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Threads
Introduction

• When writing performance critical software there are
many techniques for improving performance.

• The single most important factor when it comes to
performance is to efficiently use the hardware available
to us. We have previously discussed how to write code
that utilizes CPU caching and pre‐fetching, but there is
one aspect of the hardware we haven’t really
discussed: how to utilize the fact that modern
computers have multiple CPUs.

• In this lecture we will introduce threading, specifically
how to use the threading library from STL.
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Threads
What are threads?

• A thread is a sequence of instructions within a process
or program that can run independently.

• Threads can be run in parallel (if the hardware
supports it). Otherwise threads will take turns
executing on the CPU.

• Each program starts with one thread, if we need more
we have to dynamically create threads from within the
initial thread. This is called thread creation.
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Threads
Thread creation

examples/1.cc

1 #include <iostream>
2 #include <thread>
3
4 void task()
5 {
6 auto id = std::this_thread::get_id();
7 std::cout << "thread " << id << " created!\n";
8 }
9
10 int main()
11 {
12 std::thread t1 { task };
13 }
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Threads
Threading library

• A thread is represented by an std::thread object
• When we create a thread we have to pass it a function

(or other callable object), which begins executing as
soon as possible after creation.

• Each thread has its own execution context which we
can access through the std::this_thread
namespace. In the previous example we saw how to
get the ID of a thread using the get_id() function.

• Let’s see what happens if we run the example.
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Threads
Thread creation – Problem

$ g++ 1.cc -lpthread
$ ./a.out
terminate called without an active exception
Aborted (core dumped)
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Threads
Thread creation – Problem

• What happened?
• Our main thread simply starts the thread t1 and then

immediately exits.
• Whenever the main thread exits all the other threads

will be forced to exit as well.
• This causes an exception to be raised, since we haven’t

specified what should happen if the main thread exits.
• In order to fix this we have to, from the main thread,

specify the relationship between our thread and the
main thread.
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Threads
Thread creation – Fix

examples/1-fixed.cc

1 #include <iostream>
2 #include <thread>
3
4 void task()
5 {
6 auto id = std::this_thread::get_id();
7 std::cout << "thread " << id << " created!\n";
8 }
9
10 int main()
11 {
12 std::thread t1 { task };
13 t1.join();
14 }
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Threads
Thread creation – Fixed

$ g++ 1-fixed.cc -lpthread
$ ./a.out
thread 140072753923840 created!
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Threads
Thread creation – Fixed

• There are two ways a thread can be related to its parent thread (i.e. the
thread that created it).

• A thread can be joined with its parent thread. Then the parent thread is
guaranteed to not exit until all of its joined threads have finished execution.
This is done by calling .join() on the created thread from the parent
thread. If the created thread hasn’t finished its execution the parent thread
will pause and wait for the created thread when .join() is called.

• A thread can also be detached from its parent. This means that the created
thread should immediately exit once the parent thread exits. When
detaching a thread from its parent we specify that it is perfectly OK and safe
to prematurely exit the created thread. This relationship is established by
calling .detach() on the created thread anywhere in the parent thread.

• Note that joining a thread and dispatching a thread is mutually exclusive.
Once you have established a relationship between parent and child you
cannot change it.
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Threads
Multiple threads

• We can of course create more than one thread, which
will be demonstrated on the next slide.

• Note that we have to specify a relationship with each of
the created threads.

• Another interesting thing that will be demonstrated on
the next slide is how to give the thread access to data
through the use of parameters.
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Threads
Multiple threads

examples/2.cc

1 void task(std::string const& name)
2 {
3 std::cout << name << std::endl;
4 }
5
6 int main()
7 {
8 std::string a { "A" };
9 std::string b { "B" };
10
11 std::thread t1 { task, std::cref(a) };
12 std::thread t2 { task, std::cref(b) };
13
14 t1.join();
15 t2.join();
16 }
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Threads
Multiple threads – Parameters

• On the previous slide we passed additional parameters
to the std::thread constructor.

• The first parameter is the function that the thread will
execute, and any subsequent parameters are passed
along to the function, by‐value as default.

• We wrap our parameters in std::cref() to ensure
that they instead are passed by‐reference thus making
data shared between the main‐thread and the
child‐thread.
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Threads
Multiple threads – Different outputs

$ ./a.out
A
B

$ ./a.out
AB

$ ./a.out
B
A

$ ./a.out
BA
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Threads
Multiple threads – Why different outputs?

• Both threads are executed in parallel, independent of each other. It is only
guarantees that operations within a thread is executed in order. However,
the order of operations between threads is non‐deterministic since the
threads execute at their respective pace completely oblivious to the other
threads existence. Meaning that the operations from the two threads get
“mixed” in a non‐deterministic order. One such “mix” of operations is called
an interleaving. When writing multithreaded code you have to assume that
any interleaving between threads can occur, so you must make sure that the
result will be correct for each possible interleaving.

• std::cout is shared between all threads. Calling operator<< on
std::cout is thread‐safe, meaning it is completely safe to have multiple
threads call it at the same time. However, the interleaving between chained
operator<< calls is not deterministic, which means that the order of
prints can occur in different order between different interleavings.

• Because of this we get four potential outputs.
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Threads
Mutliple threads – Possible interleavings

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
Mutliple threads – Possible interleavings

Interleaving #1

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
Mutliple threads – Possible interleavings

Interleaving #2

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
Mutliple threads – Possible interleavings

Interleaving #3

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
Mutliple threads – Possible interleavings

Interleaving #4

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
Mutliple threads – Possible interleavings

Interleaving #5

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
Mutliple threads – Possible interleavings

Interleaving #6

std::cout << "A";

std::cout << std::endl;

std::cout << "B";

std::cout << std::endl;
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Threads
An important detail

• Note that if we perform an operation from two threads simultaneously that
is not thread‐safe, we can no longer assume that threads are interleaved.

• This is because simultaneously performing non‐thread‐safe operations will
result in race conditions, where the behaviour of the program is dependent
on the order it is called from different threads, which cannot be
deterministic.

• If the operation is thread‐safe however, then the order of threads
performing it should not affect the behaviour. Therefore we can think of
operations as happening at distinct time steps (i.e. as interleavings) because
them occuring at the same time will have the same effect as them
happening in sequence.

• But, if this assumption is broken your program lands in undefined behaviour
which can have bad consequences.

• For more information you can look at resources related to sequential
consistency and data races.
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Threads
Notes about threading

• Threading isn’t free
• Hardware support required
• Fallbacks to sharing the CPU
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Notes about threading

• Threading isn’t free
• Creating a thread has a steep cost
• Managing and synchronizing threads is expensive

• Hardware support required
• Fallbacks to sharing the CPU
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Threads
Notes about threading

• Threading isn’t free
• Hardware support required

• Threading is generally only an improvement if your hardware has
multiple CPU:s.

• To make multi‐threading efficient one should usually only use the
same number of threads as your hardware supports.

• Use std::thread::hardware_concurrency() to see how
many threads the current system supports.

• Fallbacks to sharing the CPU
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Threads
Notes about threading

• Threading isn’t free
• Hardware support required
• Fallbacks to sharing the CPU

• If you are using more threads than your system supports, the excess
threads will be scheduled on the same CPU as other threads.

• So you are still executing code sequentially, but concurrently. I.e.
threads are sporadically pausing and starting on CPUs.

• This will generally not improve the execution time and is therefore
not an efficient solution (in terms of performance).
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Synchronization
Solving part of the problem

• The issue with these interleavings is that in some of
them there are print statements from one thread
between two chained operator<< calls within
another thread, which will mess up the message
printed from both threads.

• To solve this we need to ensure that only one thread at
a time is allowed to print a message.

• I.e. we want to give a thread exclusive access to
std::cout. We do this by utilizing a concept called
mutual exclusion.
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Synchronization
Mutual exclusion

examples/3.cc

1 void task(std::string const& name, std::mutex& mutex)
2 {
3 mutex.lock();
4 std::cout << name << std::endl;
5 mutex.unlock();
6 }
7
8 int main()
9 {
10 std::string a { "A" };
11 std::string b { "B" };
12
13 std::mutex mutex { };
14 std::thread t1 { task, std::cref(a), std::ref(mutex) };
15 std::thread t2 { task, std::cref(b), std::ref(mutex) };
16
17 t1.join();
18 t2.join();
19 }
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Synchronization
Mutual exclusion – Different outputs

$ ./a.out
A
B

$ ./a.out
B
A
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Synchronization
Mutual exclusion – Explanation

• Mutual exclusion is done in C++ using a std::mutex object.
• A std::mutex acts as a barrier. The first thread to reach the barrier (by

calling .lock()) is allowed entry, but any other threads that arrive after
that (i.e. by also calling .lock()) must wait until the first thread no longer
need exclusive access (by calling .unlock()).

• In the example on the previous slide we ensure that the message printed
from each thread is guaranteed to be uninterrupted by the other thread,
since the mutex guarantees that only one thread can execute the
print‐statement in task() at a time.

• However, it is still non‐deterministic which thread locks the mutex first, so
we still have two different interleavings.

• Note that the synchronization of std::mutex is entirely dependent on
the .lock() and .unlock() which means that it can be used to
synchronize threads that have completely different tasks.
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Synchronization examples/4.cc

1 std::mutex cout_mutex { };
2
3 void task_A()
4 {
5 auto id = std::this_thread::get_id();
6 cout_mutex.lock();
7 std::cout << "My ID: " << id << std::endl;
8 cout_mutex.unlock();
9 }
10
11 void task_B(std::string const& message)
12 {
13 cout_mutex.lock();
14 std::cout << message << std::endl;
15 cout_mutex.unlock();
16 }
17
18 int main()
19 {
20 std::thread t1 { task_A };
21 std::thread t2 { task_B, "A message from t2" };
22
23 cout_mutex.lock();
24 std::cout << "Starting!" << std::endl;
25 cout_mutex.unlock();
26
27 t1.join();
28 t2.join();
29 }
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Synchronization
Multiple critical sections

• Generally we strive after associating one mutex with each shared resource,
so that whenever a thread uses that resource it locks the mutex and unlocks
once it is finished. Thus ensuring that no two‐threads try to use the
resource at the same time. Note that a resource can be a group of variables
or similar constructs, it isn’t necessarily a single variable.

• However, note that one can have multiple different mutexes associated with
different resources that are independent of each other.

• A piece of code that needs to be locked with at least one mutex, due to it
having to use some resource(s), we generally call a critical section.

• Critical section A can never be executed at the same time as critical section
B if and only if A and B have overlapping resources they both use.

• This is why we need one mutex per resource, so that critical sections can
gain exclusive access to all resources it needs, no more and no less.

• Next, we show a situation where we might need to lock multiple mutexes
for the same critical section and some problems that can arise from it.



27 / 63

Synchronization
examples/5.cc

1 void task(std::mutex& mutex_A, std::mutex& mutex_B)
2 {
3 mutex_A.lock();
4 mutex_B.lock();
5
6 auto id = std::this_thread::get_id();
7 std::cout << id << std::endl;
8
9 mutex_B.unlock();
10 mutex_A.unlock();
11 }
12
13 int main()
14 {
15 std::mutex mutex_A { };
16 std::mutex mutex_B { };
17
18 std::thread t1 { task, std::ref(mutex_A), std::ref(mutex_B) };
19 std::thread t2 { task, std::ref(mutex_B), std::ref(mutex_A) };
20
21 t1.join();
22 t2.join();
23 }
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Synchronization
examples/5.cc

1 void task(std::mutex& mutex_A, std::mutex& mutex_B)
2 {
3 mutex_A.lock();
4 mutex_B.lock();
5
6 auto id = std::this_thread::get_id();
7 std::cout << id << std::endl;
8
9 mutex_B.unlock();
10 mutex_A.unlock();
11 }
12
13 int main()
14 {
15 std::mutex mutex_A { };
16 std::mutex mutex_B { };
17
18 std::thread t1 { task, std::ref(mutex_A), std::ref(mutex_B) };
19 std::thread t2 { task, std::ref(mutex_B), std::ref(mutex_A) };
20
21 t1.join();
22 t2.join();
23 }

Program freezes...?
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Synchronization
Deadlocks

Mutex A

Thread #1

Thread #2

Mutex B
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Synchronization
Deadlocks

Mutex A

Thread #1

Thread #2

Mutex B

Lock!
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Synchronization
Deadlocks

Mutex A

Thread #1

Thread #2

Mutex B

Lock! Lock!
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Synchronization
Deadlocks

Mutex A

Thread #1

Thread #2

Mutex B

Lock! Lock!

Waiting
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Mutex A

Thread #1

Thread #2

Mutex B

Lock! Lock!

Waiting

Waiting
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Synchronization
Deadlocks

Mutex A

Thread #1

Thread #2

Mutex B

Lock! Lock!

Waiting

Waiting

???
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Synchronization
Avoid deadlocks

• A solution for avoiding deadlocks is to ensure that mutexes are locked in a
consistent order.

• What this means is that if mutex A is locked before mutex B in one critical
section in one thread, then it has to be locked in the same order in every
thread and critical section that needs to use A and B.

• This can be solved by using the std::lock() function from C++11, or
even better: the std::scoped_lock class from C++17. Both of these
ensure that all passed mutexes are locked in a consistent order.

• The difference between std::lock() and std::scoped_lock is that
the latter also unlocks all mutex once the end of the surrounding scope is
reached.

• The reason why std::scoped_lock is prefered is that its abstraction
removes the need of explicitly unlocking mutexes, we instead express
critical sections using scope, which is more in line with how modern C++ is
used. It also avoids problems where we forget to unlock a mutex.
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Synchronization
Avoid deadlocks

examples/5-fixed.cc

1 void task(std::mutex& mutex_A, std::mutex& mutex_B)
2 {
3 std::scoped_lock lock(mutex_A, mutex_B);
4
5 auto id = std::this_thread::get_id();
6 std::cout << id << std::endl;
7 }
8
9 int main()
10 {
11 std::mutex mutex_A { };
12 std::mutex mutex_B { };
13
14 std::thread t1 { task, std::ref(mutex_A), std::ref(mutex_B) };
15 std::thread t2 { task, std::ref(mutex_B), std::ref(mutex_A) };
16
17 t1.join();
18 t2.join();
19 }
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Sharing data
Example #1

1 int sum(std::vector<int>& values)
2 {
3 int result { 0 };
4
5 for (int value : values)
6 result += value;
7
8 return result;
9 }
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Sharing data
Example #1

• Let us take this simple sum‐function and try to make it multithreaded.
• There are several issues we need to solve to make this happen.
• Firstly we need to determine how we split up the work among different

threads. For this particular function it is quite easy to do. GivenN threads,
we split up the passed in vector intoN equally‐sized blocks, and let each
thread sum its own block.

• The second thing we must figure out is how to merge the results from each
thread into the main thread again. This is actually more delicate than it first
seems, because here we have to take into account that we don’t actually
know the exact order work will be done.

• Let’s try with the simplest solution we can come up with: make each thread
add their total sum to a shared variable containing the result.
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Sharing data
Example #1 – Problem examples/6.cc

1 void task(It begin, It end, int& total)
2 {
3 int result { 0 };
4 for (It it { begin }; it != end; ++it)
5 result += *it;
6 total += result;
7 }
8
9 int sum(std::size_t thread_count, std::vector<int>& values)
10 {
11 std::size_t const size { values.size() / thread_count };
12 std::vector<std::thread> pool { };
13 int result { };
14
15 for (std::size_t i { 0 }; i < thread_count; ++i)
16 {
17 auto begin { values.begin() + size * i };
18 auto end { values.begin() + size * (i + 1) };
19 pool.emplace_back(task, begin, end, std::ref(result));
20 }
21
22 for (std::thread& thread : pool)
23 thread.join();
24
25 return result;
26 }
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Sharing data
Example #1 – Running the example

1 std::vector<int> v(1000000, 1);
2 int answer { sum(20000, v) };

What should the answer be?
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Sharing data
Example #1 – Running the example

1 std::vector<int> v(1000000, 1);
2 int answer { sum(20000, v) };

What should the answer be? 1000000
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Sharing data
Example #1 – Running the example

But what do we get?
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Sharing data
Example #1 – Running the example

But what do we get?

$ ./a.out
999850
$ ./a.out
999600
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Sharing data
Example #1 – Why?

• We do not get consistent results, why?
• The problem is that multiple threads are potentially trying to do

total += result at the same time.
• Note that total += result is equivalent to:

1 int tmp { total };
2 total = tmp + result;

Since it first have to read the current value of total, then add result to
it, and then finally overwrite total with the new value. Meaning it is
actually three operations, that can interleave each other from different
threads...
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp:

result: 10000

tmp:

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp:

result: 10000

tmp:

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

#1>
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp: 980000

result: 10000

tmp:

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

#1>
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp: 980000

result: 10000

tmp:

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

#1> <#2
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp: 980000

result: 10000

tmp: 980000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

#1> <#2
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp: 980000

result: 10000

tmp: 980000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

<#2
#1>
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp: 990000

result: 10000

tmp: 980000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

<#2
#1>
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Sharing data
Example #1 – Problem

total: 980000

result: 10000

tmp: 990000

result: 10000

tmp: 980000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

<#2

#1>
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Sharing data
Example #1 – Problem

total: 990000

result: 10000

tmp: 990000

result: 10000

tmp: 980000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

<#2

#1>
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Sharing data
Example #1 – Problem

total: 990000

result: 10000

tmp: 990000

result: 10000

tmp: 980000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

<#2
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Sharing data
Example #1 – Problem

total: 990000

result: 10000

tmp: 990000

result: 10000

tmp: 990000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;

<#2
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Sharing data
Example #1 – Problem

total: 990000

result: 10000

tmp: 990000

result: 10000

tmp: 990000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp; <#2
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Sharing data
Example #1 – Problem

total: 990000

result: 10000

tmp: 990000

result: 10000

tmp: 990000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp; <#2
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Sharing data
Example #1 – Problem

total: 990000

result: 10000

tmp: 990000

result: 10000

tmp: 990000

Thread #1 Thread #2

int tmp { total };
tmp += result;
total = tmp;
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Sharing data
Example #1 – Problem

• As is hopefully clear from the animation on the previous
slides, the problem arises when two threads happen to read
the same initial value from total, because then one of
them will not take the other into account when calculating
the total sum.

• The big problem here is that we have multiple threads that
read and write to the same value without any
synchronization.

• The easiest solution to this is to make sure that updating the
total is a critical section, meaning no threads may update the
total simultaneously.
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Sharing data
Example #1 – Fixed with mutex

examples/6-fixed.cc

1 void task(It begin, It end, int& total, std::mutex& mutex)
2 {
3 int result { 0 };
4 for (It it { begin }; it != end; ++it)
5 result += *it;
6
7 {
8 std::lock_guard<std::mutex> lock { mutex };
9 total += result;
10 }
11 }
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Sharing data
Example #1 – Fixed with mutex

• On the previous slide we introduce a std::mutex
parameter to our task() function.

• This mutex is used to lock the update of total (think about
why it is a bad idea to lock the whole function).

• We are using std::lock_guard which is an object that
locks the passed in mutex in the constructor, and unlocks it
in the destructor. This allows us to use scopes to more
clearly mark our critical sections.
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Sharing data
Example #1 – Fixed with std::atomic

examples/6-atomic.cc

1 void task(It begin, It end, std::atomic<int>& total)
2 {
3 int result { 0 };
4 for (It it { begin }; it != end; ++it)
5 result += *it;
6 total += result;
7 }
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Sharing data
Example #1 – Fixed with std::atomic

• We can also achieve the same thing by using an
std::atomic<int>

• An atomic type is a data type where it is well defined
what happens if multiple threads attempt to read or
write from/to the variable. It specifically ensures that a
write is visible to everyone directly, without any
intermediate steps.

• Another way to view it is that each operation on an
std::atomic is thread‐safe.
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Thread communication
std::jthread

1 std::thread t {
2 []()
3 {
4 std::cout << "called!" << std::endl;
5 }
6 };
7
8 t.join();



44 / 63

Thread communication
std::jthread

1 std::jthread t {
2 []()
3 {
4 std::cout << "called!" << std::endl;
5 }
6 };
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Thread communication
std::jthread

• std::jthread is a version of std::thread that
automatically joins the thread with the parent in the
destructor.

• There are features for prematurely stopping or joining
the thread, but in those circumstances it is usually
easier to just use std::thread.

• std::jthread is especially useful to ensure that the
thread is handled properly without any actions from
the programmer. It is recommended to use
std::jthread as a default.
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Thread communication
Communication between threads

• A common problem in multithreaded software is how
to properly and safely communicate between threads.

• We are now going to focus on how to delegate work
from one thread to another. The idea is that the parent
thread creates a thread and assigns it a task, and then
continues doing something else while waiting for the
result from its child thread.

• Once the work is ready from the child thread it will be
made available to the parent.

• We are going to implement this using a concept called
promise + future.
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Thread communication
Communication between threads

Thread #1

Thread #2
Done!
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Thread communication
Communication between threads

Thread #1 Thread #2
create

Done!
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Thread communication
Communication between threads

Thread #1 Thread #2

calculatingdoing other tasks

waiting

Done!
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Thread communication
Communication between threads

Thread #1 Thread #2
result

Done!
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Thread communication
Communication between threads

Thread #1

Thread #2

Done!
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Thread communication
std::promise + std::future

1 std::promise<int> promise { };
2 std::future<int> future { promise.get_future() };
3
4 std::jthread thread {
5 [](std::promise<int> promise)
6 {
7 promise.set_value(5);
8 },
9 std::move(promise)
10 };
11
12 // do other things
13
14 std::cout << future.get() << std::endl;



48 / 63

Thread communication
std::promise + std::future

1 std::promise<int> promise { };
2 std::future<int> future { promise.get_future() };
3
4 std::jthread thread {
5 [](std::promise<int> promise)
6 {
7 promise.set_value(5);
8 },
9 std::move(promise)
10 };
11
12 // do other things
13
14 std::cout << future.get() << std::endl;

Get associated future



48 / 63

Thread communication
std::promise + std::future

1 std::promise<int> promise { };
2 std::future<int> future { promise.get_future() };
3
4 std::jthread thread {
5 [](std::promise<int> promise)
6 {
7 promise.set_value(5);
8 },
9 std::move(promise)
10 };
11
12 // do other things
13
14 std::cout << future.get() << std::endl;



48 / 63

Thread communication
std::promise + std::future

1 std::promise<int> promise { };
2 std::future<int> future { promise.get_future() };
3
4 std::jthread thread {
5 [](std::promise<int> promise)
6 {
7 promise.set_value(5);
8 },
9 std::move(promise)
10 };
11
12 // do other things
13
14 std::cout << future.get() << std::endl;

move to thread



48 / 63

Thread communication
std::promise + std::future

1 std::promise<int> promise { };
2 std::future<int> future { promise.get_future() };
3
4 std::jthread thread {
5 [](std::promise<int> promise)
6 {
7 promise.set_value(5);
8 },
9 std::move(promise)
10 };
11
12 // do other things
13
14 std::cout << future.get() << std::endl;



48 / 63
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std::promise + std::future

1 std::promise<int> promise { };
2 std::future<int> future { promise.get_future() };
3
4 std::jthread thread {
5 [](std::promise<int> promise)
6 {
7 promise.set_value(5);
8 },
9 std::move(promise)
10 };
11
12 // do other things
13
14 std::cout << future.get() << std::endl;

Wait for result from promise
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Thread communication
std::promise + std::future

• The idea with promise and future is that the std::promise is an object
that “promises” to deliver a value some time in the future.

• The std::future is an object that will, at some point in the “future”,
receive the promised value.

• Each std::promise can produce one std::future object (using
.get_future()) which is where the value will be delivered. Trying to
call .get_future()more than once is an error.

• If more than one thread need the value, one can construct a
std::shared_future and pass it to all threads that need it.

• Once the receiving thread needs the value they call the .get() function
on the std::future object. If the value isn’t delivered yet, the thread
will at that point wait for it to be ready.

• A std::future object can only retrieve the value once. Trying to retrieve
it more than once is an error.

• Let us now look at a more complicated example.
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Thread communication
Example #2 – std::promise + std::future

examples/7.cc

1 void task(std::vector<int>& v, std::promise<int> promise)
2 {
3 int count { std::count_if(v.begin(), v.end(), is_prime) };
4 promise.set_value(count);
5 }
6
7 int main()
8 {
9 std::vector<int> v(1000);
10 std::iota(v.begin(), v.end(), 1);
11
12 std::promise<int> promise { };
13 auto future = promise.get_future();
14
15 std::jthread thread { task, std::ref(v), std::move(promise) };
16
17 std::cout << "The number of primes is: ";
18 std::cout << future.get() << std::endl;
19 }
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Thread communication

Let’s look at the sum() example again
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Thread communication
Example #1 – Using future + promise and std::jthread

examples/8.cc

1 void task(It begin, It end, std::promise<int> promise)
2 { promise.set_value(std::reduce(begin, end)); }
3
4 int sum(std::size_t thread_count, std::vector<int> const& values)
5 {
6 std::size_t const size { values.size() / thread_count };
7 std::vector<std::jthread> pool { };
8 std::vector<std::future<int>> futures { };
9
10 for (std::size_t i { 0 }; i < thread_count; ++i)
11 {
12 auto begin { values.begin() + size * i };
13 auto end { values.begin() + size * (i + 1) };
14 std::promise<int> promise { };
15
16 futures.push_back(std::move(promise.get_future()));
17 pool.emplace_back(task, begin, end, std::move(promise));
18 }
19
20 return std::accumulate(futures.begin(), futures.end(), 0,
21 [](int result, std::future<int>& future)
22 { return result + future.get(); });
23 }
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Parallel algorithms
STL algorithms

• You might have seen that for many of the STL
algorithms there are alternative overloads using
something called execution policies.

• These are algorithms that can be multi‐threaded
automatically.

• The idea is that execution policies communicate to the
algorithm certain models for parallelism.
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Parallel algorithms
Execution policies

• std::execution::seq
• std::execution::par
• std::execution::par_unseq
• std::execution::unseq (C++20)
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the algorithm is executed on a single thread, in
sequence.

• std::execution::par
• std::execution::par_unseq
• std::execution::unseq (C++20)
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• std::execution::seq
• std::execution::par
• std::execution::par_unseq

the algorithm is executed in parallel, and there are no
guarantees what‐so‐ever regarding which order the
operations are performed.

• std::execution::unseq (C++20)
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Parallel algorithms
Execution policies

• std::execution::seq
• std::execution::par
• std::execution::par_unseq
• std::execution::unseq (C++20)

the algorithm is executed on a single thread, but there
are no guarantees regarding the order.
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Parallel algorithms
Execution policies

• Note that par_unseq is generally the most efficient parallelization, but it
has weaker guarantees when it comes to the result. If operations being
performed are associative, i.e. if (a⊕ b)⊕ c = a⊕ (b⊕ c) for some
operation⊕, then the operation can safely be perfomed unsequenced.

• A typical example of an operation that is not associative, is subtraction,
since (1− 2)− 3 = −4 ̸= 1− (2− 3) = 2, so if we are to calculate a
difference in an algorithm we have stronger guarantees regarding the result
by using std::execution::par.
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Parallel algorithms
Example #1 – Using execution policy

examples/9.cc

1 int sum(std::vector<int> const& values)
2 {
3 return std::reduce(std::execution::par_unseq,
4 values.begin(), values.end());
5 }
6
7 int main()
8 {
9 std::vector<int> v(1000000, 1);
10 int answer { sum(v) };
11 std::cout << answer << std::endl;
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Parallel algorithms
Example #2 – Using execution policy

examples/10.cc

1 int main()
2 {
3 std::vector<int> v(1000);
4 std::iota(v.begin(), v.end(), 1);
5
6 auto count { std::count_if(std::execution::par_unseq,
7 v.begin(), v.end(), is_prime) };
8
9 std::cout << "The number of primes is: ";
10 std::cout << count << std::endl;
11 }
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Thinking about parallelism
Amdahl’s law

S(p) =
p

βp+ (1− β)

Where:

• S(p) is the factor speedup of the program, given p threads.

• β is the fraction of the program that cannot be parallelized.
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Thinking about parallelism
Consequences

p

S(p)

β = 0

β = 1
10

β = 1
4

β = 1
2

1 2 3 4 5

0

1

2

3

4

5



62 / 63

Thinking about parallelism
Consequences of Amdahl’s law

• What Amdahl basically tells us is that we do not solve
efficiency by simply throwing threads at our problem.

• Instead we have to make sure that β is as small as
possible. I.e. focus on rewriting your programs so that
you minimize the amount of work that must be
single‐threaded, which requires a whole lot of work.

• Some problems cannot be parallelized, and in those
cases you have to focus on aspects other than
parallelism.
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Thinking about parallelism
Recommended course

To learn more about this: TDDE65
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