervous system.

#### Slide from G. Qi 61

## Example - inconsistent ontology

#### Example from Foaf:

- Person(timbl)
- Homepage(timbl, <u>http://w3.org/</u>)
- Homepage(w3c, <u>http://w3.org/</u>)
- Organization(w3c)
- InverseFunctionalProperty(Homepage)
- DisjointWith(Organization, Person)
- Example from OpenCyc:
  - ArtifactualFeatureType(PopulatedPlace)
  - ExistingStuffType(PopulatedPlace)
  - DisjointWith(ExistingObjectType,ExistingStuffType)
  - ArtifactualFeatureType 
     ExistingObjectType

# Example - missing is-a relations

- In 2008 Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, task 4
  - Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
  - Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
  - □ 988 mappings between MA and NCI-A
    - 121 missing is-a relations in MA
    - 83 missing is-a relations in NCI-A

## Influence of missing structure

Ontology-based querying.



# Influence of missing structure

#### Incomplete results from ontology-based queries

| Public gov<br>U.S. National Library of Medicine<br>National Institutes of Health | Limits Advanced sear<br>seases" [MeSH] | rch Help<br>Search                    | Clear |
|----------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|-------|
| Medical Subject<br>Headings (MeSH)<br>All MeSH Categories<br>Diseases Category   |                                        | return 161<br>return 695<br>57% resul |       |
| <ul> <li>Eye Diseases</li> <li>Scleral Diseases</li> <li>Scleritis</li> </ul>    |                                        |                                       |       |

# Defects in ontologies and ontology networks

- Ontologies and ontology networks with defects, although often useful, also lead to problems when used in semantically-enabled applications.
- → Wrong conclusions may be derived or valid conclusions may be missed.

# Completion and debugging process

- Detection (find candidate defects)
- Validation (real defects)
- Repair (remove wrong, add correct)

### Detection

Many approaches

- inspection
- ontology learning or evolution
- using linguistic and logical patterns
  - animals such as dogs and cats
- by using knowledge intrinsic to an ontology network
- by using machine learning and statistical methods

## Repairing

**Definition 1** (*Repair*) Let T be a TBox and C be the set of all atomic concepts in T. Let M and W be finite sets of TBox axioms. Let Or be an oracle that given a TBox axiom returns true or false. A repair for Complete-Debug-Problem CDP(T, C, Or, M, W) is any pair of finite sets of TBox axioms (A, D) such that  $(i) \forall \psi_a \in A: Or(\psi_a) = true;$  $(ii) \forall \psi_d \in D: Or(\psi_d) = false;$  $(iii) (T \cup A) \setminus D$  is consistent;  $(iv) \forall \psi_m \in M: (T \cup A) \setminus D \models \psi_m;$  $(v) \forall \psi_w \in W: (T \cup A) \setminus D \not\models \psi_w.$ 

Current work usually focuses on debugging or completion, but not both.

Most work on debugging.

# **Ontology Debugging**

#### Example : an Incoherent Ontology

Consider the following TBox  $\mathcal{T}^*$ , where A, B and C are primitive and  $A_1, \ldots, A_7$  defined concept names:

 $\begin{array}{ll} ax_{1}:A_{1} \stackrel{.}{\sqsubseteq} \neg A \sqcap A_{2} \sqcap A_{3} & ax_{2}:A_{2} \stackrel{.}{\sqsubseteq} A \sqcap A_{4} \\ ax_{3}:A_{3} \stackrel{.}{\sqsubseteq} A_{4} \sqcap A_{5} & ax_{4}:A_{4} \stackrel{.}{\sqsubseteq} \forall s.B \sqcap C \\ ax_{5}:A_{5} \stackrel{.}{\sqsubseteq} \exists s. \neg B & ax_{6}:A_{6} \stackrel{.}{\sqsubseteq} A_{1} \sqcup \exists r.(A_{3} \sqcap \neg C \sqcap A_{4}) \\ ax_{7}:A_{7} \stackrel{.}{\sqsubseteq} A_{4} \sqcap \exists s. \neg B \end{array}$ 



The ontology is incoherent!

The set of unsatisfiable concepts are :  $\{A_1, A_3, A_6, A_7\}$ .

What are the root causes of these defects?

#### **Explain the Semantic Defects**

• We need to identify the sets of axioms which are necessary for causing the logic contradictions.



• For example, for the unsatisfiable concept " $A_1$ ", there are two sets of axioms.

 $ax_1:A_1 \sqsubseteq \neg A \sqcap A_2 \sqcap A_3$  $ax_2:A_2 \sqsubseteq A \sqcap A_4$ 

$$ax_{1}:A_{1} \sqsubseteq \neg A \sqcap A_{2} \sqcap A_{3}$$
$$ax_{3}:A_{3} \sqsubseteq A_{4} \sqcap A_{5}$$
$$ax_{4}:A_{4} \sqsubseteq \forall s.B \sqcap C$$
$$ax_{5}:A_{5} \sqsubseteq \exists s. \neg B$$
#### Minimal Unsatisfiability Preserving Sub-TBoxes (MUPS)

**Definition 1** Let A be a concept which is unsatisfiable in a TBox  $\mathcal{T}$ . A set  $\mathcal{T}' \subseteq \mathcal{T}$  is a *minimal unsatisfiability-preserving sub-TBox (MUPS)* of  $\mathcal{T}$  if

- A is unsatisfiable in  $\mathcal{T}'$ , and
- A is satisfiable in every sub-TBox  $\mathcal{T}'' \subset \mathcal{T}'$ .

We will abbreviate the set of MUPS of  $\mathcal{T}$  and A by  $mups(\mathcal{T}, A)$ .  $mups(\mathcal{T}^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}$ 

• The MUPS of an unsatisfiable concept imply the solutions for repairing.

 $\rightarrow$  Remove at least one axiom from each axiom set in the MUPS

#### Example

$$mups(\mathcal{T}^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}$$
  

$$mups(\mathcal{T}^*, A_3) = \{\{ax_3, ax_4, ax_5\}\}$$
  

$$mups(\mathcal{T}^*, A_6) = \{\{ax_1, ax_2, ax_4, ax_6\},$$
  

$$\{ax_1, ax_3, ax_4, ax_5, ax_6\}\}$$
  

$$mups(\mathcal{T}^*, A_7) = \{\{ax_4, ax_7\}\}$$

• Possible ways of repairing all the unsatisfiable concepts in the ontology:

$$\{ax_1, ax_3, ax_4\}$$



How to represent all these possibilities?

#### Minimal Incoherence Preserving Sub-TBox (MIPS)

**Definition 2** Let  $\mathcal{T}$  be an incoherent TBox. A TBox  $\mathcal{T}' \subseteq \mathcal{T}$  is a minimal incoherencepreserving sub-TBox (MIPS) of  $\mathcal{T}$  if

- $\mathcal{T}'$  is incoherent, and
- every sub-TBox  $\mathcal{T}'' \subset \mathcal{T}'$  is coherent.

$$\begin{split} mups(\mathcal{T}^*, A_1) &= \{ \{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\} \} \\ mups(\mathcal{T}^*, A_3) &= \{ \{ax_3, ax_4, ax_5\} \} \\ mups(\mathcal{T}^*, A_6) &= \{ \{ax_1, ax_2, ax_4, ax_6\}, \\ \{ax_1, ax_3, ax_4, ax_5, ax_6\} \} \\ mups(\mathcal{T}^*, A_7) &= \{ \{ax_4, ax_7\} \} \end{split}$$

We will abbreviate the set of MIPS of  $\mathcal{T}$  by  $mips(\mathcal{T})$ . For  $\mathcal{T}^*$  we get three MIPS:

$$mips(\mathcal{T}^*) = \{\{ax_1, ax_2\}, \{ax_3, ax_4, ax_5\}, \{ax_4, ax_7\}\}$$

A possible repairing is  $\{ax_i\} \cup \{ax_j\} \cup \{ax_k\}$ , where

- $ax_i \in \{ax_1, ax_2\}$
- $ax_j \in \{ax_3, ax_4, ax_5\}$
- $ax_k \in \{ax_4, ax_7\}$

# Completing the is-a structure of ontologies



#### **Repairing actions:**

{Endocarditis  $\doteq$  PathologicalPhenomenon, GranulomaProcess  $\doteq$  NonNormalProcess}

{Carditis  $\doteq$  CardioVascularDisease, GranulomaProcess  $\doteq$  PathologicalProcess}

{Carditis  $\sqsubseteq$  Fracture, GranulomaProcess  $\doteq$  NonNormalProcess}

## **Description logic EL**

#### Concepts

| Atomic concept           | Α    |
|--------------------------|------|
| Universal concept        | T    |
| Intersection of concepts | СпD  |
| Existential restriction  | ∃r.C |

#### Terminological axioms: equivalence and subsumption

## Generalized Tbox Abduction Problem – GTAP(**T**,**C**,Or,M)

- Given
  - □**T** a Tbox in EL
  - □C- a set of atomic concepts in T
  - $\Box M = \{Ai \subseteq Bi\}_{i=1..n} and \forall i:1..n: Ai, Bi \in \boldsymbol{C}$
  - $\Box \text{ Or: } \{\text{Ci} \subseteq \text{Di} \mid \text{Ci, } \text{Di} \in \textbf{C}\} \rightarrow \{\text{true, false}\}$

Find

$$\label{eq:second} \begin{split} \square \ S &= \{ E_i \subseteq F_i \}_{i=1..k} \, \text{such that} \\ \forall \ i:1..k: \, E_i, \, F_i \in \boldsymbol{C} \, \, \text{and} \, \, Or(E_i \subseteq F_i) = \text{true} \\ \text{and} \, T \, U \, S \, \, \text{is consistent and} \, T \, U \, S \, |= M \end{split}$$

## GTAP - example



 $C = \{$ GranulomaProcess, CardioVascularDisease, PathologicalPhenomenon, Fracture, Endocarditis, Carditis, InflammationProcess, PathologicalProcess, NonNormalProcess $\}$ 

 $T = \{ \text{ GranulomaProcess } \sqsubseteq \top, \text{ hasAssociatedProcess } \trianglerighteq \top \times \top, \\ \text{CardioVascularDisease } \trianglerighteq \text{ PathologicalPhenomenon, Fracture } \unrhd \text{ PathologicalPhenomenon,} \\ \exists \text{hasAssociatedProcess.PathologicalProcess } \trianglerighteq \text{ PathologicalPhenomenon,} \\ & \text{Endocarditis } \sqsubseteq \text{ Carditis, Endocarditis } \boxminus \exists \text{hasAssociatedProcess.InflammationProcess,} \\ & \text{PathologicalProcess } \\ & \text{PathologicalP$ 

 $M = \{$  Endocarditis  $\stackrel{.}{\sqsubseteq}$  PathologicalPhenomenon, GranulomaProcess  $\stackrel{.}{\sqsubseteq}$  NonNormalProcess  $\}$ 

## Preference criteria

#### There can be many solutions for GTAP



## Preference criteria

#### There can be many solutions for GTAP



Not all are equally interesting.

#### More informative

- Let S and S' be two solutions to GTAP(T,C,Or,M). Then,
- S is more informative than S' iff  $\mathbf{T} \cup S \models S'$  but not  $\mathbf{T} \cup S' \models S$
- S is equally informative as S' iff  $\mathbf{T} \cup S \models S'$  and  $\mathbf{T} \cup S' \models S$

## More informative

#### Blue' solution is more informative than 'green' solution



## Semantic maximality

A solution S to GTAP(T,C,Or,M) is semantically maximal iff there is no solution S' which is more informative than S.



## Subset minimality

A solution S to GTAP(T,C,Or,M) is subset minimal iff there is no proper subset S' of S that is a solution.



Combining with priority for semantic maximality

A solution S to GTAP(T,C,Or,M) is maxmin optimal iff S is semantically maximal and there is no other semantically maximal solution that is a proper subset of S.



Combining with priority for subset minimality

A solution S to GTAP(T,C,Or,M) is minmax optimal iff S is subset minimal and there is no other subset minimal solution that is more informative than S.



Combining with equal preferences

- A solution S to GTAP(T,C,Or,M) is skyline optimal iff there is no other solution that is a proper subset of S and that is equally informative than S.
  - All subset minimal, minmax optimal and maxmin optimal solutions are also skyline optimal solutions.
  - Semantically maximal solutions may or may not be skyline optimal.

## Preference criteria - conclusions

- In practice it is not clear how to generate maxmin or semantically maximal solutions (the preferred solutions)
- Skyline optimal solutions are the next best thing and are easy to generate

## Approach

#### Input

- □ Normalized EL TBox
- Set of missing is-a relations (correct according to the domain)
- Output a skyline-optimal solution to GTAP
- Iteration of three main steps:
  - Creating solutions for individual missing is-a relations
  - Combining individual solutions
  - Trying to improve the result by finding a solution which introduces additional new knowledge (more informative)

## Intuition 1



#### Intuitions 2/3



#### Example – repairing single is–a relation



#### Example – repairing single is-a relation



GranulomaProcess <u>i</u> NonNormalProcess GranulomaProcess <u>i</u> PathologicalProcess

## Algorithm - Repairing multiple is-a relations

- Combine solutions for individual missing is-a relations
- Remove redundant relations while keeping the same level of informativness
- Resulting solution is a skyline optimal solution

{InflammationProcess  $\sqsubseteq$  PathologicalProcess, Carditis  $\doteq$  CardioVascularDisease, GranulomaProcess  $\doteq$  PathologicalProcess}

## Algorithm – improving solution

- Solution S from previous step may contain relations which are not derivable from the ontology.
- These can be seen as new missing is-a relations.
- We can solve a new GTAP problem: GTAP(T U S, C, Or, S)

## Example – improving solutions



#### $GranulomaProcess \stackrel{.}{\sqsubseteq} InflammationProcess$

{InflammationProcess  $\sqsubseteq$  PathologicalProcess, Carditis  $\doteq$  CardioVascularDisease, GranulomaProcess  $\doteq$  InflammationProcess}

## Algorithm properties

#### Sound

Skyline optimal solutions

## Experiments

Two use-cases

Case 1: given missing is-a relations
 AMA and a fragment of NCI-A ontology – OAEI 2013

- AMA (2744 concepts) 94 missing is-a relations
   → 3 iterations, 101 in repairing (47 additional new knowledge)
- NCI-A (3304 concepts) 58 missing is-a relations
   → 3 iterations, 54 in repairing (10 additional new knowledge)
- Case 2: no given missing is-a relations Modified BioTop ontology
  - Biotop (280 concepts, 42 object properties) randomly choose is-a relations and remove them: 47 'missing' → 4 iterations, 41 in repairing (40 additional new knowledge)

## **Further reading**

Starting points for further studies

## Further reading ontology debugging

Debugging and Completing Ontologies

 Lambrix P, Completing and Debugging Ontologies: state of the art and challenges, 2019. <u>arXiv:1908.03171</u>

**Debugging Ontologies** 

- Schlobach S, Cornet R. Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies. 18th International Joint Conference on Artificial Intelligence - IJCAI03, 355-362, 2003.
- Schlobach S. <u>Debugging and Semantic Clarification by Pinpointing</u>. 2nd European Semantic Web Conference - ESWC05, LNCS 3532, 226-240, 2005.

## Further reading ontology debugging

Completing ontologies

- Fang Wei-Kleiner, Zlatan Dragisic, Patrick Lambrix. <u>Abduction Framework</u> for Repairing Incomplete EL Ontologies: Complexity Results and <u>Algorithms</u>. 28th AAAI Conference on Artificial Intelligence - AAAI 2014, 1120-1127, 2014.
- Lambrix P, Ivanova V, <u>A unified approach for debugging is-a structure and</u> <u>mappings in networked taxonomies</u>, *Journal of Biomedical Semantics* 4:10, 2013.
- Lambrix P, Liu Q, <u>Debugging the missing is-a structure within taxonomies</u> <u>networked by partial reference alignments</u>, *Data & Knowledge Engineering* 86:179-205, 2013.