TDDD38/726G82 - Advanced programming in C++ Expression Templates

1 Introduction

In this document we will look at a certain efficiency problem that occurs when creating
classes that perform calculations that can be chained together (we will see what this means
later on). This issue is very common, but in most cases it is left alone. Because of the
relative complexity of solving this problem it isn’t always worth it to solve it especially
since it might affect how long the program takes to compile. However, sometimes the
efficiency for these things matter a lot, and in that case you will have to bring out some
more advanced tools to make it work. So keep that in mind.

2 Starting point

Consider the following (simple) implementation of a mathematical vector:

template <typename T, std::size_t dim = 3>
class Vector

{
public:
template <typename... Ts>
Vector(Ts &&... 1list)
data { std::forward<Ts>(list)... }
{1}
T operator[](std::size_t i) const { return datalil; %}
T& operator [J(std::size_t 1i) { return datalil; 7}
private:
std::array<T, dim> data { 7};
+s

This implementation focuses on accessing each element in the vector with an index. You
could of course add other members, but for the purposes of this example this is enough.
Now, suppose that this vector has the following operators defined:

template <typename T, std::size_t dim>
Vector<T, dim> operator+(Vector<T, dim> const& lhs,
Vector<T, dim> const& rhs);

template <typename T, std::size_t dim>
Vector<T, dim> operator*(Vector<T, dim> const& lhs,
T const& rhs);

We can add two vectors of the same size (and type) and/or multiply a vector with a scalar.
One might imagine more variants of these operators, as well as more operators. But for
the purposes of this demonstration these are enough.

One thing to note here is that each of these operators will not modify any of the existing
vectors, but will instead store the result in a new vector constructed from the operators
(which is the expected behaviour).



TDDD38/726G82 - Advanced programming in C++ Expression Templates

Just for reference, here is a way to implement these operators:

template <typename T, std::size_t dim>
Vector<T, dim> operator+(Vector<T, dim> const& lhs,
Vector<T, dim> const& rhs)

{
Vector<T, dim> result { };
for (std::size_t i { 0 }; i < dim; ++i)
{
result[i] = 1lhs[i] + rhs[i];
}
return result;
}

template <typename T, std::size_t dim>
Vector<T, dim> operator*(Vector<T, dim> const& lhs,

T const& rhs)

{

Vector<T, dim> result { };

for (std::size_t i { 0 }; i < dim; ++1)

{

result[i] = 1lhs[i] * rhs;

}

return result;
}

Now we have set the stage for the problem in question.

Disclaimer: Do note that writing code this way is not a problem itself, the simplicity of
this implementation is a very good reason for writing this code. I usually recommend that
you keep your code simple. But unfortunately the reality of the situation is that there is
often a pay-off between simplicity and efficiency. So for the purposes of this demonstration
we will prioritize efficiency over simplicity. Keep that in mind: you should avoid writing
code as complex as the one presented below, unless it is absolutely necessary.

But before we get to a solution, let’s discuss what the problem is.



TDDD38/726G82 - Advanced programming in C++ Expression Templates

3 The problem
The problem itself lies not as much with the class but rather how we use the class. Consider
the following example:

using Vec = Vector<double, 3>;

1.2 , 3.4 , 5.6 };
7.8 , 9.10 , 11.12 };
13.14, 15.16, 17.18 };

Vec a {
Vec b {
{

Vec c
Vec d { 7};

Now ask yourself the following questions: How many vectors are created here? What is
the the least amounts of vectors that need to be created for this calculation to work?

In this question the answer to both questions is 4. a, b, ¢ and d.

Now consider the same questions for this example (suppose we created a, b, d and d earlier,
so we don’t have to consider those):

d = a + b;
If you think about it you might consider that we copy the result of the addition a + b
into d, but this should be easily solved by a good compiler (by using move-semantics). So

the answer should be (if you have a good compiler) that we only create one new vector
here.

So far everything seems totally fine. But what happens here?
d = a+ b+ c;
Let’s start with a + b + c. Since we will assume that our compiler is smart enough to

move the result from the expression into 4 it is enough to consider what happens in the
expression.

Remember that addition is in reality evaluated like this:
((a + b) + c)
and operator+ for our vectors will ALWAYS create a new vector. This means that we

actually create 2 vectors: the resulting vector we get from a + b and then another one
from when we add that with c.

This might not seem too bad (which, let’s be honest: it’s not), but what happens in cases
like this?

d = (a+Db) * 2.0+ (a+c) * 3.0+ (b + c) * 4.0;

This isn’t a too far-fetched example since code like this do occur “in the wild”.

So what is the answer? How many vectors are constructed? Well we have a + b, a + ¢
and b + c so that is three right there. But that is not all. We also use multiplication
on vectors which in turn construct a new vector. We multiply each of a + b, a + ¢ and



TDDD38/726G82 - Advanced programming in C++ Expression Templates

b + c with a scalar so that gives us a total of 6. But that is still not all, because we add
it all together: and remember that each addition creates a new vector because of the way
these operators are evaluated. The total number of vectors are 8. In one expression!

This might not seem too bad (which it really isn’t for the case of three dimensional vectors),
but imagine what would happen if these vector were much larger and therefore much more
expensive to copy. We would have to sacrifice a lot of CPU cycles on performing copies
as well as waste a lot of memory for storing these temporary vectors.

I’'m sure you can think of an even more expensive calculation that can be performed with
just + and *. But hopefully this example is large enough to get the point across.

There is a better way to calculate this expression: namely that we perform the following
operation:

(ali]l + b[i]) * 2.0 + (ali]l + c[i]) * 3.0 + (b[i] + c[il) * 4.0

for each index i. This will result in us creating no temporary vectors since we construct
exactly one new vector from a, b and c: which is a huge gain compared to the way it is
handled for the moment.

As it stands today, the compiler is not smart enough to realize this optimization, so we
will have to take it into our own hands to try to implement this optimization ourselves.

The complete solution can be found in vector.cc. The rest of this document will walk
you through how to construct this solution. But before we do that we have to take a step
back and look at lazy evaluation.

4 FEager vs. Lazy evaluation

In a sense, we can ascribe the problem we have encountered to eager evaluation. That is,
the fact that C++ evaluates every expression as soon as possible. The argument being that
if C++ allowed expressions to be evaluated a bit later then the compiler might actually
be able to do something about this issue.

The opposite of eager evaluation is called lazy evaluation. This is when an expression isn’t
evaluated until it is needed. The program is “lazy” and will only do the work once it is
actually required.

To demonstrate the difference between eager and lazy evaluation consider this example:

double a { 2.5 };
double b { 3.5 };
double ¢ { a + b };

std::cout << "My number: " << ¢ << std::endl;

In C++ the value of ¢ will be calculated immediately when it is initialized. This is because
of eager evaluation. However, if C+4 had lazy evaluation, it would instead evaluate the
value of ¢ in the absolute last second before it is needed. So in this case that would mean
that a lazy evaluation would occur right when c is printed.



TDDD38/726G82 - Advanced programming in C++ Expression Templates

There are several languages that has lazy evaluation as its default, for example Haskell
and F#. These languages has a completely different model, compared to C++, for how
things are optimized as well as how things are handled during the execution of a program.

Eager evaluation is often cheaper to implement and lead to (in most cases) more efficient
code. But in some cases (for example the vector that we presented earlier in this document)
eager evaluation will lead to a significant slow down.

What is interesting with lazy evaluation is that we can look at the code without having
any knowledge at all of the runtime context, and determine when an expression will be
evaluated. Take this for example (under the assumption that we have lazy evaluation):

double sum { 0.0 };

double tmp;
while (std::cin >> tmp)
{
sum += tmp;
}
std::cout << "The sum is: " << sum << std::endl;

Here we know that the actual value of the sum variable isn’t needed until we try to print it.
Therefore, without knowing how many iterations we will go through in the loop, or even
what values are added to the sum, we will know exactly when the value will be calculated.
This indicates that lazy evaluation actually takes place in the compile-time. I.e. that the
compiler decides during compilation when an expression is evaluated.

CH+ is eager in its evaluation. However, we are able to make decisions during the compile-
time thanks to templates. Because of this, we are able to actually simulate lazy evaluation
in C++.

5 Lazy evaluation in C++4

Suppose we have the following class, which is meant to act as a simple integer:

class Integer

{
public:
Integer (int value) : value{value} { }
int get_value() const { return value; 1}
private:
int value;
3

The goal for this section is to turn this into a lazily evaluated integer with addition and
multiplication.



TDDD38/726G82 - Advanced programming in C++ Expression Templates

Notice that we can build quite complex expressions from just these two operators (+ and
*). For example:

(a + (b +¢c) xd+ e) x f

where a, b, ¢, d and £ are all objects of the type Integer.

In order to make this class lazily evaluated we will write code that “remembers” what
expression it was generated from. We do this by being a bit more clever with the return
type of the operators.

So instead of just returning an Integer, why not return a data type that communicates
that this specific integer was generated from an addition or a multiplication?

Of course that will not handle expressions such as this one: a + b * c since it involves
more than one operation. But, if we allow each expression to also store what expression
the left- and right-hand-side was generated from, then we can encode the structure of the
expression into the type.

Let’s look at addition first. We introduce this class template:

template <typename LHS, typename RHS>
class Sum_Expression

{
public:
Sum_Expression(LHS const& lhs, RHS const& rhs)
lhs{lhs}, rhs{rhs} { }
int get_value() const
{
return lhs.get_value() + rhs.get_value();
}
private:
LHS 1hs;
RHS rhs;
3

Notice that we take two arbitrary types LHS and RHS and store an instance of each of
these. These represent the expression that generated the respective operand.

Consider the following example:

a + b + c

where a, b and ¢ are Integer objects. We know that it is evaluated as such:

(Ca + b) + ¢)

We want to represent this example as the following type:



TDDD38/726G82 - Advanced programming in C++ Expression Templates

Sum_Expression<Sum_Expression<Integer, Integer>, Integer>

The outer Sum_Expression has LHS as the type Sum_Expression<Integer, Integer>
which represents the expression a + b and RHS as the type Integer which represents c.
Since LHS and RHS are parameters to a Sum_Expression we know that it represents a
usage of the addition operator.

So what does this have to do with lazy evaluation? Well notice that the actual value is
not calculated until we call get_value, and once we do, it will recursively calculate all
the subexpressions as well.

So, let’s add the same thing but for multiplication:

template <typename LHS, typename RHS>
class Product_Expression

{
public:
Product_Expression(LHS const& lhs, RHS const& rhs)
lhs{lhs}, rhs{rhs} { }
int get_value () counst
{
return lhs.get_value() * rhs.get_value();
}
private:
LHS 1lhs;
RHS rhs;
3

Notice that it is very similar to Sum_Expression.

The only thing left to do is to create a connection between these classes and the corre-
sponding operators. We do this by introducing the following operator overloads:

template <typename LHS, typename RHS>
Sum_Expression<LHS, RHS> operator+(LHS const& lhs,
RHS const& rhs)
{
return { lhs, rhs };

template <typename LHS, typename RHS>
Product_Expression<LHS, RHS> operator*(LHS const& 1lhs,
RHS const& rhs)
{
return { lhs, rhs };



TDDD38/726G82 - Advanced programming in C++ Expression Templates

So what we do here is that we take two arbitrary parameters” (LHS and RHS) and merge
them together as either a Sum_Expression or Product_Expression. The resulting object
will then evaluate the value of the expression once get_value is called on it.

Consider this example:

int main ()

{

Integer a { 5 };

Integer b { 7 };

Integer ¢ { 8 };

auto d { (a + b) * c + a };
}

What data type will d be? Well it will be:

Sum_Expression<Product_Expression<Sum_Expression<Integer,
Integer>,
Integer >,
Integer>

Which might be a bit hard to understand. But you can also represent this as a syntax
tree, like this:

Sum_Expression

.

)

Product_Expression Integer
Sum_Expression Integer
Integer Integer

This means that we can evaluate d whenever we need it by calling d.get_value() and it
will recursively calculate the value of each subexpression.

OK, so how do we use it? Well for now it can be a bit cumbersome:

Integer a { 1 };
Integer b { 2 };
Integer ¢ { 3 };
auto d { a + b };

cout << d.get_value() << endl;
cout << (d + c).get_value() << endl;

'If you have a keen eye you might spot an issue here relating to ambigious function overloads. Suppose
we have another class with similar operators, then we have two operator+ that takes two arbitrary types
and this will cause issues. See @ for a solution.



TDDD38/726G82 - Advanced programming in C++ Expression Templates

Especially since we have to manually call get_value everytime we want the value. But
we can make some simplifications that makes this work:

Integer a { 1 };
Integer b { 2 };
Integer ¢ { 3 };
auto d { a + b };

cout << d << endl;
cout << d + ¢ << endl;

By introducing the conversion operator operator int to all of our classes:

operator int () const
{
return get_value();

}

This means that when we try to use our Integer it in a context where we are unable
to perform lazy evaulation (for example when we try to print it) then the compiler can
implicitly convert the Integer object to an int, and as a result it will evaluate the
expression at that point.

The technique we used here, where we created a class template for each operator and
stored subexpressions as template arguments, is called expression templates.

Note: If we use auto to declare variables we will run into issues, take for example:

auto d { a + b };
std::cout << d[0] << std::endl;

This example is wrong, since d is actually of the type Sum_Expression<Vec, Vec> instead
of the desired type Vec. Therefore we should never use auto in this context and unfortu-
nately there is no way for us forbid users from declaring it as auto. If you want to read more
abuut this issue, look here: http://eigen.tuxfamily.org/dox/TopicPitfalls.html
under the “C++11 and the auto keyword” header.

Now that we know how to simulate lazy evaluation with expression templates, let’s go
back to our Vector and apply expression templates.


http://eigen.tuxfamily.org/dox/TopicPitfalls.html

TDDD38/726G82 - Advanced programming in C++ Expression Templates

6 Expression Templates

Remember the original problem we had with our Vector, expressions such as:

(v + u) * 5 + w

creates way to many temporary vectors which has an impact on the efficiency of our code.

We can take inspiration from the lazy evaluation simulation and write our vector in such
a way that it is guaranteed to not construct new vectors until it is absolutely necessary.

Just as we did previously, we add a class for each operator. Let’s start with addition:

template <typename LHS, typename RHS>
class Vector_Sum

{
public:
Vector_Sum(LHS const& 1lhs, RHS const& rhs)
lhs{lhs}, rhs{rhs} { }
auto operator[](std::size_t i) const
{
return 1lhs[i] + rhs[i];
+
private:
LHS 1lhs;
RHS rhs;
+;

template <typename LHS, typename RHS>
Vector_Sum<LHS, RHS> operator+(LHS const& lhs, RHS const& rhs)
{
return { 1lhs, rhs };
}

Here we just make another vector type which has the operator[]. But this time, we
make the calculation of each element in the vector be lazily evaulated by only performing
the addition inside the operator[]. Then we simply add an operator overload that takes
two arbitrary types and produces a Vector_Sum from the passed in objects.

Notice that the return type of operator[] is auto, meaning the compiler will deduce the
best type for the result.

Next let’s do multiplication, which will be slightly different since only the left-hand-side
will have an operator[]. So what we do is that we assume that the right-hand-side is
something you can multiply with each element in the left-hand-side.

It will be something like this:

10



TDDD38/726G82 - Advanced programming in C++ Expression Templates

template <typename LHS, typename RHS>
class Vector_Product

{
public:
Vector_Product (LHS const& 1lhs, RHS const& rhs)
lhs{lhs}, rhs{rhs} { }
auto operator[](std::size_t i) const
{
return lhs[i] * rhs;
}
private:
LHS 1hs;
RHS rhs;
};

template <typename LHS, typename RHS>
Vector_Product <LHS, RHS> operator*(LHS const& lhs, RHS const& rhs)

{
return { 1lhs, rhs };
}

So now we have changed our vector so that it only performs the calculations once we use
operator[]. For example:

int main ()

{
using Vec = Vector<double, 3>;
Vec a { 1.2 , 3.4 , 5.6 };
Vec b { 7.8 , 9.10 , 11.12 };
Vec ¢ { 13.14, 15.16, 17.18 };
auto d { (a + b) * 5.0 + c };
for (int i {0}; i < 3; ++1i)
{
// here we perform the calculations
cout << d[i] << endl;
}
}

So now the problem is fixed, right? Unfortunately, no...

If you have a keen eye you might have spotted that we now copy the vectors inside
Vector_Sum and Vector_Product. Consider this example:

11



TDDD38/726G82 - Advanced programming in C++ Expression Templates

Vec a { 1, 2 3};
Vec b { 3, 4 };
auto d { a + b

};

The data type of 4 is:

Vector_Sum<Vec, Vec>

operator+ will pass in a and b into the constructor of Vector_Sum, and what do we do
with those? Let’s take a look at the constructor again:

Vector_Sum(LHS const& lhs, RHS const& rhs)
lhs{lhs}, rhs{rhs} { }

So we initialize the data members 1hs and rhs with the vectors. But those are stored
inside the class as copies! So for each addition we actually copy each subexpression (which
will contain vectors).

If you think about more complicated expression you will find that this is actually even
worse than what we had before. So how do we fix this? Well fortunately it is qute an easy
fix: we simply make 1hs and rhs into const references:

template <typename LHS, typename RHS>
class Vector_Sum

{
public:
Vector_Sum(LHS const& 1lhs, RHS const& rhs)
lhs{lhs}, rhs{rhs} { %}
//
private:
LHS const& 1lhs;
RHS const& rhs;
};

Now everything is nice and efficient. But, like everything, it comes with a price: now
instead we have undefined behaviour. Why?

Well for our lazy evaluation to work we must make sure that all the data needed for it is
available at the point where we evaluate the expression. However, when doing it like this,
we will create a few temporary objects. Consider:

((a + b) + ¢)
Here we create a temporary Vector_Sum when we do a + b and another one when we
add that with c. Since we bind 1hs and rhs to const references we will have a problem

once those temporary vectors are destructed (which is immediately after the expression
has been constructed). So this means that all of the information is destroyed before we

12



TDDD38/726G82 - Advanced programming in C++ Expression Templates

have the chance to use it. (Side note: even though we still create objects, notice that we
never actually store any data besides references in any of those objects. This means that
a decent compiler will be able to optimize these temporary objects away.)

So now that we have made 1hs and rhs into references, we can no longer do lazy evaluation.
But we can still evaluate the expression right before everything is destructed! Once the
expression has been constructed we can immediately evaluate each element and store them
in a Vector object. It would look something like this:

Vec a { 1, 2 };
Vec b { 3, 4 };
Vec ¢ { 5, 6 };
Vec d { a + b + ¢ };

Notice that we no longer use auto for d, instead we declare d as Vec (which, if you recall
is an alias for Vector<double, 3>). Since Vector itself doesn’t have any lazy evaluation
we want to simply copy the result of the expression into d.

If we try to compile this we get an error because Vector doesn’t have a constructor that
takes Vector_Sum. This is also easily solved by adding the following constructor to Vector:

template <typename U>
Vector (U const& expression)

{
for (std::size_t i {0}; i < dim; ++1i)
{
datal[i] = expressionl[i];
}
}

Where we now take an arbitrary type as a parameter (but we assume that it has operator[])
and loop through each element and copy them into the data array.

However, this will clash with our existing constructor:

template <typename... Ts>
Vector (Ts &&... list)

data { std::forward<Ts>(list)... }
{3

Which is needed for us to actually set the value of a vector.

So how can we solve this?

Well we replace our general constructor with an std::initializer_list constructor
instead:

Vector(std::initializer list<T> list)
{
std::copy(list.begin(), list.end(), data.begin());

13



TDDD38/726G82 - Advanced programming in C++ Expression Templates

std::initializer_list is a special type that captures an arbitrary number of arguments
(of the same type) into one list. This means that we now have made our constructor a
bit better by only allowing it to take T which means that it will not clash with our newly
added copy constructor.

Once we have made this change we have reached the implementation found in vector.cc.
This implementation suffers from several issues which we will solve in the next section.

14



TDDD38/726G82 - Advanced programming in C++ Expression Templates

7 Cleaning up the interface

There are quite a few issues with the solution presented in vector.cc. Here is a list of a
few things:

— The copy constructor for Vector matches any type of argument, but it only works
for things relating to the vector. This means there might (as we saw) be some issues
if we want other types of constructors as well.

— Our operators are way too general. They take arbitrary arguments which will clash
with other similar operators. Suppose for example that we have both Integer and
Vector in the same project: then which operator is used where? The compiler
doesn’t know.

There are some other issues which will not be solved in this document but that you are
free to think about yourself:

— Adding two operators only makes sense if they have the same dimension, but our
operator+ doesn’t consider that fact. This would require Vector_Base to keep track
of the dimension somehow.

— If users declare their variables with auto there will be undefined behaviour in the
program if the user initializes the variable from expressions involving our operators.

— There is no way for the user to determine if they want to activate this feature or
not: what if they want eager evaluation?

— There is no way to store different types of vectors in the same container without
introducing polymorphism. This is usually not a problem because we are mostly
dealing with similar vectors. But if there is need for it, our vector wouldn’t be able
to do that.

The main issue that we will solve is that we have no singular way to represent a wvector
(be it a Vector, Vector_Sum or Vector_Product). We would want something similar to
a base class which we can use to represent whichever vector type we want.

In order to solve these issues we will have to take a step back and make some changes to
our vector. Let’s begin with creating a base class that we call Vector_Base:

template <typename Expression>
class Vector_Base

{
public:

auto operator[](std::size_t i) const;
s

I will hold the implementation of operator[] for now, but you can think of it as similar to
(but not the same as) a virtual function that we overload in the other implementations.

You might be wondering about the template parameter to this class. Well, think of it
as representing the true type of this vector. Just as with polymorphic classes we have to
store what the actual type of this vector is. You will see soon why this is useful.

Now, let’s create Vector again, but with one major change:

15



TDDD38/726G82 - Advanced programming in C++ Expression Templates

template <typename T, std::size_t dim = 3>
class Vector : public Vector_Base<Vector<T, dim>>

{
public:

Vector (std::initializer_list<T> 1list)

{
std::copy(list.begin(), list.end(), data.begin());
}
T operator[](std::size_t i) const { return datalil; 12}
T& operator [](std::size_t i) { return datalil; }%
private:

std::array<T, dim> data { };
3

As you can see this is almost identical to the previous implementation but now we have
a base class. It might look a bit strange to you since the base class is an instantiation of
Vector_Base where we pass in Vector (which is the type we are defining!) as its template
parameter. This might seem like it shouldn’t work, but it does!

Since Vector_Base doesn’t use its template parameter anywhere it will actually not cause
any problems that we are passing in a derived class as its template parameter. This is
because we never actually create an instance of Expression inside Vector_Base.

This concept, where we pass ourselves as the template parameter to our base class is
surprisingly common. So common that it has a name: the Curiously recurring template
pattern (CRTP).

But, the question remains: why?
In order to understand that, let’s implement Vector_Base: :operator[]:

template <typename Expression>
auto Vector_Base<Expression>::operator[](std::size_t i) const
{

return static_cast<Expression const&>(*this)[i];

}

Let’s explain this with an example. Suppose that we want to create a function that takes
an arbitrary vector (which is quite a likely scenario). What type should that parameter
be declared as?

We could declare it as Vector<T, dim>, but then we won’t be able to utilize the expression
templates technique to pass in an optimized version of expressions. The solution to this
earlier was to just take an arbitrary template parameter and hope that it doesn’t cause
any ambiguities, which is not really good.

16



TDDD38/726G82 - Advanced programming in C++ Expression Templates

This is why we introduced Vector_Base, it allows us to only accept any of our vectors as
a parameter (nothing more, nothing less). I.e. we can do this:

template <typename Expression>
auto first(Vector_Base<Expression> const& v)
{

return v [0];

}

which is less general than our previous solution:

template <typename T>
auto first(T const& v)
{

return v[0];

}

When we call operator[] in our new solution, it will call Vector_Base: :operator[]. But
we want it to call the “real” vectors version of operator[]. If we look at the definition of
Vector_Base: :operator[] we see the following is returned:

static_cast<Expression const&>(*this) [i]

Which means that we first convert ourselves into an Expression, which if you recall is
the data type of the derived class (i.e. the actual type of our vector) and then we call
operator[] on that.

This works because Vector_Base is the base class of Expression, meaning we can alway
have a Vector_Base reference (or pointer) to Expression.

What we have managed to do here is create something very similar to a polymorphic base
class with something akin to virtual functions. All because we store the information
about what the actual type is as template parameter.

With this technique we can now solve those problems we presented at the beginning of
this section. Let’s introduce the following copy constructor to Vector:

template <typename Expression>
Vector (Vector_Base<Expression> const& other)

{
for (std::size_t i{0}; i < dim; ++i)
{
data[i] = other[i];
}
}

Now the constructor only accepts types that have Vector_Base as its base class (meaning,
all of our vector types) and nothing more. This will make it a lot easier for us to introduce
more constructors without causing any problems with ambiguity.

Our operators can also be cleaned up, for example:

17



TDDD38/726G82 - Advanced programming in C++ Expression Templates

template <typename LHS, typename RHS>
Vector_Sum<LHS, RHS> operator+(Vector_Base<LHS> const& lhs,
Vector_Base<RHS> const& rhs)
{
return { lhs, rhs };
}

As long as we remember to make Vector_Base<Vector_Sum<LHS, RHS>> the base class
of Vector_Sum<LHS, RHS> this operator will now only accept vector expressions.

You can see a complete implementation of this in vector_crtp.cc where we also imple-
ment operator* which only takes one vector (not two).

8 Closing words

This technique is frequently used by specifically Linear Algebra libraries, such as: Blaze,
Boost uBILAS, Eigen and others.

It is also useful for big number libraries, parser libraries and loads of other libraries (your
imagination is the limit!) where you construct objects from chaining operations.

This document served as an introduction to the concept of expression templates, but it is
in no way a complete description. If you are interested in learning more you can read the
Wikipedia article: https://en.wikipedia.org/wiki/Expression templates

I can also highly recommend the book “C++ Templates - The Complete Guide, 2nd
Edition” (http://www.tmplbook.com/|) which, among a lot of other things, cover this
exact topic. This book is sometimes called “The C++ Templates Bible” because it covers
everything you might ever need to know about templates.

18


https://bitbucket.org/blaze-lib/blaze/src/master/
https://www.boost.org/doc/libs/1_72_0/libs/numeric/ublas/doc/index.html
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://en.wikipedia.org/wiki/Expression_templates
http://www.tmplbook.com/

	Introduction
	Starting point
	The problem
	Eager vs. Lazy evaluation
	Lazy evaluation in C++
	Expression Templates
	Cleaning up the interface
	Closing words

