
TDDD38/726G82:
Adv. Programming in C++
Course Introduction

Christoffer Holm

Department of Computer and information science

1 What is TDDD38?
2 About C++
3 How to use C++
4 Basic IO

2 / 47

What is TDDD38?
Assumptions/prerequisites

In this course I will assume that:

• You can program in a procedural language

• You are familiar with object‐oriented programming

• You aremotivated to become a better programmer

• You are interested in a career involving programming

• Note: I’m NOT assuming that you know C++ , however I
will not teach the basics: that’s up to you!

2 / 47

What is TDDD38?
Assumptions/prerequisites

In this course I will assume that:

• You can program in a procedural language

• You are familiar with object‐oriented programming

• You aremotivated to become a better programmer

• You are interested in a career involving programming

• Note: I’m NOT assuming that you know C++ , however I
will not teach the basics: that’s up to you!

2 / 47

What is TDDD38?
Assumptions/prerequisites

In this course I will assume that:

• You can program in a procedural language

• You are familiar with object‐oriented programming

• You aremotivated to become a better programmer

• You are interested in a career involving programming

• Note: I’m NOT assuming that you know C++ , however I
will not teach the basics: that’s up to you!

2 / 47

What is TDDD38?
Assumptions/prerequisites

In this course I will assume that:

• You can program in a procedural language

• You are familiar with object‐oriented programming

• You aremotivated to become a better programmer

• You are interested in a career involving programming

• Note: I’m NOT assuming that you know C++ , however I
will not teach the basics: that’s up to you!

2 / 47

What is TDDD38?
Assumptions/prerequisites

In this course I will assume that:

• You can program in a procedural language

• You are familiar with object‐oriented programming

• You aremotivated to become a better programmer

• You are interested in a career involving programming

• Note: I’m NOT assuming that you know C++ , however I
will not teach the basics: that’s up to you!

3 / 47

What is TDDD38?
What is programming about?

• Computation

• Abstraction

• Communication

3 / 47

What is TDDD38?
What is programming about?

If a programmer wrote a solution that no one understands,
is that a good solution?

4 / 47

What is TDDD38?
What is programming about?

• Programming isn’t just the art of computation. If this
was the case then we would still be programming in
machine code.

• Abstraction is one of the most fundamental aspects
involved in programming.

• Suitable abstractions allows us humans to simplify and
reduce problems to a level where we are able to
actually reason about them.

4 / 47

What is TDDD38?
What is programming about?

• Good abstraction should simplify and recontextualize
problems to such a degree that other people can
understand what happens in the code.

• “If a programmer wrote a solution that no one
understands, is that actually a good solution?”

• For most people the answer to the question above is
no. This means that programming is as much about
communication as it is about computation.

4 / 47

What is TDDD38?
What is programming about?

• In this course we will proceed with the assumption that
everyone here wants to write code that is easy to
understand and easy to use.

• This will usually involve more work for us since we have
to build good and useful abstractions.

• In this course we will explore the idea of abstraction by
using C++ as a concrete example.

5 / 47

What is TDDD38?
Why C++?

“C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off”

– Bjarne Stroustrup

5 / 47

What is TDDD38?
Why C++?

low‐level high‐level

Assembler

Machine code

Mathematics

C

C#

5 / 47

What is TDDD38?
Why C++?

low‐level high‐level

Assembler

Machine code

Mathematics

C

C#
C++

6 / 47

What is TDDD38?
Why C++?

• The aim for this course is to study C++ in depth. There are
many reasons for doing this type of deep‐dive:

• It allows us to expand our perspectives on what is
actually possible to do through abstractions.

• Many of the ideas in C++ are present in other
programming languages which means we can more
easily learn new languages.

• C++ forces you to understand and solve common
compuation and abstraction problems, which means it
is a great tool for evolving as a programmer.

• And lastly: It is fun!

7 / 47

What is TDDD38?
Course information

• self‐study

• lectures & seminars

• office hours

• Course web page:
http://www.ida.liu.se/~TDDD38/

• E‐mail: TDDD38@ida.liu.se

• Optional midterm test

• Examination

http://www.ida.liu.se/~TDDD38/

8 / 47

What is TDDD38?
Course information

• This course is a self‐study course. This means it is your
responsibilty to put in the needed work and time to
learn the material.

• There are no deadlines during the course and the only
mandatory aspect of the course is the exam.

• You have to manage your time and utilize the resources
provided in the course.

8 / 47

What is TDDD38?
Course information

• During the course there are lectures & seminars
booked in the schedule. These are essentially the same
thing, but seminars tend to be a bit more interactive.

• It is highly recommended to attend these sessions since
they are the primary source of information during the
course (and it is more fun for me!)

• The slides published on the course web page have
additional slides/information compared to the stripped
versions used during the lectures/seminars.

8 / 47

What is TDDD38?
Course information

• There are also a lot of office hours sessions
(supervision/handledningspass in TimeEdit).

• These are times during which I am available for drop‐in
visits in my office. This is your opportunity to get direct
feedback on your work or to ask questions. Even if you
don’t have explicit questions you can still swing by and
we’ll probably find something to discuss!

• I also welcome questions not related to the course, but
I can’t guarantee that I’ll be able answer those :)

8 / 47

What is TDDD38?
Course information

• The course web page contains allmaterial.

• The primary resource on the web page is the “Seminars
and exercises” page: there I publish all slides as well as
exercises, reading material and other useful things for
each lecture/seminar.

• The idea isn’t that you should solve all exercises.
Instead it is up to you to identify what you need to
practice and do the exercises that cover those things.
You can of course discuss it with me as well!

8 / 47

What is TDDD38?
Course information

• There are also quizzes for most seminars on the web
page which you can do to test how much you
understood from the seminar.

• Note: These aren’t all up‐to‐date with the current
material, so don’t expect all questions to be
answerable by just attending the seminars. See it as
practice for finding reliable information on your own!

• There is also the page “Examination” which contains
information about the exam, as well asmost exams
given since 2016 with solutions.

8 / 47

What is TDDD38?
Course information

The primary learning resources during the course are:

• The lectures/seminars where we cover the most
important/challenging topics of the course.

• The office hours where you are free to get help from a
teacher (me!). People who come to these session never
regret it! It is fun and helpful for everyone!

• You are always welcome to E‐mail me any questions
and I’ll try to give a thorough answer as soon as
possible.

8 / 47

What is TDDD38?
Course information

• After the first period of the semester there is an
optional midterm test (Swedish: dugga) in the
schedule.

• This midterm test serves two purposes: 1) it is an
opportunity for you to test how far along you are in the
course and 2) you get a chance to test out the exam
system before the final exam.

• (There is also a “secret” purpose: it serves as a
motivator for students to actually study)

8 / 47

What is TDDD38?
Course information

• The midterm test contains two questions from previous
exams. These questions cover roughly the same topic.

• Exactly what the topic is varies from year to year, but it
will be something we’ve covered at that point.

• The test is 1 hour and 45 minutes in length and you
need to solve one assignment to pass.

• If you pass the test you automatically get full marks on
one of the assignments in the final exam (this
assignment will be clearlymarked during the exam).

8 / 47

What is TDDD38?
Course information

• The exam is a practical exam done in the SU computer
labs (In the B‐building).

• The exam usually consists of 4 programming
assignments and 3 to 4 discussion assignments.

• The exam is based on points. Programming problems
are worth between 4 to 6 points while discussion
assigmments are worth 1 to 4 points.

• The total points of the exam sums to 25 points. A
passing grade is given at 11 points (rounded up).

9 / 47

What is TDDD38?
Optional Literature

General books:

Specific books:

10 / 47

What is TDDD38?
Optional Literature

General books

• C++ Primer, 5th edition, Lippman, Lajoie, Moo

• The C++ Programming Language, 4th edition,
Stroustrup

• A Tour of C++, 3rd edition, Stroustrup

10 / 47

What is TDDD38?
Optional Literature

Specific books

• C++ Templates: The Complete Guide, 2nd edition,
Vandevoorde, Josuttis, Gregor

• Effective Modern C++, 1st edition, Meyers

• The C++ Standard Library: A Tutorial and Reference,
2nd edition, Josuttis

11 / 47

What is TDDD38?
Literature

https://en.cppreference.com/w/

https://en.cppreference.com/w/

12 / 47

What is TDDD38?
Evalulation from last time

• Students want mandatory labs
• Answer: I’m the only teacher so it’s

not possible due to time constraints

12 / 47

What is TDDD38?
Evalulation from last time

• Students want the recorded lectures
• Answer: I never recorded the

lectures during distance mode so
there are no recordings

13 / 47

What is TDDD38?
Changes from last term

• updated course goals

• Reduced time spent on basic object orientation

• A lot of updates to the slides and seminars/lectures

14 / 47

What is TDDD38?
How to study for this course

• Go to lectures and seminars

• Read all exercises for a given seminar and solve the
one(s) you find difficult.

• Make an honest attempt at solving those exercises after
corresponding lecture/seminar

• If you get stuck: resist the urge to peek at the solution.
Instead write down your question and either 1) try to
find an answer yourself, or 2) talk to me!

14 / 47

What is TDDD38?
How to study for this course

• Spend consistent time actually programming.
Theoretical/passive knowledge will not take you far
enough to pass the exam.

• Most people are unable to learn how to apply
programming concepts by only reading about it. You
need to experiment with them yourself.

• Be critical about everything you read or hear (this
includes info from me...). Make sure that you can
explain why something is done.

1 What is TDDD38?
2 About C++
3 How to use C++
4 Basic IO

16 / 47

About C++
What is C++?

• general‐purpose programming language

• compiled language

• based on C

• powerful tools for abstractions

• Designed by committee

• Has a standard (ISO/IEC 14882:2020)

https://www.iso.org/standard/79358.html

16 / 47

About C++
What is C++?

• general‐purpose programming language

• compiled language

• based on C

• powerful tools for abstractions

• Designed by committee

• Has a standard (ISO/IEC 14882:2020)

https://www.iso.org/standard/79358.html

16 / 47

About C++
What is C++?

• general‐purpose programming language

• compiled language

• based on C

• powerful tools for abstractions

• Designed by committee

• Has a standard (ISO/IEC 14882:2020)

https://www.iso.org/standard/79358.html

16 / 47

About C++
What is C++?

• general‐purpose programming language

• compiled language

• based on C

• powerful tools for abstractions

• Designed by committee

• Has a standard (ISO/IEC 14882:2020)

https://www.iso.org/standard/79358.html

16 / 47

About C++
What is C++?

• general‐purpose programming language

• compiled language

• based on C

• powerful tools for abstractions

• Designed by committee

• Has a standard (ISO/IEC 14882:2020)

https://www.iso.org/standard/79358.html

16 / 47

About C++
What is C++?

• general‐purpose programming language

• compiled language

• based on C

• powerful tools for abstractions

• Designed by committee

• Has a standard (ISO/IEC 14882:2020)

https://www.iso.org/standard/79358.html

17 / 47

What is C++?
General rules

• C++ must be useful now

• Support different styles

• Forcing the programmer is bad

18 / 47

What is C++?
General rules

• All features must be affordable

• Usefulness > misuse prevention

• Composition of different parts

19 / 47

What is C++?
Technical rules

• No implicit violations of the type system

• User‐defines types = built‐in types

• Locality is good

• When in doubt, choose the easiest alternative

20 / 47

What is C++?
Low‐level rules

• Leave only assembler below C++

• Don’t pay for what you don’t use (zero‐overhead)

21 / 47

What is C++?
Style

• No standardized style

• I will use a style, but you may use your own

• Cpp Core Guidelines

• This course will focus on C++17 and later

• Usage of C features will be penalized

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

1 What is TDDD38?
2 About C++
3 How to use C++
4 Basic IO

23 / 47

How to use C++
Tools required

• Operating System (duh!)

• Editor

• Compiler

23 / 47

How to use C++
Tools required

• Operating System (duh!)

• Editor

• Compiler

23 / 47

How to use C++
Tools required

• Operating System (duh!)

• Editor

• Compiler

24 / 47

How to use C++
Additional tools

• Debugger

• Static analyzers

• Runtime analyzers

24 / 47

How to use C++
Additional tools

• Debugger

• Static analyzers

• Runtime analyzers

24 / 47

How to use C++
Additional tools

• Debugger

• Static analyzers

• Runtime analyzers

25 / 47

How to use C++
Compilers

Compilers Linux Mac Windows
clang (clang++) ✓ ✓ ✓

GCC (g++) ✓ ✓ ✓1

MSVC (cl.exe) × × ✓

1Ported as MinGW

26 / 47

How to use C++
Compilers

About clang:

• A very portable compiler (works almost everywhere)

• Very good at optimizing (built on LLVM)

• Is compatible with both GCC and MSVC

• Open source, has Apple as primary contributor

• Available during the exam

26 / 47

How to use C++
Compilers

About GCC:

• The oldest C++ compiler still in wide use today

• Has a very good standard library implementation

• Is (usually) installed by default on Linux

• Open source, part of GNU

• Available during the exam

26 / 47

How to use C++
Compilers

About MSVC:

• Arguably the easiest to install on Windows

• Part of the Visual Studio IDE

• Has very good C++20 support

• Good at optimizing code for Windows

• Proprietary, owned and maintained by Microsoft

27 / 47

How to use C++
Editors

• Emacs

• Vim

• Visual Studio Code

• etc.

Use whatever you want, but these are available during the exam

27 / 47

How to use C++
Editors

• Emacs

• Vim

• Visual Studio Code

• etc.

Use whatever you want, but these are available during the exam

28 / 47

How to use C++
IDEs

• CLion (All platforms)

• Eclipse (All platforms)

• Visual Studio (Windows)

• XCode (Mac)

IDEs can be nice, but you shouldn’t rely on them too much

28 / 47

How to use C++
IDEs

• CLion (All platforms)

• Eclipse (All platforms)

• Visual Studio (Windows)

• XCode (Mac)

IDEs can be nice, but you shouldn’t rely on them too much

29 / 47

How to use C++
How to compile

GCC:

$ emacs file.cc # write code
$ g++ -o myprogram file.cc # compile
$./myprogram # run program

29 / 47

How to use C++
How to compile

clang:

$ emacs file.cc # write code
$ clang++ -o myprogram file.cc # compile
$./myprogram # run program

29 / 47

How to use C++
How to compile

MSVC:

$ emacs file.cc # write code
$ cl.exe /Fe myprogram.exe file.cc # compile
$ myprogram.exe # run program

30 / 47

How to use C++
Important terms

• Compile time (static)

• Runtime (dynamic)

• Implementation defined behaviour

• Undefined behaviour

31 / 47

How to use C++
Compile time

• C++ is a compiled language. This means that the
compiler will translate your code into machine code.

• During this step the compiler might perform
pre‐calculations or make certain decisions (sometimes
called static behaviour) based on your source code.

• These calculations are done during compile time

32 / 47

How to use C++
Runtime

• Once your compiler has transformed your code into
machine code it is possible to actually run the program.

• Any calculations and decisions (sometimes called
dynamic behaviour) done in this step happen during
runtime.

• In C++ the line between compile time and runtime is
somewhat blurred.

33 / 47

How to use C++
Example

• It is important to understand the difference between
compile time and runtime.

• A typical example would be that the concept of types.

• Data types enforce how the compiler generates the
machine code, but the machine code itself doesn’t
contain any information about data types.

• This means that during runtime, all information about
types has been lost.

34 / 47

How to use C++
Implementation defined behaviour

• The C++ standard wants C++ to be efficient on all
platforms/architectures

• This means that certain things might need to differ
depending on the architecture.

• Implementation defined behaviour refers to such cases
where the standard says it is up to the implementors to
define the behaviour.

• Example: On most modern systems a byte is 8 bits, but there
are older embedded systems where a byte is 7 bits. This
means that it is implementation defined how many bytes are
stored in a byte.

35 / 47

How to use C++
Undefined behaviour

• There are syntactically valid statements/expressions in
C++ which have no well‐behaved semantics.

• These cases are refered to as undefined behaviour.

• Example: If we have an array of data with 3 elements. It
is syntactically correct to access any index, but if we try
to access for example index 537 there is no way for us
or the compiler to know what will happen.

• This means that doing out‐of‐bounds accesses is
undefined behaviour.

36 / 47

How to use C++
Undefined behaviour vs. Implementation defined behaviour

• Undefined behaviour usually means that this behaviour is
nonsensemeaning it is not something the compiler doesn’t
have to handle gracefully.

• Implementation defined behaviour is something that the
standard doesn’t specify, but it forces the compiler
implementor to actually do something well behaved.

• Note: Based on the definition, invoking undefined behaviour
can result in anything while invoking implementation defined
behaviour will result in consistent behaviour while operating
on the same CPU.

1 What is TDDD38?
2 About C++
3 How to use C++
4 Basic IO

38 / 47

Basic IO
NOT Hello World!

1 #include <iostream>
2 int main()
3 {
4 std::cout << "NOT Hello World!" << std::endl;
5 return 0;
6 }

39 / 47

Basic IO

1 #include <iostream>
2 #include <string>
3 using std::cout;
4 using std::endl;
5 int main()
6 {
7 cout << "What is your name? ";
8
9 std::string name{};

10 std::cin >> name;
11
12 cout << "Your name is " << name << endl;
13 }

40 / 47

Basic IO
1 #include <iostream>
2 #include <string>
3 using std::cout;
4 using std::endl;
5 int main()
6 {
7 int number{};
8 cout << "Enter a number: ";
9 std::cin >> number;

10 if (number >= 0)
11 {
12 cout << "Your number is positive!" << endl;
13 }
14 }

41 / 47

Basic IO
1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int counter{0}, sum{}, number{};
6 cout << "Enter your numbers: ";
7 while (counter < 5)
8 {
9 cin >> number;

10 sum += number;
11 ++counter;
12 }
13 cout << "The sum is: " << sum << endl;
14 }

42 / 47

Basic IO

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int sum{}, number{};
6 cout << "Enter your numbers: ";
7 for (int i{0}; i < 5; ++i)
8 {
9 cin >> number;

10 sum += number;
11 }
12 cout << "The sum is: " << sum << endl;
13 }

43 / 47

Basic IO

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int number{};
6 do
7 {
8 cout << "Enter number [0-10]: ";
9 cin >> number;

10 } while (number < 0 || number > 10);
11 }

44 / 47

Basic IO
Buffered input

1 int x;
2 std::cout << "Enter integer: ";
3 std::cin >> x;
4 std::cout << "You entered: " << x << std::endl;
5 std::cout << "Enter another integer: ";
6 std::cin >> x;
7 std::cout << "You entered: " << x << std::endl;

44 / 47

Basic IO
Buffered input

$./a.out
Enter integer: 3
You entered: 3
Enter another integer: 5
You entered: 5

44 / 47

Basic IO
Buffered input

$./a.out
Enter integer: 3 5
You entered: 3
Enter another integer: You entered: 5

45 / 47

Basic IO
The complete picture

program

cout << ...

cin >> ...

46 / 47

Basic IO
Buffered input

1 int x;
2 std::cout << "Enter integer: ";
3 std::cin >> x;
4 std::cout << "You entered: " << x << std::endl;
5 std::cin.ignore(1000, '\n');
6 std::cout << "Enter another integer: ";
7 std::cin >> x;
8 std::cout << "You entered: " << x << std::endl;

46 / 47

Basic IO
Buffered input

$./a.out
Enter integer: 3
You entered: 3
Enter another integer: 5
You entered: 5

46 / 47

Basic IO
Buffered input

$./a.out
Enter integer: 3 5
You entered: 3
Enter another integer: 7 8 9
You entered: 7

47 / 47

Basic IO
The complete picture

• Both std::cout and std::cin are buffered.

• This means that whenever we do an IO operation it is
performed on the buffer first, and if the buffer is empty or
incomplete then and only then will we perform an actual IO
operation.

• Everyting entered during a read operation will be stored in
the input buffer.

• Then, as long as there are things in the buffer, std::cin
will operate on the buffer.

• You can clear the buffer with std::cin.ignore(...).

www.liu.se

www.liu.se

	What is TDDD38?
	About C++
	How to use C++
	Basic IO

