
TDDD38 - Possible
features in coming
standards
Eric Elfving

Department of Computer and information science

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

3 / 84

Assume that we have the following class to represent a
point:

class Point {
int x;
int y;

};

We now want to add comparison between Point

objects. This usually is done by implementing
operator< and operator== and then using these to
implement the others...

4 / 84

bool operator==(Point p1, Point p2) {
return p1.x == p2.x && p1.y == p2.y;

}
bool operator<(Point p1, Point p2) {

Point origin {0,0};
return distance(p1, origin) < distance(p2, origin);

}
bool operator>(Point p1, Point p2){

return p2 < p1;
}
bool operator<=(Point p1, Point p2){

return !(p1 > p2);
}
bool operator>=(Point p1, Point p2){

return !(p1 < p2);
}
bool operator!=(Point p1, Point p2){

return !(p1 == p2);
}

5 / 84

• In C++20, we’ll get the ”spaceship operator”
(threeway comparison).

• Basically, we create one operator, operator<=> ,
and the rest can be generated.

• The return type should be convertable to int:
• a<=>b < 0 ⇐⇒ a < b

• a<=>b = 0 ⇐⇒ a = b

• a<=>b > 0 ⇐⇒ a > b

6 / 84

Several types are provided in <compare> to be used
instead for int

Each have static members to get good names (and more
expressive code!):

struct strong_ordering {
static constexpr int less = /* a negative value */;
static constexpr int equal = 0;
static constexpr int greater = /* a positive value */;
...

};

7 / 84

• Let’s implement operator<=> !

• What return type should we support?
• => std::strong_ordering

std::strong_ordering operator<=>(Point p1, Point p2)
{

if (p1.x == p2.x && p1.y == p2.y)
{

return strong_ordering::equal;
}
Point origin {0,0};
if (distance(p1, origin) < distance(p2, origin))
{

return strong_ordering::less;
}
return strong_ordering::greater;

}

7 / 84

• Let’s implement operator<=> !
• What return type should we support?

• => std::strong_ordering

std::strong_ordering operator<=>(Point p1, Point p2)
{

if (p1.x == p2.x && p1.y == p2.y)
{

return strong_ordering::equal;
}
Point origin {0,0};
if (distance(p1, origin) < distance(p2, origin))
{

return strong_ordering::less;
}
return strong_ordering::greater;

}

7 / 84

• Let’s implement operator<=> !
• What return type should we support?
• => std::strong_ordering

std::strong_ordering operator<=>(Point p1, Point p2)
{

if (p1.x == p2.x && p1.y == p2.y)
{

return strong_ordering::equal;
}
Point origin {0,0};
if (distance(p1, origin) < distance(p2, origin))
{

return strong_ordering::less;
}
return strong_ordering::greater;

}

7 / 84

• Let’s implement operator<=> !

• What return type should we support?
• => std::strong_ordering

std::strong_ordering operator<=>(Point p1, Point p2)
{

if (p1.x == p2.x && p1.y == p2.y)
{

return strong_ordering::equal;
}
Point origin {0,0};
if (distance(p1, origin) < distance(p2, origin))
{

return strong_ordering::less;
}
return strong_ordering::greater;

}

8 / 84

We could also implement it by calling operator<=> :

std::strong_ordering operator<=>(Point p1, Point p2)
{

if (p1.x == p2.x && p1.y == p2.y)
{

return strong_ordering::equal;
}
Point origin {0,0};
return distance(p1, origin) <=>

distance(p2, origin);
}

9 / 84

• But, what if operator<=> isn’t defined for the type
returned from distance ?

• => use std::compare_3way .

http://en.cppreference.com/w/cpp/algorithm/compare_3way

9 / 84

• But, what if operator<=> isn’t defined for the type
returned from distance ?

• => use std::compare_3way .

http://en.cppreference.com/w/cpp/algorithm/compare_3way

9 / 84

• But, what if operator<=> isn’t defined for the type
returned from distance ?

• => use std::compare_3way .

std::strong_ordering operator<=>(Point p1, Point p2)
{

if (p1.x == p2.x && p1.y == p2.y)
{

return strong_ordering::equal;
}
Point origin {0,0};
return std::compare_3way(distance(p1, origin),

distance(p2, origin));
}

http://en.cppreference.com/w/cpp/algorithm/compare_3way

10 / 84

The compiler can generate the operator iff we want to
compare subobjects (bases and members)
lexicographically (i.e. use <=> between each pair of
subobjects until a result is found).

struct Time {
int hour, minute, second;
auto operator<=>(Time const &) const = default;

};

11 / 84

Name lookup

The old rules state that the binary operator @ (when
used in an expression like a @ b) should be found as
a.operator@(b) or else operator@(a,b) . The new
rules does name lookup for the following expressions as
well a <=> b and b <=> a . They should be preferred
in this order if there are several matches.

• If a <=> b is the best match, transform the
expression to a<=>b @ 0

• If b <=> a is the best match, transform the
expression to 0 @ b<=>a

12 / 84

Larger example
Comparison for std::optional by Barry Revzin

template <typename T>
class optional {
public:

template <typename U>
constexpr auto
operator<=>(optional<U> const& rhs) const
-> decltype(compare_3way(**this, *rhs))

{
if (has_value() && rhs.has_value()) {

return compare_3way(**this, *rhs);
} else {

return has_value() <=> rhs.has_value();
}

}

https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

12 / 84

Larger example
Comparison for std::optional by Barry Revzin

template <typename U>
constexpr auto
operator<=>(U const& rhs) const
-> decltype(compare_3way(**this, rhs))

{
if (has_value()) {

return compare_3way(**this, rhs);
} else {

return strong_ordering::less;
}

}

https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

12 / 84

Larger example
Comparison for std::optional by Barry Revzin

constexpr strong_ordering
operator<=>(nullopt_t) const
{

return has_value() ? (
strong_ordering::greater
: strong_ordering::equal);

}
};

https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

13 / 84

References

• P0515 - Consistent comparison.

• Cppreference overview.

https://wg21.link/p0515r3
http://en.cppreference.com/w/cpp/language/operator_comparison#Three-way_comparison

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

15 / 84

Contracts is a way of specifying preconditions,
postconditions and assertions required for a function
as a part of it’s signature

• Preconditions (expects) is a predicate that is
supposed to hold when entering the function.

• Postconditions (ensures) is a predicate that holds
upon exiting the function.

• Assertions (assert) are checked in a function
during computation.

Preconditions and postconditions are part of the
external view of the function and are placed before the
function body while assertions are placed inside the
function.

16 / 84

Short example

void push(queue & q)
[[expects: !q.full()]]
[[ensures: !q.empty()]]

{
// ...
[[assert: q.is_ok()]];

}

We require that the queue isn’t full at the beginning
and assures the caller that it’s not empty afterwards.
Somewhere inside we check for validity.

17 / 84

• This is intended as a runtime check
• But of course static analysers and compilers could
check it as well

• Three degrees (or levels) of checking is proposed
(expects used as example):
• [[expects default: ...]] - unless turned off,

the contract will be checked during runtime

• [[expects: ...]] - implicit shorthand for
default

• [[expects axiom: ...]] - not checked at
runtime, purely as comment or for static analyzers.
No runtime cost.

• [[expects audit: ...]] - a more
comprehensive (and expensive) check than
default. Must be specifically turned on.

17 / 84

• This is intended as a runtime check
• But of course static analysers and compilers could
check it as well

• Three degrees (or levels) of checking is proposed
(expects used as example):
• [[expects default: ...]] - unless turned off,

the contract will be checked during runtime
• [[expects: ...]] - implicit shorthand for

default

• [[expects axiom: ...]] - not checked at
runtime, purely as comment or for static analyzers.
No runtime cost.

• [[expects audit: ...]] - a more
comprehensive (and expensive) check than
default. Must be specifically turned on.

17 / 84

• This is intended as a runtime check
• But of course static analysers and compilers could
check it as well

• Three degrees (or levels) of checking is proposed
(expects used as example):
• [[expects default: ...]] - unless turned off,

the contract will be checked during runtime
• [[expects: ...]] - implicit shorthand for

default
• [[expects axiom: ...]] - not checked at

runtime, purely as comment or for static analyzers.
No runtime cost.

• [[expects audit: ...]] - a more
comprehensive (and expensive) check than
default. Must be specifically turned on.

17 / 84

• This is intended as a runtime check
• But of course static analysers and compilers could
check it as well

• Three degrees (or levels) of checking is proposed
(expects used as example):
• [[expects default: ...]] - unless turned off,

the contract will be checked during runtime
• [[expects: ...]] - implicit shorthand for

default
• [[expects axiom: ...]] - not checked at

runtime, purely as comment or for static analyzers.
No runtime cost.

• [[expects audit: ...]] - a more
comprehensive (and expensive) check than
default. Must be specifically turned on.

18 / 84

• Default behavior when breaking a runtime
contract check is to terminate.

• There will also be a (implementation specified)
way of providing your own handler.

19 / 84

References

• P0380 - A Contract Design.

https://wg21.link/p0380r1

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

21 / 84

There are two main ways of handling errors in C++;
exceptions and error codes. We have had exceptions for
over 25 years, but a recent developer survey1 shows
that 52% of respondents work in code that banns
exceptions in total or in part!

1isocpp.org developer survey 2018

https://isocpp.org/files/papers/CppDevSurvey-2018-02-summary.pdf

22 / 84

Exceptions

• Are the only way of signalling errors in
constructors and in operators

• Are used heavily in the STL
• Violates both the zero overhead principle and
determinism!
• Requires RTTI (both typeid and

dynamic_cast)
• Requires extra storage - both in the binary and

during runtime
• Handling several exceptions is tricky and gives

unpredictable compile-time space and time cost

23 / 84

Exceptions

”I can’t recommend exceptions for hard real
time; doing so is a research problem, which I
expect to be solved within the decade”
Stroustrup 2004

http://www.stroustrup.com/abstraction-and-machine.pdf

24 / 84

Error codes

The C solution is returning an error code (often a
simple type such as int or enum):

error_code fun(actual_return_type & val)
{

// either modify val and return "no error"
// or return specific error code

}

return_type fun(error_code & err) // or pointer
{

// either set err to "no error" and return
// a valid value or set error code and return
// a dummy value

}

25 / 84

There are several problems with error codes:

• The user has to check the error code (at all calls)

• Will always require space for both error and actual
value

• Doesn’t work in constructors or operators - leads
to a language variant where the user has to check if
the current object actually is constructed (or
calling factory methods instead of constructors)

All lead to modified control flow which hide the actual
business logic behind error handling.

26 / 84

The committee has added some support already when
working with error codes:

• [[nodiscard]]

The compiler should warn when the return value
from a function marked nodiscard is ignored:
[[nodiscard]] error_code fun();

// ...
fun(); // warning
if (fun() == error::ok) //ok

...

• std::error_code - error message from the
system, stores a category and a value.

• std::optional ? - not made for error handling,
but could be used for it

26 / 84

The committee has added some support already when
working with error codes:

• [[nodiscard]]

The compiler should warn when the return value
from a function marked nodiscard is ignored:

• std::error_code - error message from the
system, stores a category and a value.

• std::optional ? - not made for error handling,
but could be used for it

26 / 84

The committee has added some support already when
working with error codes:

• [[nodiscard]]

The compiler should warn when the return value
from a function marked nodiscard is ignored:

• std::error_code - error message from the
system, stores a category and a value.

• std::optional ? - not made for error handling,
but could be used for it

27 / 84

expected

Proposal P0323 wants to add a new type
std::expected that can be used for error handling.

std::expected<ReturnType, ErrorType> fun()
{

if (/* error */)
return std::unexpected{ErrorType::specific_error};

return my_actual_value;
}
int main()
{

auto e = fun();
if (!e)
{

if (e.error().value() == ErrorType::specific_error)
// handle this error

}
else

// do something with *e
}

28 / 84

Throwing values!

Herb Sutter has proposed a new technique for throwing
objects by values with zero (or in some cases negative)
overhead!

• Mark the function with the new keyword throws

• The compiler will internally modify the return
value to be a union containing either the actual
return value or a value of type std::error and
some information on whether we throw or return

• Code as usual in your function (return or throw)

• Catch std::error by value

29 / 84

example

string f() throws {
if (/* some error */)

throw arithmetic_error::some_error;
return "hello"s; // possible dynamic error is transformed

}
string fun() // no "throws"
{

return f(); // error converted to normal exception!
}
int main() {

try {
auto s = f();
cout << s;

}
catch (error err) {

if (err == arithmetic_error::some_error)
// handle this error

}
}

30 / 84

Reflection on error handling

The combination of contracts and statically
deterministic error codes would transform a lot of code
for the better!

31 / 84

References

• P0323 - std::expected

• P0709 - Zero-overhead deterministic exceptions:
Throwing values

https://wg21.link/P0323r4
https://wg21.link/P0709r0

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

33 / 84

Concepts WILL be in C++20!

• Basically a simple way of adding constraints on
template parameters without having to use
SFINAE!

• We add a requires clause to our template
declaration and the compiler will check that the
type provided fulfills the concept.

• The standard (with the ranges proposal) will add
lots of good concepts to the STL, but we can create
our own as well.

34 / 84

example

// Define a concept to check that given a value x of type T,
// ++x and x++ should be supported and both return an object of type T.
template <typename T>
concept Incrementable = requires (T x) {

{ x++ } -> T;
{ ++x } -> T;

};

// use concept
template <typename T>
void increment(T & val)
requires Incrementable<T>

{
++x;

}

35 / 84

It’s also possible to use a static boolean expression as a
concept:

template <typename T>
void fun(T val)
requires is_integral_v<T>

{ ... }

36 / 84

Terse syntax

There are discussions on other syntax as well:

• Two from the original proposal

template <Incrementable T>
void increment(T & val);

void increment(Incrementable & val);

• In-place syntax [P0745]

void increment(Incrementable{} & val);

https://wg21.link/p0745r1

37 / 84

Concepts vs. tag dispatching

Listing 1: Tag dispatching
template <typename ForwardIt>
void advance(ForwardIt & it, size_t n,

std::forward_iterator_tag) {
while (n--) ++it;

}

template <typename RandomIt>
void advance(RandomIt & it, size_t n,

std::random_iterator_tag){
it += n;

}

template <typename It>
void advance(It & it, size_t n)
{

using it_tag =
typename iterator_traits<It>

::iterator_category;
advance(it,n, it_tag{});

}

37 / 84

Concepts vs. tag dispatching

Listing 3: Tag dispatching
template <typename ForwardIt>
void advance(ForwardIt & it, size_t n,

std::forward_iterator_tag) {
while (n--) ++it;

}

template <typename RandomIt>
void advance(RandomIt & it, size_t n,

std::random_iterator_tag){
it += n;

}

template <typename It>
void advance(It & it, size_t n)
{

using it_tag =
typename iterator_traits<It>

::iterator_category;
advance(it,n, it_tag{});

}

Listing 4: concepts
template <typename It>
void advance(It & it, size_t n)
requires RandomAccessIterator<It>

{
it += n;

}

template <typename It>
void advance(It & it, size_t n)
requires ForwardIterator<It>

{
while (n--) ++it;

}

38 / 84

References

• Rationale by Stroustrup P0557 - Concepts: The
future of Generic Programming (or how to design
good concepts and use them well)

• Standards text P0734

https://wg21.link/p0557r0
https://wg21.link/p0734r0

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

40 / 84

The Ranges TS has two main parts and will hopefully
be merged into C++20:

• A huge set of predefined concepts

• Additions to the algorithms so that they can accept
a range instead of a pair of iterators (the old syntax
will of course not be removed). A range could be a
container, but also something more...

41 / 84

Range adaptors

The range adaptor proposal adds support for pipelining
transformations on a range.
auto square = [](int x){return x*x;};
int total =

accumulate(view::iota(1) | // generate a range starting at 1
view::transform(square) | // apply square to each
view::take(10), // stop after 10 elements

0);

42 / 84

References

• Ranges TS N4685

• P1037 - Deep Integration of the Ranges TS

• P0789 - Range Adaptors and Utilities

• range-v3 implementation at github (with extra
references)

https://wg21.link/n4685
https://wg21.link/p1037r0
https://wg21.link/p0789r3
https://github.com/ericniebler/range-v3

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

44 / 84

The current model with preprocessor includes is simple
to implement, but hard to work with. Every #include

requires full parsing of the included header - even if we
already used it before. We have to make sure not to
have circular includes. It is also a very blunt way of
specifying APIs!

45 / 84

In it’s core, the module TS is rather simple:

• A file can declare itself as a module with the
module MODULE_NAME; syntax.

• A module explicitly exports the items that are part
of the public interface

• To get access to the exported elements you just
import the module import MODULE_NAME;

• Will also have support for submodules and
grouping of modules

45 / 84

In it’s core, the module TS is rather simple:

• A file can declare itself as a module with the
module MODULE_NAME; syntax.

• A module explicitly exports the items that are part
of the public interface
export declaration; OR
export { declarations... };

• To get access to the exported elements you just
import the module import MODULE_NAME;

• Will also have support for submodules and
grouping of modules

45 / 84

In it’s core, the module TS is rather simple:

• A file can declare itself as a module with the
module MODULE_NAME; syntax.

• A module explicitly exports the items that are part
of the public interface

• To get access to the exported elements you just
import the module import MODULE_NAME;

• Will also have support for submodules and
grouping of modules

45 / 84

In it’s core, the module TS is rather simple:

• A file can declare itself as a module with the
module MODULE_NAME; syntax.

• A module explicitly exports the items that are part
of the public interface

• To get access to the exported elements you just
import the module import MODULE_NAME;

• Will also have support for submodules and
grouping of modules

46 / 84

Example

Listing 5: module_a.cc
module moduleA;
void foo(int) {}
export int fun(int){
return 5;

}

Listing 6: module_b.cc
module bmodule;
export int foo(){
return 6;

}
void fun() {}

Listing 7: module_user.cc
import bmodule;
import moduleA;
int main() {

return fun(5) + foo();
}

47 / 84

Current problems

• Macros. According to the proposal, macros are
never exported. This is a language extension and
macros are still preprocessor. Lots of people want
macro exports

• Tooling. At the moment, the standard is written for
an abstract machine, this would add requirements
for build tools (which we of course all have)

47 / 84

Current problems

• Macros. According to the proposal, macros are
never exported. This is a language extension and
macros are still preprocessor. Lots of people want
macro exports

• Tooling. At the moment, the standard is written for
an abstract machine, this would add requirements
for build tools (which we of course all have)

48 / 84

References

• Modules TS (standards text) N7420

• P0142 - A module system for C++

https://wg21.link/n4720
https://wg21.link/p0142r0

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

50 / 84

This proposal adds three new keywords; co_await ,
co_yield and co_return . A function having one of
these is called a coroutine. The goal is to be able to
pause the state of execution and get intermediate
results. A simple example is a generator:

generator<int> get_value() {
for (int i{}; i<10;++i)

co_yield i;
}

51 / 84

The co_await keyword let us call another coroutine
and pause execution until a value is provided by the
function:

future<int> fun();
void foo()
{

auto val = co_await fun();
}

52 / 84

co_return is used instead of return in a coroutine.

53 / 84

Opposition

The proposal also includes a big set of library
extensions and some authors from google (Geoff
Romer, James Dennett and Chandler Carrouth) believe
that the interface is blunt and difficult to work with.

Fundamentally, the Coroutines TS does not
provide a direct and efficient model of
hardware: the primitive objects and
operations that are used to implement
coroutines are hidden behind an abstraction
boundary. – P1063

54 / 84

References

• N4402 - Resumable Functions

• Coroutines TS - N723

• StackOverflow - What are coroutines in C++20?

• P1063 - Core Coroutines

https://isocpp.org/files/papers/N4402.pdf
https://wg21.link/n4723
https://stackoverflow.com/a/44244451/1790748
https://wg21.link/p1063

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

56 / 84

The main goal of the executors proposal is to
standardize a common way of controlling execution in
C++.

Listing 8: Current way of woking with different execu-
tion models
void parallel_for(int facility, int n, function<void(int)> f) {
if(facility == OPENMP) {
#pragma omp parallel for
for(int i = 0; i < n; ++i) {
f(i);

}
}
else if(facility == GPU) {
parallel_for_gpu_kernel<<<n>>>(f);

}
else if(facility == THREAD_POOL) {
global_thread_pool_variable.submit(n, f);

}
}

57 / 84

The goal is to add a common abstraction for all
execution models - an executor that controls execution.

// initialize executor somehow (depending on model)
my_executor_type my_executor = ...
// execute parallel for_each "on" my_executor
std::for_each(std::execution::par.on(my_executor),

begin(data), end(data), func);

58 / 84

References

• P0761 - Executors Design Document

• P0443 - A unified Executors Proposal for C++
(standards text)

• Prototype implementation

https://wg21.link/p0761
https://wg21.link/p0443
https://github.com/executors/executors-impl

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

60 / 84

The networking TS wants to add basic networking
facilities to the standard library. It will be a variant of
Boost.Asio.

61 / 84

What to expect

• TCP and UDP

• Support for client and server application code

• Scalability to handle multiple concurrent
connections

• IPv4 and IPv6

• DNS

• timers

62 / 84

What Not to expect

• Protocols such as HTTP, SMTP, FTP, etc.

• Encryption (SSL,TLS)

63 / 84

References

• N4478 - Networking Library Proposal

• N4734 - Networking TS

• Example implementation on github

• Boost.Asio

https://wg21.link/n4478
https://wg21.link/n4734
https://github.com/chriskohlhoff/asio/tree/master/asio
https://www.boost.org/doc/libs/1_67_0/doc/html/boost_asio.html

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

65 / 84

The transactional memory proposal contains two
transaction-safe blocks; synchronized blocks and
atomic blocks. The main goal is to make it easier to
work with synchronization between threads.

66 / 84

Synchronized blocks

A synchronized block works as if it locks a global mutex
before entering the block and unlocks it afterwards. No
thread will execute a synchronized block at the same
time as any other thread. It will work as if they try to
lock the same mutex, no matter which synchronized
block.

• synchronized { body }

• There is also a proposed version where a domain
can be specified so that each domain share one
mutex (instead of using one global).

66 / 84

Synchronized blocks

A synchronized block works as if it locks a global mutex
before entering the block and unlocks it afterwards. No
thread will execute a synchronized block at the same
time as any other thread. It will work as if they try to
lock the same mutex, no matter which synchronized
block.

• synchronized { body }

• There is also a proposed version where a domain
can be specified so that each domain share one
mutex (instead of using one global).
synchronized (domain) { body }

67 / 84

Atomic blocks

An atomic block works as if all statements in that block
is executed simultaneously, no other thread sees any
intermediate state inside the atomic block. Three
versions that handle exceptions differently.
• atomic.noexcept { body } UB if an exception is
thrown.

• atomic.commit { body } If an exception is
thrown, the transaction so far is committed and
the exception is thrown.

• atomic.cancel { body } The transaction is
aborted if exception is thrown and exception is
thrown.

67 / 84

Atomic blocks

An atomic block works as if all statements in that block
is executed simultaneously, no other thread sees any
intermediate state inside the atomic block. Three
versions that handle exceptions differently.
• atomic.noexcept { body } UB if an exception is
thrown.

• atomic.commit { body } If an exception is
thrown, the transaction so far is committed and
the exception is thrown.

• atomic.cancel { body } The transaction is
aborted if exception is thrown and exception is
thrown.

67 / 84

Atomic blocks

An atomic block works as if all statements in that block
is executed simultaneously, no other thread sees any
intermediate state inside the atomic block. Three
versions that handle exceptions differently.
• atomic.noexcept { body } UB if an exception is
thrown.

• atomic.commit { body } If an exception is
thrown, the transaction so far is committed and
the exception is thrown.

• atomic.cancel { body } The transaction is
aborted if exception is thrown and exception is
thrown.

68 / 84

References

• N3919 - Transactional Memory Support for C++

https://wg21.link/n3919

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

70 / 84

A tool to let the compiler generate metaobjects to let us
reason about static types. Will let us handle the
following2:

• Data members. e.g. walking through the data
members of a class

• Member types. e.g. walking through nested types
or typedefs in a class

• Enumerators. The ability to, for example, make
one-line serialization routines for enums

• Template instantiations. The ability to reflect on
instantiated templates, such as std::vector<int>

• Alias support. The ability to distinguish between a
typedef and its underlying type

2List taken verbatim from P0578

71 / 84

What does it involve?

• A new ”operator”, $reflect to generate
metaobjects

• Library support to query metaobjects

72 / 84

template <typename T>
T min(const T& a, const T& b) {

log() << "min<"
<< get_base_name_v<$reflect(T)>
<< ">(" << a << ", " << b << ") = ";

T result = a<b?a:b;
log() << result << std::endl;
return result;

}

73 / 84

References

• P0194 - Static reflection

• P0578 - Static Reflection in a Nutshell

• P0385 - Rationale and Design

https://wg21.link/p0194
https://wg21.link/p0578
https://wg21.link/p0385

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

75 / 84

Herb Sutter builds upon reflections and extends it alot
to let us iterate over a class’ members, query them,
modify them and possibly add more. This will let us:

• Add abstractions

• Let the compiler enforce ”rules” such as how to
create a good interface instead of relying on
programmers to memorize requirements

• Letting libraries adding specialized types instead
of requiring modifications to the language

• Eliminate the need to invent specific dialects or
side-languages and specific compilers such as Qt
Moc or C++/CX.

76 / 84

This is a very early version and could maybe be in
C++23, but I’m pessimistic. All syntax in the examples
below are very likely to change (examples lifted
verbatim from the proposal).

Listing 9: pseduocode example
constexpr void interface(meta::type target, const meta::type source) {

// - apply the "public" and "virtual" keywords to all member functions
// - require that all member functions are public and virtual
// - require no data members, copy or move functions
// - generate a pure virtual destructor (if not user-supplied)

};
interface Shape {
int area() const;
void scale_by(double);

};

Listing 10: Generated class
class Shape {
public:
virtual int area() const = 0;
virtual void scale_by(double) = 0;
virtual ~Shape() = 0;

};

77 / 84

Adding interface as a library vs as part of standard (C#)

78 / 84

Programming with QT
Compilation with qt

79 / 84

Programming with QT
Modified code

80 / 84

References

• P0707 - Metaclasses: Generative C++

https://wg21.link/p0707r3

1 Three-way comparison (spaceship op-
erator)

2 Contracts
3 Error handling
4 Concepts
5 Ranges
6 Modules
7 Coroutines
8 Executors
9 Networking
10 Transactional memory
11 Reflections
12 Meta-classes
13 char8_t

82 / 84

Unicode

C++11 added support for string literals encoded in
UTF-8, UTF-16 and UTF-32. It also added types to
handle codepoints in UTF-16 and UTF-32 (char16_t
and char32_t) but not for UTF-8. C++17 added string
literals for UTF-8 but it’s still stored as char !

auto str = u8"\0123";

str should be one code point, but since it’s stored in a
char array, it will be encoded as two chars (0xC4 and
0xA3).

83 / 84

Proposal P0482 wants to add a new type, char8_t , to
represent a code point encoded in UTF-8. It also
recommends the following:

• specialize std::basic_string and
std::string_view for this type.

• An u8 string literal should generate a char8_t

array

• Overload operator<< and operator>>

84 / 84

References

• P0482 - char8_t : A type for UTF-8 characters
and strings

https://wg21.link/p0482r3

www.liu.se

www.liu.se

	Three-way comparison (spaceship operator)
	Contracts
	Error handling
	Concepts
	Ranges
	Modules
	Coroutines
	Executors
	Networking
	Transactional memory
	Reflections
	Meta-classes
	char8_t

