
TDDD38/726G82 ‐
Advanced programming in
C++
Introduction STL

Christoffer Holm

Department of Computer and information science



1 Introduction
2 IO
3 Sequential Containers



1 Introduction
2 IO
3 Sequential Containers



3 / 47

Introduction
What is the STL?

‚ Library accessible everywhere

‚ Solving common problems

‚ Modular design

‚ Efficiency



3 / 47

Introduction
What is the STL?

‚ Library accessible everywhere

‚ Same behaviour independent of platform

‚ Shipped with the compiler itself

‚ ISO C++ requires the full library to be accessible

‚ Solving common problems

‚ Modular design

‚ Efficiency



3 / 47

Introduction
What is the STL?

‚ Library accessible everywhere

‚ Solving common problems

‚ Having to reinvent the wheel is costly

‚ There are problems most programmers face

‚ Designed to be as widely usable as possible

‚ Modular design

‚ Efficiency



3 / 47

Introduction
What is the STL?

‚ Library accessible everywhere

‚ Solving common problems

‚ Modular design

‚ Don’t pay for what you don’t use

‚ Only import the parts that you need

‚ All modules are compatible with each other

‚ Efficiency



3 / 47

Introduction
What is the STL?

‚ Library accessible everywhere

‚ Solving common problems

‚ Modular design

‚ Efficiency

‚ Library writers are very skilled

‚ Components are highly optimized

‚ Maintenance is not your responsibility



4 / 47

Introduction

Standard Template Library



5 / 47

Introduction
Design principles of STL

‚ Should be as general as possible

‚ Solves common problems

‚ The common case should be convenient

‚ Must work together with user‐defined code

‚ Efficient enough to replace hand‐written alternatives

‚ Should have robust error handling



5 / 47

Introduction
Design principles of STL

‚ Should be as general as possible

‚ Solves common problems

‚ The common case should be convenient

‚ Must work together with user‐defined code

‚ Efficient enough to replace hand‐written alternatives

‚ Should have robust error handling



5 / 47

Introduction
Design principles of STL

‚ Should be as general as possible

‚ Solves common problems

‚ The common case should be convenient

‚ Must work together with user‐defined code

‚ Efficient enough to replace hand‐written alternatives

‚ Should have robust error handling



5 / 47

Introduction
Design principles of STL

‚ Should be as general as possible

‚ Solves common problems

‚ The common case should be convenient

‚ Must work together with user‐defined code

‚ Efficient enough to replace hand‐written alternatives

‚ Should have robust error handling



5 / 47

Introduction
Design principles of STL

‚ Should be as general as possible

‚ Solves common problems

‚ The common case should be convenient

‚ Must work together with user‐defined code

‚ Efficient enough to replace hand‐written alternatives

‚ Should have robust error handling



5 / 47

Introduction
Design principles of STL

‚ Should be as general as possible

‚ Solves common problems

‚ The common case should be convenient

‚ Must work together with user‐defined code

‚ Efficient enough to replace hand‐written alternatives

‚ Should have robust error handling



6 / 47

Introduction
Components

‚ Algorithms
‚ Containers
‚ Functions
‚ Iterators



6 / 47

Introduction
Components

‚ Algorithms
‚ General facilities for solving common problems
‚ A large amount of algorithms exist in the STL
‚ Highly optimized for both speed and memory

‚ Containers
‚ Functions
‚ Iterators



6 / 47

Introduction
Components

‚ Algorithms
‚ Containers

‚ General data structures
‚ Based on high level abstractions
‚ Should not be required to understand the

underlying implementation
‚ Functions
‚ Iterators



6 / 47

Introduction
Components

‚ Algorithms
‚ Containers
‚ Functions

‚ General utility functions
‚ Should be usable for as many types as possible
‚ Solves all manner of problems

‚ Iterators



6 / 47

Introduction
Components

‚ Algorithms
‚ Containers
‚ Functions
‚ Iterators

‚ Abstraction which allows for general traversal of
data

‚ Used in conjunction with algorithms
‚ An interface that works with all containers without

the need to specify the container type



1 Introduction
2 IO
3 Sequential Containers



8 / 47

IO
Streams

ios

ostream

ostringstream ofstream

istream

ifstream istringstreamiostream

stringstream fstream



8 / 47

IO
Streams

ios

ostream

ostringstream ofstream

istream

ifstream istringstreamiostream

stringstream fstream

std::cout std::cin



8 / 47

IO
Streams

ios

ostream

ostringstream ofstream

istream

ifstream istringstreamiostream

stringstream fstream

Output Input



9 / 47

IO
Streams

‚ Represent reading and writing data to some device

‚ Example of devices;

‚ a terminal

‚ a file

‚ a chunk of memory

‚ sockets

‚ operator>> to read

‚ operator<< to write



10 / 47

IO
Stream operators

template <typename T>
ostream& operator<<(ostream& os, T&& data)
{
// write data to the device
return os;

}
// ...
cout << 1 << 2;



11 / 47

IO
Stream operators

ostream& operator<<(ostream& os, T&& data);

cout << 1 << 2;



11 / 47

IO
Stream operators

ostream& operator<<(ostream& os, T&& data);

(cout << 1) << 2;



11 / 47

IO
Stream operators

ostream& operator<<(ostream& os, T&& data);

operator<<(cout, 1) << 2;



11 / 47

IO
Stream operators

ostream& operator<<(ostream& os, T&& data);

cout << 2;



11 / 47

IO
Stream operators

ostream& operator<<(ostream& os, T&& data);

(cout << 2);



11 / 47

IO
Stream operators

ostream& operator<<(ostream& os, T&& data);

cout;



12 / 47

IO
Chaining operators

‚ Stream operators return a reference to the stream

‚ This is done to enable chaining

‚ Since << and >> are left associative this will allow us to
make several calls to the stream in one expression



13 / 47

IO
Devices

ostream& operator<<(ostream& os, T&& data);

int main()
{
ostringstream oss{};
ofstream ofs{"my_file.txt"};
cout << 1; // write to terminal
oss << 1; // write to string
ofs << 1; // write to file
oss.str(); // access string

}



14 / 47

IO
Devices

istream& operator>>(istream& is, T& data);

int main()
{
int x;
istringstream iss{"1"};
ifstream ofs{"my_file.txt"};
cin >> x; // read from terminal
oss >> x; // read from string
ofs >> x; // read from file

}



15 / 47

IO
Devices

‚ The interface of streams are general

‚ Underlying devices are abstracted away

‚ all streams are within a (polymorphic) hierarchy

‚ so we can write general code that operates on arbitrary
streams if we take ostream& or istream&



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:

fail:

unable to read as int

eof:

found end of file character

bad:

file is corrupt



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:

fail:

unable to read as int

eof:

found end of file character

bad:

file is corrupt



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:

fail:

unable to read as int

eof:

found end of file character

bad:

file is corrupt



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:

fail:

unable to read as int

eof:

found end of file character

bad:

file is corrupt



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:
fail: unable to read as int

eof:

found end of file character

bad:

file is corrupt



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:
fail: unable to read as int
eof: found end of file character

bad:

file is corrupt



16 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
while (ifs >> x)
{
// do stuff

}

Exits loop if:
fail: unable to read as int
eof: found end of file character
bad: file is corrupt



17 / 47

IO
Error handling

int x;
ifstream ifs{"file"};
ifs >> x;
if (ifs.fail()) // unable to read as int
// ...
else if (ifs.eof()) // reached end of file
// ...
else if (ifs.bad()) // device is corrupt
// ...



18 / 47

IO
Error flags

istream& operator>>(istream& is, T& t)
{
// try to read from is
if (/* unable to read as T */)
{
is.setstate(ios::failbit);

}
return is;

}



19 / 47

IO
Error flags

ios::failbit stream operation failed
ios::eofbit device has reached the end
ios::badbit irrecoverable stream error

ios::goodbit no error



20 / 47

IO
Error flags

‚ Multiple flags can be set at once

‚ except goodbit; it is set when no other flag is set

‚ This means that several errors can occur at once

‚ Do note that these flags are set after a stream operation
failed

‚ The stream does not magically detect an error if no
operation has been performed



21 / 47

IO
Converting from strings

int main(int argc, char* argv[])
{
int x;
istringstream iss{argv[1]};
if (!(iss >> x))
{
// error

// reset flags
iss.clear();

}
// continue

}

int main(int argc, char* argv[])
{
int x;
try
{
x = stoi(argv[1]);

}
catch (invalid_argument& e)
{
// error

}
// continue

}



22 / 47

IO
Converting from strings

istringstream version
` More general
` Cheaper error path
´ Requires a stream
´ Must check flags

stoi version
` No extra objects
` Easier error handling
´ Expensive error path
´ Only works for int

Prefer the istringstream version because of generality, but
as always; there are no universal solutions



23 / 47

IO
What will be printed?

#include <sstream>
#include <iostream>
#include <string>
using namespace std;
int main()
{
stringstream ss{};
ss << "123a bc hello";
int n{};
char c{};
string str{};

if (ss >> n >> n >> c) cout << n << " ";
ss.clear();
if (ss >> c >> c) cout << c << " ";
ss.clear();
if (ss >> str) cout << str << " ";

}



1 Introduction
2 IO
3 Sequential Containers



25 / 47

Containers
Containers

‚ Sequential Containers

‚ Associative Containers

‚ Container Adaptors



26 / 47

Sequential Containers
Important concepts

‚ Memory allocations

‚ Different containers have different models of
allocation.

‚ Calling new is very slow,

‚ So the number of memory allocations is an
important factor in the effectiveness of a container

‚ CPU caching

‚ Pointer invalidation



26 / 47

Sequential Containers
Important concepts

‚ Memory allocations

‚ CPU caching

‚ Modern CPU:s perform what is known as caching.

‚ Whenever the CPU fetch data from the RAM it will
fetch a block of data and store that in the cache.

‚ Accessing data in the CPU cache is several
magnitudes faster than accessing data in the RAM.

‚ Pointer invalidation



26 / 47

Sequential Containers
Important concepts

‚ Memory allocations

‚ CPU caching

‚ We always read data in blocks, so we know that the
element after the data we just read is almost
guaranteed to be in the cache.

‚ So containers that read data in sequence is a lot
faster than those that do not.

‚ Pointer invalidation



26 / 47

Sequential Containers
Important concepts

‚ Memory allocations

‚ CPU caching

‚ On the flip side: if the elements of a container is
spread all around the RAM, then it will be a lot
slower since we almost always have to read the
data from RAM rather than cache.

‚ Usually we talk about the cache locality of a
container: how much of the cache it can leverage
for speedups.

‚ Pointer invalidation



26 / 47

Sequential Containers
Important concepts

‚ Memory allocations

‚ CPU caching

‚ Pointer invalidation

‚ If we have pointers or references to data in
containers we have to know whenever these gets
invalidated.

‚ A pointer (or reference) points to a specific address
in memory,



26 / 47

Sequential Containers
Important concepts

‚ Memory allocations

‚ CPU caching

‚ Pointer invalidation

‚ So if the container for some reason moves the
element to another address in memory, then the
pointer doesn’t refer to the same element (and
chances are it doesn’t even point to a valid object)

‚ This can prove to be a big impact in how we use
containers.



27 / 47

Sequential Containers
What is a sequential container?

‚ Data stored in sequence

‚ Accessed with indices

‚ Ordered but not (necessarily) sorted



28 / 47

Sequential Containers
Which sequential containers are there?

‚ std::array

‚ std::vector

‚ std::list

‚ std::forward_list

‚ std::deque



29 / 47

Sequential Containers
std::array

0 0 0 0data

std::array<int, 4>

std::array<int, 4> array{};



29 / 47

Sequential Containers
std::array

0 0 0 0data

std::array<int, 4>

array[0] = 1;



29 / 47

Sequential Containers
std::array

1 0 0 0data

std::array<int, 4>

array[0] = 1;



29 / 47

Sequential Containers
std::array

1 0 0 0data

std::array<int, 4>

array[1] = 2;



29 / 47

Sequential Containers
std::array

1 2 0 0data

std::array<int, 4>

array[1] = 2;



29 / 47

Sequential Containers
std::array

1 2 0 0data

std::array<int, 4>

array[2] = 3;



29 / 47

Sequential Containers
std::array

1 2 3 0data

std::array<int, 4>

array[2] = 3;



29 / 47

Sequential Containers
std::array

1 2 3 0data

std::array<int, 4>

array[3] = 4;



29 / 47

Sequential Containers
std::array

1 2 3 4data

std::array<int, 4>

array[3] = 4;



30 / 47

Sequential Containers
std::array

‚ insertion: not applicable

‚ deletion: not applicable

‚ lookup: Op1q



31 / 47

Sequential Containers
std::array

` No memory allocations

` Data never move in memory

´ Fixed size

´ Size must be known during compilation



32 / 47

Sequential Containers
Example

#include <array>
// ...
int main()
{
std::array<int, 5> data{};
for (unsigned i{}; i < data.size(); ++i)
{
cin >> data.at(i);

}
for (auto&& i : data)
{
cout << i << endl;

}
}



33 / 47

Sequential Containers
std::vector

data

size 0

capacity 4

std::vector<T>

std::vector<int> vector{};



33 / 47

Sequential Containers
std::vector

data

size 0

capacity 4

std::vector<T>

vector.push_back(1);



33 / 47

Sequential Containers
std::vector

1

data

size 1

capacity 4

std::vector<T>

vector.push_back(1);



33 / 47

Sequential Containers
std::vector

1

data

size 1

capacity 4

std::vector<T>

vector.push_back(2);



33 / 47

Sequential Containers
std::vector

1 2

data

size 2

capacity 4

std::vector<T>

vector.push_back(2);



33 / 47

Sequential Containers
std::vector

1 2

data

size 2

capacity 4

std::vector<T>

vector.push_back(3);



33 / 47

Sequential Containers
std::vector

1 2 3

data

size 3

capacity 4

std::vector<T>

vector.push_back(3);



33 / 47

Sequential Containers
std::vector

1 2 3

data

size 3

capacity 4

std::vector<T>

vector.push_back(4);



33 / 47

Sequential Containers
std::vector

1 2 3 4

data

size 4

capacity 4

std::vector<T>

vector.push_back(4);



33 / 47

Sequential Containers
std::vector

1 2 3 4

data

size 4

capacity 4

std::vector<T>

vector.push_back(5);



33 / 47

Sequential Containers
std::vector

1 2 3 4

data

size 5

capacity 8

std::vector<T>

vector.push_back(5);



33 / 47

Sequential Containers
std::vector

1 2 3 4 5

data

size 5

capacity 8

std::vector<T>

vector.push_back(5);



33 / 47

Sequential Containers
std::vector

1 2 3 4 5

data

size 5

capacity 8

std::vector<T>

vector.erase(vector.begin() + 2);



33 / 47

Sequential Containers
std::vector

1 2 4 5

data

size 4

capacity 8

std::vector<T>

vector.erase(vector.begin() + 2);



33 / 47

Sequential Containers
std::vector

1 2 4 5

data

size 4

capacity 8

std::vector<T>

vector.erase(vector.begin() + 2);



33 / 47

Sequential Containers
std::vector

1 2 4 5

data

size 4

capacity 8

std::vector<T>

vector.erase(vector.begin() + 2);



33 / 47

Sequential Containers
std::vector

1 2 4 5

data

size 4

capacity 8

std::vector<T>

vector.erase(vector.begin() + 2);



33 / 47

Sequential Containers
std::vector

1 2 4 5

data

size 4

capacity 8

std::vector<T>

vector.erase(vector.begin() + 2);



34 / 47

Sequential Containers
std::vector

‚ insertion:

‚ at end: Op1q

‚ otherwise: Opnq

‚ deletion:

‚ last element: Op1q

‚ otherwise: Opnq

‚ lookup: Op1q



35 / 47

Sequential Containers
std::vector

` Data is sequential in memory

` Dynamic size

´ Entire data range can move in memory

´ Dynamic allocations are slow



36 / 47

Sequential Containers
Example

#include <vector>
// ...
int main()
{
std::vector<int> data{};
int x{};
while (cin >> x)
{
data.push_back(x);

}
for (auto&& i : data)
cout << i << endl;

}



37 / 47

Sequential Containers
std::list

first

last

size 0

std::list<T>

std::list<int> list{};



37 / 47

Sequential Containers
std::list

first

last

size 0

std::list<T>

list.push_back(1);



37 / 47

Sequential Containers
std::list

first

last

size 1

std::list<T>

1

list.push_back(1);



37 / 47

Sequential Containers
std::list

first

last

size 1

std::list<T>

1

list.push_back(2);



37 / 47

Sequential Containers
std::list

first

last

size 2

std::list<T>

1 2

list.push_back(2);



37 / 47

Sequential Containers
std::list

first

last

size 2

std::list<T>

1 2

list.push_back(3);



37 / 47

Sequential Containers
std::list

first

last

size 3

std::list<T>

1 2 3

list.push_back(3);



37 / 47

Sequential Containers
std::list

first

last

size 3

std::list<T>

1 2 3

list.push_back(4);



37 / 47

Sequential Containers
std::list

first

last

size 4

std::list<T>

1 2 3 4

list.push_back(4);



38 / 47

Sequential Containers
std::list

‚ insertion:

‚ at the ends: Op1q

‚ otherwise: Opnq

‚ deletion:

‚ first or last element: Op1q

‚ otherwise: Opnq

‚ lookup: Opnq



39 / 47

Sequential Containers
std::list

` elements never move in memory

` Operations around a specific element is Op1q

´ Many allocations (one for each element)

´ Linear lookup

´ Makes the CPU cache very sad :(



39 / 47

Sequential Containers
std::list

` elements never move in memory

` Operations around a specific element is Op1q

´ Many allocations (one for each element)

´ Linear lookup

´ Makes the CPU cache very sad :(



40 / 47

Sequential Containers
Example

#include <list>
#include <vector>
// ...
int main()
{
std::list<int> data{};
std::vector<int*> order{};
int x;
while (cin >> x)
{
data.push_back(x);
order.push_back(&data.back());

}
data.sort();
int i{0};
for (auto&& val : data)
{
cout << val << ", " << *order[i++] << endl;

}
}



41 / 47

Sequential Containers
std::forward_list

first

size 0

std::forward_list<T>

std::forward_list<int> list{};



41 / 47

Sequential Containers
std::forward_list

first

size 0

std::forward_list<T>

list.push_front(1);



41 / 47

Sequential Containers
std::forward_list

first

size 1

std::forward_list<T>

1

list.push_front(1);



41 / 47

Sequential Containers
std::forward_list

first

size 1

std::forward_list<T>

1

list.push_front(2);



41 / 47

Sequential Containers
std::forward_list

first

size 2

std::forward_list<T>

2 1

list.push_front(2);



41 / 47

Sequential Containers
std::forward_list

first

size 2

std::forward_list<T>

2 1

list.push_front(3);



41 / 47

Sequential Containers
std::forward_list

first

size 3

std::forward_list<T>

3 2 1

list.push_front(3);



41 / 47

Sequential Containers
std::forward_list

first

size 3

std::forward_list<T>

3 2 1

list.push_front(4);



41 / 47

Sequential Containers
std::forward_list

first

size 4

std::forward_list<T>

4 3 2 1

list.push_front(4);



42 / 47

Sequential Containers
std::forward_list

‚ insertion:

‚ in beginning: Op1q

‚ otherwise: Opnq

‚ deletion:

‚ first element: Op1q

‚ otherwise: Opnq

‚ lookup: Opnq



43 / 47

Sequential Containers
std::forward_list

` Less memory per element compared to std::list

´ No Op1q operations on last element

´ Unable to go backwards



44 / 47

Sequential Containers
std::deque

begin

data

size 0

chunks 0

std::deque<T>

std::deque<int> deque{};



44 / 47

Sequential Containers
std::deque

begin

data

size 0

chunks 0

std::deque<T>

deque.push_back(1);



44 / 47

Sequential Containers
std::deque

begin

data

size 0

chunks 1

std::deque<T>

deque.push_back(1);



44 / 47

Sequential Containers
std::deque

begin

data

size 1

chunks 1

std::deque<T>

1

deque.push_back(1);



44 / 47

Sequential Containers
std::deque

begin

data

size 1

chunks 1

std::deque<T>

1

deque.push_back(2);



44 / 47

Sequential Containers
std::deque

begin

data

size 2

chunks 1

std::deque<T>

1 2

deque.push_back(2);



44 / 47

Sequential Containers
std::deque

begin

data

size 2

chunks 1

std::deque<T>

1 2

deque.push_back(3);



44 / 47

Sequential Containers
std::deque

begin

data

size 3

chunks 1

std::deque<T>

1 2 3

deque.push_back(3);



44 / 47

Sequential Containers
std::deque

begin

data

size 3

chunks 1

std::deque<T>

1 2 3

deque.push_back(4);



44 / 47

Sequential Containers
std::deque

begin

data

size 4

chunks 1

std::deque<T>

1 2 3 4

deque.push_back(4);



44 / 47

Sequential Containers
std::deque

begin

data

size 4

chunks 1

std::deque<T>

1 2 3 4

deque.push_back(5);



44 / 47

Sequential Containers
std::deque

begin

data

size 4

chunks 2

std::deque<T>

1 2 3 4

deque.push_back(5);



44 / 47

Sequential Containers
std::deque

begin

data

size 5

chunks 2

std::deque<T>

1 2 3 4

5

deque.push_back(5);



44 / 47

Sequential Containers
std::deque

begin

data

size 5

chunks 2

std::deque<T>

1 2 3 4

5

deque.pop_front();



44 / 47

Sequential Containers
std::deque

begin

data

size 4

chunks 2

std::deque<T>

2 3 4

5

deque.pop_front();



44 / 47

Sequential Containers
std::deque

begin

data

size 4

chunks 2

std::deque<T>

2 3 4

5

deque.erase(deque.begin() + 2);



44 / 47

Sequential Containers
std::deque

begin

data

size 3

chunks 2

std::deque<T>

2 3

5

deque.erase(deque.begin() + 2);



44 / 47

Sequential Containers
std::deque

begin

data

size 3

chunks 2

std::deque<T>

2 3

5

deque.erase(deque.begin() + 2);



44 / 47

Sequential Containers
std::deque

begin

data

size 3

chunks 2

std::deque<T>

2 3 5

deque.erase(deque.begin() + 2);



44 / 47

Sequential Containers
std::deque

begin

data

size 3

chunks 1

std::deque<T>

2 3 5

deque.erase(deque.begin() + 2);



45 / 47

Sequential Containers
std::deque

‚ insertion:

‚ at ends: Op1q

‚ otherwise: Opnq

‚ deletion:

‚ at ends: Op1q

‚ otherwise: Opnq

‚ lookup: Op1q



46 / 47

Sequential Containers
std::deque

` Elements rarely move in memory

` Fast operations at ends

` More cache friendly than std::list

´ Not contigous in memory

´ Additional complexity gives slighly worse performance



47 / 47

Sequential Containers
Uses

‚ Great for queues and stacks!

‚ Will automatically shrink the container so use it when
there are a lot of insertions and deletions



www.liu.se

www.liu.se

	Introduction
	IO
	Sequential Containers

