
TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

1 Introduction
What makes C++ (and C) different from many other modern programming languages is
the fact the memory management is left to a large extent in the hands of the programmers
themselves.

If you have a background in Java, Python or C# (to name a few) then you are likely
used to not having to worry about when an object is destroyed since these languages are
Garbage Collected. In such languages you can just create objects, usually with an operator
called new, and then leave it up to the garbage collector to determine when that object
should be destroyed. This means that you don’t ever have to worry about destroying
objects, nor do you have to consider whether objects still exist or not since the garbage
collector will keep objects alive as long as they are reachable in your code. This is not the
case in C++.

C++ prioritizes efficiency and control over ease-of-use. A garbage collector makes code
easy to write and manage since there is no need to keep track of how the memory is used.
But this does not come for free. A garbage collector is a very complicated system that
requires a lot of overhead, both in memory and in CPU cycles. Because of this (and other
historic reasons) C++ has opted to not use a garbage collector and instead leave the issue
of memory management for the programmer to solve themselves.

This might seem like a bad thing, but not using a garbage collector comes with many
benefits. It allows the programmer to tailor their memory management for their specific
problem or program. This can greatly benefit performance of said program since it does
not require a large garbage collection system to run in the background. This frees up more
CPU cycles to be used by the actual program.

Another benefit is the fact that the programmer has full control of when an object is
created and destroyed. This can allow for greater fine-tuning, but can also allow the
program to have better understood behavior which makes debugging a lot easier.

Because of this it is important to understand how memory works, how it is managed and
how to access it. Knowing this will also help you make better decisions in your code. This
tutorial aims to be a (somewhat) complete guide to memory and memory management.

2 What is memory?
There are two things we usually refer to when we say “memory”. The first one is data
stored on a harddrive. This is usually structured into files that are managed by the file
system. This is not what we mean when we say memory.

Whenever we say “memory” in the context of C++ (and programming in general) we
refer to the Main Memory (or RAM) where data related to a currently running program
is stored. Things like variables, data related to function calls and the machine code for
the currently running program are stored here.

We can think of memory as a sequence of bytes. A byte can be thought of as an integer
that can store a value between 0 and 255 (it consists of 8 bits). So memory is essentially
an “array” of bytes. This means that each byte has an index which is called its address.

1

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

On 32-bit systems an address takes 32-bits (4 bytes) while on a 64-bit system an address
takes (you guessed it) 64-bits (8 bytes). We are going to assume that an address takes
64-bits to represent, but keep in mind that this can differ between different platforms.

So an address can refer to 264 different bytes (i.e. 16 billion gigabytes, which is a lot).
This is more than enough to refer to all available RAM on a given computer. Note that
for 32-bit systems we can only refer to 232 = 4 gigabytes. This is not enough for modern
computers which is why 64-bit systems are the current standard.

3 So how is memory used by the program?
The operating system will distribute the memory to all programs running on the computer.
Each program only has access to a its own portion of the memory. On older systems
programs had access to all the available memory, but this lead to a lot of security issues.
Because of this modern operating systems are designed to only allow a program to access
its own assigned memory. The operating system is responsible for making sure that each
currently running program has access to memory. It also controls how much memory they
have access to and so on.

If a program tries to access (either by writing to or reading from) memory outside of
its assigned portion, the operating system will immediately kill the program and give an
error. This error is commonly called segmentation fault on Linux.

Each program need access to at least some memory since all local variables and each
function call requires memory. So if the program runs out of memory it will result in
severe errors. So we need to understand how this works to ensure that the programs we
write plays nicely with the operating system.

3.1 Wait... What do you mean “function calls requires memory”?

The fact that a function call requires memory might seem a bit unintuitive since functions
are just code, but it is true. Think of it like this: when a function gets called the program
starts executing code from somewhere else (i.e. the code inside the function). But once
the function is complete the program has to jump back to the position in the code where
the function was called. Consider the following example:

1 # include <iostream >
2
3 void fun ()
4 {
5 std :: cout << " Function called !" << std :: endl;
6 }
7
8 int main ()
9 {

10 std :: cout << " Program start ..." << std :: endl;
11 fun ();
12 std :: cout << " Program end!" << std :: endl;
13 }

2

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

The program starts execution on line 10 and will continue executing the code inside main()
until it reaches line 11. Here the program will abruptly jump to line 5 and start executing
the fun() function. Once fun() is done, the code needs to jump back to where it came
from, meaning it has to go back to line 11 and continue execution from that point onward.

For the program to be able to do this it has to remember where it needs to jump after a
function call is done. This is more clearly demonstrated in an example where a function
is called more than once, like this:

1 void fun ()
2 {
3 std :: cout << " Function called !" << std :: endl;
4 }
5
6 int main ()
7 {
8 std :: cout << " First call: " << std :: endl;
9 fun ();

10 std :: cout << " Second call: " << std :: endl;
11 fun ();
12 }

Here fun() is called twice, once on line 9 and once on line 11. Each of these calls requires
the program execution to continue in different places. Hopefully this clarifies that each
time a function gets called the program have to remember where to jump back, since this
location might differ from call to call. The only way it can remember this is by using the
memory.

3.2 OK... But what about local variables?

Local variables that are declared inside a function also have to be stored in memory. We
cannot store one set of local variables per function, we need to do it per function call.
Why is that?

A function might call itself (called recursion) and in that case each time it calls itself it
will need to have a new set of variables since those values might be different for each call.
Due to recursion it might also be the case that once a function call returns it might end
up in a previous call to the same function, which of course have different values for the
local variables.

This is more easily explained with an example. Consider this recursive function:

1 int factorial (int n)
2 {
3 if (n == 0)
4 return 1;
5 else
6 return n * factorial (n - 1);
7 }

3

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

Note that parameters that are passed to functions are considered local variables.

If we now call factorial(3) the program will jump to the factorial code, and set n
to be 3. Since n != 0 the program will take the else-branch and call factorial again but
this time with n = 2. Once this function call is done the program has to jump back to
the previous call to factorial where n = 3. Because of this each call to a function must
store its own copy of n, because otherwise this information would be lost in the recursive
calls.

So there are potentially a lot of things that needs to be stored for each call to a function,
more specifically it needs to store where the function was called from, and all of its
parameters and local variables. Most platforms solves this by using a stack structure
inside the memory.

4 The stack
Most (almost all) platforms uses a similar way to structure the memory of a program in
order to solve the problems presented in the previous section(s).

Each function call will store what is called a Stack Frame in the memory. A Stack Frame
is just a sequence of memory where all local variables are stored as well as the return
address (the place in the code where the function should jump to once it is done). In this
tutorial we will represent Stack Frames like this:

local variables...
return address

The Stack simply refers to the portion of a programs memory that contains these stack
frames. They are always stored in sequence in the memory, which means that whenever a
function gets called its stack frame is placed on the next available position in the memory.

As an example let us consider the factorial function defined in the previous section. If
we call factorial(3), once we reach the call where n = 0 we will have the following stack
frame:

n = 0
return address
n = 1
return address
n = 2
return address
n = 3
return address

current frame

When factorial(0) returns, the program execution will jump to the place in the code
specified by the current stack frames return address, and then the previous stack frame
will be the active one instead. Meaning it would look like this:

4

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

n = 1
return address
n = 2
return address
n = 3
return address

current frame

Most variables we create will be stored on the stack in a stack frame for some function.
Remember that main is a function which of course also has a stack frame. In fact all code
that gets executed in C++ must reside in a function call.

We say that local variables have automatic storage duration, meaning that the variable will
be destroyed when the stack frame it resides in is destroyed (which is handled automatically
when we return from a function).

More specifically: A variable with automatic storage duration will only exist for as long
as its enclosing scope is being executed (curly brackets).

4.1 But what about global variables?

One can argue that global variables are the complete opposite of local variables, Global
variables are not bound to a specific function call. Their value is the same across the whole
code base and if we change it somewhere that change should be reflected everywhere.
Meaning we cannot store global variables in a stack frame the same way we do with local
variables.

Here is an example of a global variable:

1 // global variable
2 int global { 0 };
3
4 void fun(int n)
5 {
6 global += n;
7 std :: cout << global << std :: endl;
8 }
9

10 int main ()
11 {
12 std :: cout << global << std :: endl; // will print 0
13 fun (3); // will print 3
14 fun (2); // will print 5
15 fun (0); // will print 5
16 }

Notice that the value of the global variable is retained between each function call, and is
modified by each call so clearly it is not related to the local stack frames for each function
call.

5

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

Side note: global is not truly a global variable since it is only available in this imple-
mentation files (.cc or .cpp file). To make it truly global (i.e. to make it available in
all implementation files) we have to declare it in a header file (.h or .hpp file) as such:
extern int global;

And then define it in one implementation file, like this: int global { 0 };

Then, and only then, will it be available for everyone that includes the header file that
contains the declaration. This is related to linking, which is a part of the compilation
process and not relevant for memory so we will leave it there.

4.2 So how do we store global variables?

Exactly where and how global variables are stored in memory varies from platform to
platform. For the purposes of this tutorial it is not important to know exactly where in
memory global variables are stored. However it is important for us to know that global
variables have something called static storage duration.

Static storage duration means that the variable will be destroyed at the end of the program
(after we have returned from main). Most variables that have static storage duration are
also created at the start of the program (before main starts executing). There is however
an exception, and that is something called static local variables.

4.3 What are static local variables?

To explain what static local variables are, let us look at an example:

1 void fun(int n)
2 {
3 static int variable { 0 };
4 variable += n;
5 std :: cout << variable << std :: endl;
6 }
7
8 int main ()
9 {

10 fun (3); // will print 3
11 fun (2); // will print 5
12 fun (0); // will print 5
13 }

This has a very similar behavior to the previous example, but there are two major differ-
ences:

— variable is created once we call fun for the first time (while global variables are
created before main is executed).

— variable is only accessible inside the fun function.

So a static local variable is like a global variable that is only available from its local scope
(fun in this example) and is created the first time that scope is being executed.

6

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

5 Pointers
Now that we understand the stack and how variables are stored it is time to move on with
our discussion on memory. Recall that the smallest building block of memory is a byte.
Also remember that each byte can be uniquely identified by their address. A variable
can also be identified by an address. However, a variable can take up more than one
byte in memory. For example variables of type int typically occupies 4 bytes in memory.
Each byte in an int has its own address which theoretically means that all four of those
addresses can be used to identify the variable. But this way of thinking will quickly become
problematic. To see why consider the following two questions:

— What is the value of the variable located at address x?

— Which byte in the variable is located at address x?

To answer these questions we need to know two things:

— where the variable begins

— How many bytes the variable occupies

To demonstrate what is meant here, suppose we have an int variable stored at address 8,
9, 10 and 11, like this:

8 9 10 11

Now suppose we refer to the int stored at address 10, we know that int values are 4
bytes large but how are we supposed to know where the actual value begins? We might
be in any of these situation:

8 9 10 11

8 9 10 11

8 9 10 11

8 9 10 11

To solve this problem the terminology is adjusted so that the expression “int variable
stored at address 8” means that the variable begins at address 8, so we uniquely identify a
variable by its address (i.e. where in memory it begins) and its size (i.e. how many bytes
it occupies). So we adjust our model to be similar to this diagram instead:

8 9 10 11

7

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

5.1 Storing addresses

Because of the existence of addresses there are generally two ways to uniquely identify
variables: using their name or their address. But what data type is an address? Remember
that an address itself is usually not enough, we also need to know what type of data is
stored at said address. This is where the concept of a pointer comes in. A pointer is
simply a data type which stores an address and keeps track of what type is stored there.
It generally looks like this: int*, where the * indicates that this is a type that stores an
address, and the int signifies which data type is stored at that location. You can create
a pointer like this:

int* pointer;

Remember that we store addresses in this variable, so the natural question should be:
where do we get addresses from? How do we retrieve an address of a variable? There are
many situations where an address might appear, but the most simple case is when we try
to find the address of a specific variable. This is done with the & operator. This works
like this:

1 int x { 5 }; // create a variable
2 int* pointer { &x }; // store a pointer to ’x’

But just storing an address seems pretty pointless. It would be quite unnecessary to store
it unless we can actually access whatever is stored at the address. Luckily this is covered
with the use of the * operator which is a unary prefix operator, meaning you put the *
before the pointer (just like the & operator). See the following example:

1 int x { 5 }; // create a variable
2 int* pointer { &x }; // store a pointer to ’x’
3
4 // retrieve the value at the address stored in ’pointer ’
5 // as an int and print it (meaning we ’ll print 5)
6 std :: cout << * pointer << std :: endl;

Programmers don’t always think of pointers in terms of addresses, instead it is usually
helpful to think of them as indirections. The term indirection in Computer Science refers
to an abstraction where something refers to something else. In this instance it means that
a pointer refers to another variable somewhere else. It is common to represent pointers as
arrows between objects. Something like this:

x: 5

pointer:

This allows us to think of pointers as something that refers to another object, which is its
primary use. This type of indirection can be achieved in other ways, for example by using
references or iterators but most of these indirections are secretly pointers themselves.

We see through the use of a pointer we can refer to x in multiple ways: either by just
referring to its given name x, or through its address which we’ve stored in pointer. But

8

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

so far we’ve only seen how to read the value of x through the pointer, but how do we
write?

5.2 Assignment and indirection

Since pointers themselves are variables that store addresses this means that we can change
what address is currently stored. We do this similarly to any other variable using the =
operator. See the following example:

1 int x { 5 };
2 int y { 3 };
3 int* pointer { &x };
4
5 std :: cout << * pointer << std :: endl; // print 5
6 pointer = &y; // change the stored address
7 std :: cout << * pointer << std :: endl; // print 3

But what if we want to modify the object stored at the address? Well, then we once
again have to use the so-called dereference operator (i.e. the * operator). The act of
dereferencing a pointer means to retrieve the object stored at the other end of a pointer,
so to modify the object we point to we first dereference the pointer and then do the
modification. See the following:

1 int x { 5 };
2 int* pointer { &x };
3
4 std :: cout << * pointer << std :: endl; // print 5
5 * pointer = 3; // dereference and then assign
6 std :: cout << * pointer << std :: endl; // print 3

Note that dereferencing a pointer gives us full access to the underlying object, so we aren’t
limited to assignments. Anything you can do with an int (in this example) can be done
with the dereferenced pointer. So:

1 int x { 5 };
2 int* pointer { &x };
3
4 * pointer = * pointer + 3;
5 ++(* pointer);
6 &(* pointer); // take the address of ’x’

The final expression above (line 6) demonstrates an interesting relationship between & and
*, namely that they are each others inverses. The expression &*pointer gives you the
address to x, while the expression *&x is equivalent to x. Meaning they cancel each other
out.

pointer is an indirection so through it we still indirectly have access to the variable x,
but it requires some extra steps (i.e. we need to dereference it).

9

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

5.3 Pointers are also variables

An interesting thing about pointers is that they themselves are variables, which means
they also have an address. This means that you can have pointers to other pointers. Study
the following example:

1 float f { 1.23f };
2 float * ptr1 { &f };
3 float ** ptr2 { &ptr1 };
4
5 // all three of these print the same thing
6 std :: cout << f << " = "
7 << *ptr1 << " = "
8 << ** ptr2 << std :: endl;

Here we see that you can have pointers to anything, including other pointers by adding a
* to the end of the type. Each * represents a layer of indirection. So if we have something
like this:

1 char c { ’a’ };
2 char* p1 { &c };
3 char ** p2 { &p1 };
4 char *** p3 { &p2 };

Then the structure looks like this:
c: ’a’p1:p2:p3:

This diagram demonstrates the idea of layered indirections where we through p3 have
access to every other variable in the structure through the pointers. To retrieve them you
just have to repeatedly apply the dereference operator, like this:

***p3 -> **(*p3) -> **p2 -> *(*p2) -> *p1 -> c

5.4 Pointing to nothing (nullptr)

One thing to note about pointers is that we can also have pointers that are “empty”,
meaning they point to no object what-so-ever. This is in fact the default-value for pointers,
so if we initialize a pointer variable with empty braces then it will point to nothing.

However, a pointer variable must always store some address, which means that “pointing
to nothing” must, in practice, still be represented as some type of address. This special
“point to nothing” address is called nullptr and is usually (on most systems) represented
with address 0x0. A pointer that contains the nullptr address is called a null pointer.

To create a null pointer one can either default-initialize it or assign nullptr to it:

1 float * ptr1 {};
2 double * ptr2 { nullptr };
3
4 int x { 3 };

10

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

5 int* ptr3 { &x };
6
7 // make ptr3 a null pointer
8 ptr3 = nullptr ;

One have to be very careful however when using null pointers, because it is undefined
behavior to dereference the pointer (i.e. the expression *ptr is undefined behavior if ptr
is nullptr). Usually, on most systems, this will result in a crash since modern operating
systems does not allow read or write access to address 0x0.

So if you need to dereference a pointer you must first make sure that it cannot be nullptr
under any circumstance. Usually this is done by checking before dereferencing, or by
making sure that there are no executions of the program where a pointer might end up as
a null pointer.

5.5 Example

In this section we will study an example of when pointers (indirections) can be useful.
This example will be slightly contrived just to keep things simple and to the point.

Suppose we are writing a simple database program where we store employees and organiza-
tions. Each employee store their name, their salary as well as their employer organization.
Similarly, each organization store their name as well as their income. At first glance we
might represent it like this:

1 struct Organization
2 {
3 std :: string name;
4 int income ;
5 };
6 struct Employee
7 {
8 std :: string name;
9 int salary ;

10 Organization employer ;
11 };

But an interesting problem arises if we represent the employee like this. Consider this
example:

1 int main ()
2 {
3 Organization liu { "LiU", 200 };
4 Employee kim { "Kim", 40, liu };
5 cout << kim. employer . income << endl; // prints 200
6 liu. income = 250; // LiU got a grant so their income increased
7 cout << kim. employer . income << endl; // STILL prints 200, why?
8 }

11

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

Here we note that the employer organization stored in kim is not the same object as liu.
This is because we are storing a copy of liu in kim, not liu itself. This would be even
stranger if we had multiple employees at LiU, cause then each employee would have their
own copy of liu. To aid in the understanding a diagram is provided:

name: "LiU"

income: 200
liu:

name: "LiU"

income: 200
employer:

salary: 40

name: "Kim"

kim:

So how do we solve it so that all employees of liu have direct access to the original liu?
Well, if we store the address of the original Organization then we will always have access
to it from inside an Employee. In particular the Employee object will see any potential
changes that occurs in the Organization object, which is very useful for keeping our data
synchronized over all Employee objects.

This would mean our structures would look like this instead:

1 struct Organization
2 {
3 std :: string name;
4 int income ;
5 };
6 struct Employee
7 {
8 std :: string name;
9 int salary ;

10 Organization * employer ;
11 };

The main program from before must be modified now since an Employee no longer stores
an Organization object directly, but instead stores a pointer, so now we initialize it with
the address of our organization (i.e. &liu). We also need to dereference the employer
pointer every time we want to access something inside it. Something like this:

1 int main ()
2 {
3 Organization liu { "LiU", 200 };
4 // note that we now pass the address of ’liu ’ to kim
5 Employee kim { "Kim", 40, &liu };
6 cout << (* kim. employer). income << endl; // prints 200
7 liu. income = 250;
8 cout << (* kim. employer). income << endl; // prints 250
9 }

12

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

The syntax (*kim.employer).income means that we take the pointer employer stored
in kim and dereference it to get access to the Organization object it points to, then we
access the field called income in said Organization object. This construction can however
be simplified by writing: kim.employer->income where -> now means that we take the
pointer to the left (kim.employer) and access the income field at the other end of the
pointer.

So the main program simplifies to:

1 int main ()
2 {
3 Organization liu { "LiU", 200 };
4 // note that we now pass the address of ’liu ’ to kim
5 Employee kim { "Kim", 40, &liu };
6 cout << kim.employer -> income << endl; // prints 200
7 liu. income = 250;
8 cout << kim.employer -> income << endl; // prints 250
9 }

The structure above results in the following diagram, in particular note that there is only
one Organization object now:

name: "LiU"

income: 200
liu:

name: "Kim"

salary: 40

employer:

Note: We could also store the organization as a reference, but then an employee cannot
change jobs because a reference can never change what it refers to.

6 Dynamic Memory
In the previous section we saw an example of using pointers as indirection to allow us to
share the same data over multiple places in the code (in the example seen before we had
several Employee objects that shared the same Organization objects).

But pointers has one other major use case. Note that an object can generally be uniquely
identified in two different ways: using their assigned variable name, or by its address (and
type). But names can only be assigned to variables that are declared statically (meaning
during compile time), but sometimes we want to dynamically create objects (meaning
while the program is running). In that cases we cannot create variable names, so then we
can only access the created objects through pointers.

The typical example for when this becomes relevant is clearly demonstrated by studying
so-called linked structures, for example linked lists.

13

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

6.1 Linked list

There are multiple strategies for storing sequences of data, a very common way is to use
arrays: meaning we store the elements sequentially in memory. This means that each
element is stored right next to the previous element. Arrays have many benefits, but we
will not be discussing them here.

Another way to store sequences of data is to use a so called linked structure. Instead of
enforcing that all elements are stored next to each other we can store them in a more
fragmented manner where each element keeps track of where in memory to find the next
element. So we link the elements together.

The most common linked structure is the (singly) linked list. Here each element is stored
as a node which is a structure that looks like this:

1 struct Node
2 {
3 int value {}; // value currently stored
4 Node* next {}; // where to find the next node
5 };

With this we can now create sequences of elements, for example like this:

1 // create all nodes
2 Node n1 { 1 };
3 Node n2 { 2 };
4 Node n3 { 3 };
5 // link the nodes together
6 n1.next = &n2;
7 n2.next = &n3;

This is, as we will see shortly, not the best way to construct linked lists but it works for
our current intentions. Below is a diagram to help visualize what is happening:

value: 1

next:
n1:

value: 2

next:
n2:

value: 3

next:
n3:

Since we will be drawing these diagrams often it is common to simplify the visual repre-
sentation of a linked structure to something like this:

1 2 3

14

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

Where the left box represents the value field, and the right box represent the next field.

Now usually when constructing larger components like lists and so on, we want to simply
their usage. This is most commonly done by packaging the structure into a class with all
the appropriate functions.

What we need to note about such a class is that it only have to store a pointer to the
first node, because all subsequent nodes will be found by following the corresponding next
pointers. This means that the class only need to store a pointer.

In this example we will implement a so-called stack using a linked list. Something like
this:

1 class Stack
2 {
3 public :
4 void push(int value);
5 int pop ();
6 int& top ();
7 bool empty () const ;
8 private :
9 Node* first {};

10 };

Where the push() function will add an integer to the beginning of the linked structure
and pop() will remove the first value from the stack and return it. We also have an access
function called top() which returns a reference to the first value. Finally we need to know
whether the stack is empty or not, which we do with the empty() function.

In this example we will note that the stack is empty if first is nullptr.

We will start by looking at the implementation of the void Stack::push(int value)
function. Logically we must do the following to implement it:

1. Create a node which has its value field set to the parameter.

2. Make the newly created nodes next field point to the start of the list.

3. Update the first pointer so that it points to the newly created node, thus making
our new node the first in the list.

Here are diagrams to demonstrate the steps for a list already containing the values 2 and
3 where we push the value 1:

first:list:

1

2 3

(a) step 1

first:list:

1

2 3

(b) step 2

first:list:

1

2 3

(c) step 3

So how do we realize this with code? Well one might attempt something like this:

15

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

1 // NOTE: THIS CODE CONTAINS AN ERROR
2 void Stack :: push(int value)
3 {
4 Node new_node { value };
5 new_node .next = first;
6 first = & new_node ;
7 }

However, recall from section 4 that variables declared inside a function will be destroyed
once the function returns, which means our newly created node cannot exist outside of
the function scope. This will lead to strange memory errors since the node doesn’t exist
anymore and might have been overwritten with something else.

What we need to solve this problem is to have functionality which creates new values or
objects without destroying them at the end of the function scope. Essentially, we want
to be able to create objects that aren’t destroyed automatically. This is what dynamic
memory achieves.

6.2 Introduction to dynamic memory

In order to create objects that outlives the scope we must first establish where those object
should end up. We cannot place them in the stack (section 4) since then we would “block”
a variable slot, thus being unable to freely use the stack as intended. So we must place
them elsewhere.

The operating system usually grants a program more memory than is required by the stack,
so we can use that leftover memory to store our freestanding objects in a less structured
way than the stack. This section of the memory is usually called The Heap (historically
this was because this memory used to be structured as a heap data-structure, but that is
usually not the case anymore). Another benefit of having a less structured section of the
memory (compared to the stack) is that we can always request more memory from the
operating system if it is needed and we can have “gaps” in the memory without any issues
since the structure of the heap doesn’t require the objects to be placed in sequence.

When putting objects in the heap we generally have to do two things:

1. Allocate the memory: this means finding a suitable position in the heap not already
occupied by some other object where the object we want to create fits and reserving
it (meaning no one else is now allowed to occupy that memory).

For example: if I want to allocate an object that takes 16 bytes, then allocation
means asking for an address inside the heap which has at least 16 consecutive bytes
that are not occupied by any other object, we also reserve that memory so no other
object can use those bytes.

2. Construct the object: Once we’ve received a suitable position in memory it is time
to actually occupy that memory with an object which is initialized either by calling
an appropriate constructor or by using aggregate initialization.

So here it is important to note the distinction between the two steps. The first step simply
makes sure that we reserve a piece of the memory for our object, but after the completion

16

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

of said step we still don’t have a valid object. The second step simply means initializing
an object inside a portion of the memory.

These two steps can be performed independently of each other (we will see how to do that
later on), but they will more commonly be done together using the operator called new,
so that is where we will start our discussion.

6.3 operator new

By default the language has a builtin operator called new which allocates and constructs
objects on the heap. It syntactically is used like this: new Type{parameters} by using
aggregate initialization or, if you want to do direct initialization: new Type(parameters)
(direct and aggregate initialization are discussed in seminar 1). Here Type can be any
datatype, include user-defined types like classes, structs, unions and so on, while parameters
represents parameters passed to either a constructor, aggregate initialization or a single
parameter for copy initialization.

What is important to note here is that new will allocate the space for the object, then
construct it and then finally return the address of the newly constructed object. So for
example: new int{3} will allocate 4 bytes (if we assume int is 4 bytes), then initialize
those bytes to be equivalent to the value 3 and then finally return a pointer of type int*
to the int we just created.

Note: As previously discussed, these objects do not have names since they are created
during execution of the program. To fully understand what this means, look at the
following example:

1 int x { };
2 while (std :: cin >> x)
3 {
4 std :: string * ptr { };
5 if (x > 0)
6 {
7 // create a string of x number of ’+’ characters
8 ptr = new std :: string (x, ’+’);
9 }

10 }

How many std::string objects are actually created? Well, it is impossible to say before
we actually execute the program, because it depends on how many integers the user enters
via std::cin and – more importantly – it also depends on what does integers where. Each
execution of the program will likely lead to different results.

But how many automatic variables are created? Well, x is created once per execution of
the program, and each iteration in the while-loop we will create and then destroy ptr.

So at any given point in the code the compiler knows how many automatic variable cur-
rently exist by just looking at the source code. However that is not true for dynamically
constructed objects, since the number of objects in the heap directly depend on data that
is unknowable by just reading the source code. This is why we cannot assign a name to

17

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

the dynamically constructed object, and instead refer to it through its address (specifically
through a pointer).

6.4 When do dynamically allocated objects disappear?

The natural follow up question now is to ask about when dynamically objects disappear
or get destroyed. The short answer is: when we tell them to.

Only objects created statically (i.e. automatic, global and static variables) are auto-
matically destroyed in C++. When these variables are destroyed is well defined by the
language. It is so well defined in fact that we can know – just by looking at the source
code – at what point in the code they will be destroyed.

The same is not true for objects created dynamically (using for example new). These
objects are meant to bypass the rules that statically created objects follow, they are meant
to be used as objects that we manually control.

How we deal with dynamically memory differ however from language to language. As
mentioned in section 1 some languages like Python or C# use a garbage collector. A
garbage collector is a system which keeps track of all the allocated objects and regularly
pauses the program to check if there are objects that are being unused (this explanation is
heavily simplified). This system is independent from the compiler in the sense that when
you run your program you will also automatically run the garbage collector.

As you might imagine, a garbage collector makes life easy for programmers because we
don’t have to worry about filling up our memory with unused objects since the garbage
collector will regularly deal with them. But this doesn’t come for free. The garbage
collector will impact how fast your program can execute. The garbage collector will also
make the behavior of your program nondeterministic, meaning we cannot predict by simply
reading the program exactly what the computer will do at any given point in the execution
because the garbage collector might briefly take control at any point.

Because of the performance loss and because C++ aims to be deterministic (meaning it
will behave exactly the same each time you run the program with the same indata) it does
not use a garbage collector.

Instead what is done in C++ is that we manually insert points in the code where objects
are destroyed. I.e. when execution reach that point a particular object will be destroyed
and that memory will be freed up to be used for something else. What is important to
note is that this is somewhat similar to what the compiler does for automatic variables,
since all automatic variables are destroyed at the end of the scope they were created in.
But we must instead manually insert those points for our dynamically constructed objects.

Note that this is different from garbage collection because for automatic variables the
compiler will insert their point of destruction automatically without ever having to run
the program, while garbage collectors exclusively deal with the destruction of dynamically
created objects during the execution of the program.

Exactly how this is done depends on how we dynamically constructed the object, but so
far we’ve only seen how to dynamically create objects using new. Because of this we will
begin by explaining and discussing the counter-part of new which is called delete.

18

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

6.5 operator delete

Recall that new will allocate and construct an object, and then return a pointer to said
object. This object will exist until we delete it. The way we delete said object is to pass
its address to the operator called delete.

Here is an example on what this looks like:

1 int x { };
2 while (std :: cin >> x)
3 {
4 std :: string * ptr { };
5 if (x > 0)
6 {
7 // construct object dynamically
8 ptr = new std :: string (x, ’+’);
9 }

10
11 // ... do stuff ...
12
13 if (x > 0)
14 {
15 // destroy the dynamically constructed
16 // object by explicitly passing its address
17 // to the delete operator .
18 delete ptr;
19 }
20 }

The delete operator will do two things:

1. Destroy the object: Do any cleanup work necessary for the object to safely be re-
moved. This essentially means calling the destructor of the object.

Note: the fundamental types does not have destructors, so for those particular
objects this step is skipped.

2. Deallocate the object: Return the allocated memory to the pool of available memory.
This operation can – depending on the implementation – be quite costly, but since
we explicitly call delete we can control when we pay this cost.

Do note that these steps are the opposite of the two steps done by new and in the opposite
order. So the full process is:

1. Allocate the memory (new)

2. Construct the object (new)

3. Use the object

4. Destroy the object (delete)

5. Deallocate the memory (delete)

19

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

6.6 Back to the stack

We will come back to discuss the mechanics of dynamic memory, but for now we have new
and delete which is all we need to correctly implement the linked stack we began working
on in section 6.1.

Remember that we tried to implement the void Stack::push(int value) using auto-
matic variables which lead to issues since the automatic variable gets destroyed once we
reach the end of the function. We can now solve this problem using new, like this:

1 void Stack :: push(int value)
2 {
3 Node* new_node { new Node { value } };
4 new_node ->next = first;
5 first = new_node ;
6 }

Using this implementation instead of the implementation in section 6.1, we see that the
Node object will persist in memory after the function call (since we haven’t manually
destroyed it using delete).

With this we will now have a fully working push() function, meaning we can move on to
its counter-part: int Stack::pop().

The implementation must do the following:

1. Store the value of the current first node.

2. Set first to be the next node.

3. Destroy the previous first node.

Here are diagrams to show the steps in a list containing the values 1, 2 and 3:

first:list:

1 2 3

result: 1

(a) step 1

first:list:

1 2 3

result: 1

(b) step 2

first:list:

2 3

result: 1

(c) step 3

An attempt to implement this might look like this:

1 // NOTE: THIS CODE CONTAINS AN ERROR
2 int Stack :: pop ()
3 {
4 int result { first ->value };
5 first = first ->next;
6 return result ;
7 }

20

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

However this doesn’t delete the previous first node (i.e. it doesn’t perform step 3). We
need to call delete on the previous first node, otherwise it will exist in memory forever
(or until the program ends), and since we overwrote the first pointer we have now lost
the address to that node. This leads to a problem where we can no longer delete the node
since we’ve lost where in memory it was. This is called a memory leak.

6.7 Memory leak

One of the major problems that gets introduced by using dynamic memory is the so-called
memory leak. This occurs when we forget to delete a dynamically created object, meaning
it occupies memory even when its long past its use. The most common cause of memory
leaks is when losing track of an objects address, meaning there is no way we could delete
that object.

Here are some suggestions for how to avoid memory leaks:

— Make sure that for each new call all execution paths lead to a delete call eventually.

— Delete objects as soon as possible after you are done with them.

— Before assigning anything to a pointer, think carefully whether you need to delete
the object it pointed to previously.

— Use the destructor to delete all objects that were dynamically created during the
lifetime of the class.

— Don’t dynamically construct objects unless you absolutely have to. Remember that
you can still get pointers to statically allocated objects using operator&.

6.8 Fixing the pop() function

Now that we know more about memory leaks we can address the bad implementation of
Stack::pop() given in section 6.8. The issue here is that we are assigning to first which
means we lose whatever object it was pointing to previously. We fix that by taking a care
around the assignment to first, like this:

1 int Stack :: pop ()
2 {
3 int result { first ->value };
4 Node* old { first }; // remember old node
5 first = first ->next;
6 delete old; // delete old node
7 return result ;
8 }

Note that the order we do things here are important. In order to find what value first
should point to we need the old node to exist so that we can find the next element. So
once we’ve updated first then, and only then, can we delete the old first node. If we were
to delete it first, then there are no guarantees that the next field still exists afterwards
meaning we then would lose the whole list.

Below is a diagram showing what is happening:

21

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

first:list:

1 2 3

old:

(a) Remember old node

first:list:

1 2 3

old:

(b) Point first to the next node

first:list:

1 2 3

old:

(c) Delete old node

6.9 Completing the stack

To summarize what we have done in this chapter, below you can find the whole imple-
mentation of our linked stack:

1 class Stack
2 {
3 public :
4 void push(int value)
5 {
6 Node* new_node { new Node { value } };
7 new_node ->next = first;
8 first = new_node ;
9 }

10 int pop ()
11 {
12 int result { first ->value };
13 Node* old { first }; // remember old node
14 first = first ->next;
15 delete old; // delete old node
16 return result ;
17 }
18 int& top ()
19 {
20 return first ->value;
21 }
22 bool empty () const
23 {
24 return first == nullptr ;
25 }
26 private :
27 Node* first {};
28 };

22

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

6.10 Dynamic Arrays

new is used to allocate singular objects somewhere in memory. However, it is quite common
that we want to store several objects of the same type sequentially in memory, meaning we
want to store them within consecutive addresses. This is something we generally cannot do
with new since there are no guarantees that consecutive allocations will have consecutive
addresses.

This concept of storing multiple objects of the same type in sequence is called an array.
During the seminars we will see how to use static arrays (i.e. arrays that are allocated
during compile time). In this document we will however see how to create dynamic arrays
(i.e. arrays that are created during the execution of our program).

Dynamic arrays are allocated and constructed using the special operator called new[]. It
is used like this:

int* array { new int[3] { 1, 2, 3 } };

The operation new Type[N] will allocate N objects of type Type in sequence in memory.
The constructed objects are guaranteed to reside next to each other. It will appropri-
ately initialize each object in order, either by using aggregate initialization of by calling
appropriate constructors.

These dynamic arrays are then subsequently deallocated and destroyed using the delete[]
operator. For example:

delete[] array;

Which is a different operator from delete. However the only difference is that delete[]
deallocates arrays rather than singular objects. Note that delete[] can only delete arrays
that were allocated with new[].

6.11 malloc() and free()

As previously mentioned the new and delete operators allocate and deallocate memory as
well as construct and destroy the objects residing in that memory. This is different from
how it works in for example the programming language C.

In C there is no complex logic that gets executed when constructing or destroying objects,
so there it is only necessary to allocate and deallocate memory, there is no need for
construction and destruction. Sometimes this is true in C++ as well: we might need to
allocate memory but we do not want to construct any objects there yet. Then we cannot
use new and delete.

Since C++ was originally built on top of C, there are quite a lot of things that are shared
between the languages. One such instance is that the way C deals with memory is also
available in C++, which are through the functions std::malloc (called malloc in C) and
std::free (called free in C).

std::malloc() takes the number of bytes you wish to allocate and returns the address of
the first byte allocated. So if we for example want to allocate space for 4 int objects we
could write: std::malloc(4 * sizeof(int)).

23

TDDD38/726G82 - Advanced programming in C++ Pointers & Dynamic Memory

Note: std::malloc() does not set the bytes to anything in particular, whatever happens
to reside in the memory is what you get. It is up to you to actually set those bytes.

std::free() takes an address to the beginning of a block of memory allocated using
std::malloc() and deallocates it.

Note: std::free() will crash your program if you pass it anything that was not allocated
using std::malloc() so be careful. Note that it doesn’t touch the data itself, it only marks
that memory as free to use for something else.

It is exceedingly rare that you actually need to use std::malloc and std::free in C++,
the vast majority of the time new and delete are sufficient. In this course for example,
we will never use std::malloc or std::free.

24

	Introduction
	What is memory?
	So how is memory used by the program?
	Wait... What do you mean ``function calls requires memory''?
	OK... But what about local variables?

	The stack
	But what about global variables?
	So how do we store global variables?
	What are static local variables?

	Pointers
	Storing addresses
	Assignment and indirection
	Pointers are also variables
	Pointing to nothing (|nullptr|)
	Example

	Dynamic Memory
	Linked list
	Introduction to dynamic memory
	|operator new|
	When do dynamically allocated objects disappear?
	|operator delete|
	Back to the stack
	Memory leak
	Fixing the |pop()| function
	Completing the stack
	Dynamic Arrays
	|malloc()| and |free()|

