
TDDD38/726G82:
Adv. Programming in C++
Fundamentals II

Christoffer Holm

Department of Computer and information science

1 Pointers & References
2 Value categories
3 Class Types
4 Operator Overloading
5 User‐defined conversions

1 Pointers & References
2 Value categories
3 Class Types
4 Operator Overloading
5 User‐defined conversions

3 / 77

Pointers & References
Types of indirection

• Data pointers

• Function pointers

• References

3 / 77

Pointers & References
Types of indirection

• Data pointers

• Function pointers

• References

4 / 77

Pointers & References
Data pointer

• Variable which stores memory addresses

• Knows what type of data is located at the other end

• Has a special value called nullptr

• This special value indicates that the pointers points to
nothing

• Is associated with specific operators: dereference (*)
and address‐of (&)

5 / 77

Pointers & References
Data pointer

• The dereference operator takes a pointer and returns
the data it points to

• The address‐of operator takes a variable/object and
returns a pointer to that object

6 / 77

Pointers & References
Data pointer

1 int x { 5 };
2 int* ptr { nullptr };
3
4 ptr = &x;
5 *ptr = 7;
6
7 std::cout << x << std::endl;

x: 5

ptr:

6 / 77

Pointers & References
Data pointer

1 int x { 5 };
2 int* ptr { nullptr };
3
4 ptr = &x;
5 *ptr = 7;
6
7 std::cout << x << std::endl;

x: 5

ptr:

6 / 77

Pointers & References
Data pointer

1 int x { 5 };
2 int* ptr { nullptr };
3
4 ptr = &x;
5 *ptr = 7;
6
7 std::cout << x << std::endl;

x: 5

ptr:

6 / 77

Pointers & References
Data pointer

1 int x { 5 };
2 int* ptr { nullptr };
3
4 ptr = &x;
5 *ptr = 7;
6
7 std::cout << x << std::endl;

x: 5

ptr:

6 / 77

Pointers & References
Data pointer

1 int x { 5 };
2 int* ptr { nullptr };
3
4 ptr = &x;
5 *ptr = 7;
6
7 std::cout << x << std::endl;

x: 7

ptr:

7 / 77

Pointers & References
Pointers to arrays

• In C++ we can have pointers to specific elements in the
array

• This means we can represent the array as a pointer to
the first element (but then we have to manually keep
track of the number of elements)

• But we can also have pointers to the whole array

• These have the advantage that they automatically
remember the size of the array

8 / 77

Pointers & References
Pointers to arrays

1 2 3array:

ptr:

1 int array[3] { 1, 2, 3 };
2 int* ptr { &array[0] };

8 / 77

Pointers & References
Pointers to arrays

1 2 3array:

ptr:

1 int array[3] { 1, 2, 3 };
2 int* ptr { &array[0] };

9 / 77

Pointers & References
Pointers to arrays

1 2 3array:

ptr:

1 int array[3] { 1, 2, 3 };
2 int (*ptr)[3] { &array };

9 / 77

Pointers & References
Pointers to arrays

1 2 3array:

ptr:

1 int array[3] { 1, 2, 3 };
2 int (*ptr)[3] { &array };

10 / 77

Pointers & References
Pointers to arrays

• The first example show a pointer to an element

• The second example is a pointer to the whole array

• Pointers to specific element have type: int*

• pointer to an array has type: int (*ptr)[3]

• Compare with: int* ptr[3], what does this mean?

11 / 77

Pointers & References
Arrays and pointers: What’s the difference?

int (*array)[3]
A pointer to an array of 3 int elements

int *array[3]
An array of 3 int* elements

12 / 77

Pointers & References
Types of indirection

• Data pointers

• Function pointers

• References

12 / 77

Pointers & References
Types of indirection

• Data pointers

• Function pointers

• References

13 / 77

Pointers & References
Function pointers

• Also contains a memory address, but this time it points
to executable code (specifically a function) rather than
data

• Knows the signature of the function

• Uses the dereference and adress‐of operators (but on
functions instead of data)

• It also has the function call operator which allows us to
call the function it points to

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

14 / 77

Pointers & References
Function pointers

1 int add(int x, int y){ /* ... */ }
2
3 int sub(int x, int y){ /* ... */ }
4
5 int main()
6 {
7 int (*ptr)(int, int){ };
8
9 ptr = &add;

10 cout << (*ptr)(3, 2) << endl;
11
12 ptr = ⊂
13 cout << (*ptr)(3, 2) << endl;
14 }

ptr:

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is

a pointer to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is

a pointer to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer

to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer

to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int)

, which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int)

, which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer

to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer

to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer to an array of size 5

containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer to an array of size 5

containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

15 / 77

Pointers & References
How to read these “special” pointers

int (*(*ptr)(int))[5]

ptr is a pointer to a function taking (int), which returns
a pointer to an array of size 5 containing int elements.

16 / 77

Pointers & References
The spiral rule

1. Start from the unknown name
2. If there are parenthesis with parameters to the right, then it is a function.
3. If there are brackets with a size to the right, then it is an array.
4. Otherwise it is a variable.
5. Read to the left until reaching the beginning or until an open parenthesis.
6. If we reached the end then we are done.
7. Otherwise: Jump to the matching closing parenthesis.
8. Read to the right.
9. If we find open parenthesis then it is a function.

10. If we find square bracket then it is an array.
11. Go back to the previously found open parenthesis and goto step 5.

17 / 77

Pointers & References
Another way to view it

To figure out the declaration, look at how you would use it:

• *ptr gives us int⇒ int *ptr

• (*ptr)[0] gives us int⇒ int (*ptr)[3]

• (*ptr)(1, 2) gives us void⇒ void (*ptr)(int, int)

• (*ptr[0])() gives us int⇒ int (*ptr[3])()

• etc.

18 / 77

Pointers & References
(confusing) Example

1 int array[2] { };
2
3 int (*fun(int x, int y))[2]
4 {
5 array[0] = x;
6 array[1] = y;
7 return &array;
8 }
9
10 int main()
11 {
12 int (*a)[2] { fun(1, 2) };
13 cout << (*a)[0] + (*a)[1] << endl;
14 }

19 / 77

Pointers & References
(better) Example

1 int array[2] { };
2 using array_ptr = int(*)[2];
3
4 array_ptr fun(int x, int y)
5 {
6 array[0] = x;
7 array[1] = y;
8 return &array;
9 }
10
11 int main()
12 {
13 array_ptr a { fun(1, 2) };
14 cout << (*a)[0] + (*a)[1] << endl;
15 }

20 / 77

Pointers & References
Example

• These types of declarations are generally very hard to grasp

• It is not always clear what is actually defined

• Because of this it is highly recommended to abstract these
away using a type alias (using)

20 / 77

Pointers & References
Example

• The statement: using number = int; creates a type
alias for int which we call number

• What this means more concretely is that we create an
alternate name for the type int (namely number)

• There are many type aliases in the language which can be
used to make the code easier to modify and understand.

• An example is std::size_t which is the smallest type
needed to index all bytes in memory. On a 32‐bit systems
this might be an alias for std::uint32_t (which itself is
an alias representing an unsigned integer of size 32 bits).

20 / 77

Pointers & References
Example

• In this example we create an alias array_ptr which
represents the type int(*)[2] (an array pointer without
a name, compare with int(*array)[2])

• By doing this we can use array_ptr as a “normal” type
without having to deal with the nested parenthesis.

• This technique will usually make things way easier to read.

21 / 77

Pointers & References
Types of indirection

• Data pointers

• Function pointers

• References

21 / 77

Pointers & References
Types of indirection

• Data pointers

• Function pointers

• References

22 / 77

Pointers & References
References (or variable aliases)

1 int x { 5 }; // normal variable
2 int& y { x }; // lvalue-reference
3 int const& z { y }; // const lvalue-reference
4
5 x = 3;
6 assert(x == 3 && x == y && y == z);
7
8 y = 7;
9 assert(y == 7 && x == y && y == z);

10
11 z = 2; // NOT OK

23 / 77

Pointers & References
References

• In the example on the previous slide x, y and z all refer
to the same variable.

• So if we change x this will be reflected in y and z (even
though it is const). Likewise if we modify y.

• So just because z is const that doesn’t necessarily
mean that its value won’t change.

• Instead it just means that we are not allowed to modify
the value through z.

24 / 77

Pointers & References
Why?

1 void increase(int a)
2 {
3 ++a;
4 }
5
6 int main()
7 {
8 int x { 0 };
9 increase(x);

10 cout << x << endl; // prints 0
11 }

24 / 77

Pointers & References
Why?

1 void increase(int& a)
2 {
3 ++a;
4 }
5
6 int main()
7 {
8 int x { 0 };
9 increase(x);

10 cout << x << endl; // prints 1
11 }

25 / 77

Pointers & References
Why?

• References are useful in combination with functions

• This allows us to have in‐out parameters.

• I.e. parameters which changes the variable we passed
in

• If we don’t pass parameters as references we just get a
copy of the variable local to the function.

• But if we take the parameter a as a reference, then we
get an alias to the original variable x.

26 / 77

Pointers & References
What type of entity is x?

1 int *(*x())[3]

27 / 77

Pointers & References
What type of entity is x?

1 int (*x[3])()

1 Pointers & References
2 Value categories
3 Class Types
4 Operator Overloading
5 User‐defined conversions

29 / 77

Value categories
Assignments

1 int x { 3 };
2 x = 5; // OK
3 3 = 5; // NOT OK
4 x + 1 = 3; // NOT OK

... Why?

29 / 77

Value categories
Assignments

1 int x { 3 };
2 x = 5; // OK
3 3 = 5; // NOT OK
4 x + 1 = 3; // NOT OK

... Why?

30 / 77

Value categories
Assignments

• x is what is called an lvalue

• lvalues are expressions that refer to a specific
object/variable

• Whenever we use the expression x in a scope it will
always refer to the same object

• expressions such as 3, int{} and x+1 are rvalues

• rvalues are expressions that generate a new value
whenever it appears.

30 / 77

Value categories
Assignments

• Another way to differentiate between them is to think
about assignments (Note that these intutions aren’t
always correct).

• x is an lvalue (left‐hand‐side value) if it can appear on
left side of an assignment.

• x+1 is an rvalue (right‐hand‐side value) since it can
only appear on the right‐hand‐side of an assignment.

30 / 77

Value categories
Assignments

• If an object have identity, i.e. if there is a way for us to
refer to the object. Then every expression that refers to
that object will be an lvalue.

• For example: if there is a pointer to the object, if the
object is a variable or if it is a part of a bigger object
(like an array or a class).

• So things like: *ptr, array[0] etc. are also lvalues.

• rvalues are generally expressions that are not lvalues.

31 / 77

Value categories
lvalues & rvalues

lvalues

1 x
2 *ptr
3 array[0]
4 // etc.

rvalues

1 5
2 int{}
3 x + 1
4 // etc.

32 / 77

Value categories

Since C++11 value categories have evolved, but more on
that next week

33 / 77

Value categories
What is the value category of the expression?

1 int const x { };
2 int zero()
3 {
4 return x;
5 }
6
7 zero() // <- what is the value category?

34 / 77

Value categories
What is the value category of the expression?

1 int array[3];
2
3 *(&array[0] + 1) // <- what is the value category?

35 / 77

Value categories
What is the value category of the expression?

1 int const x { };
2 int& zero()
3 {
4 return x;
5 }
6
7 zero() // <- what is the value category?

1 Pointers & References
2 Value categories
3 Class Types
4 Operator Overloading
5 User‐defined conversions

37 / 77

Class Types
All class types

• struct

• class

• union (later)

38 / 77

Class Types
Classes and structs are the same thing!

1 struct Vector_Struct
2 {
3
4 int x;
5 int y;
6 };

1 class Vector_Class
2 {
3
4 int x:
5 int y;
6 };

What is the difference?

38 / 77

Class Types
Classes and structs are the same thing!

1 struct Vector_Struct
2 {
3 public:
4 int x;
5 int y;
6 };

1 class Vector_Class
2 {
3 private:
4 int x:
5 int y;
6 };

What is the difference?

39 / 77

Class Types
struct vs. class

• There are exactly two functional differences between
struct and class

• In struct every member is public by default

• While in class all members are private by default

• The second difference is similiar but related to
inheritance (we’ll talk about it next week)

• Besides this they are functionally the same thing

40 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x { 0 };
4 int y { 0 };
5 };

x: 0

y: 0

Vector

40 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x { 0 };
4 int y { 0 };
5 };

0 0 0 0 0 0 0 0

x y

41 / 77

Class Types
Mental Model

• Both structs and classes are compound types, meaning they are constructed
by storing multiple objects/variables

• These objects are called data members (sometimes called fields or instance
variables)

• We think of data members as separate variables stored inside the class

• This is mainly how the compiler sees it as well

• Once our code has compiled, objects will just be a sequence of variables
(specifically the data members)

• The data members will be stored in the same order as they are declared
(this is always true: the compiler is not allowed to change the order)

42 / 77

Class Types
Padding & Alignment

• All data types have a property called alignment

• A types alignment specifies an integer which each object’s
address must be evenly divisible by

• Example: It is common that int has alignment 4 which
means each intmust be located at an address which is a
multiple of 4.

42 / 77

Class Types
Padding & Alignment

• Alignment is important in order to efficiently utilize the
architecture of the CPU (and memory units)

• Most modern CPUs have aligned access which means the
hardware is designed to efficiently read values of certain
sizes at certain alignments

42 / 77

Class Types
Padding & Alignment

• class types consists of several data members (each with their
own alignment)

• To make sure that the memory representation of objects is
as efficient as possible the compiler has to make sure that
the data member with the largest alignment will be properly
aligned in all situations

• Because of this the class type will always have the same
alignment as the data member with the largest alignment

• This can however lead to some wasted space (called
padding)

43 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 };

43 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 }; a b c

43 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 }; a b c

???

43 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 }; a b c

Called padding

44 / 77

Class Types
Padding & Alignment

• In the previous (and next) example we assume that char has alignment 1
(meaning it can be stored on any address) while int has alignment 4
(meaning it must be stored on an address which is a multiple of 4)

• So X has alignment 4 (the largest alignment of all data members)

• The compilermust store all data members in their declared order

• Because of this, the compiler is forced to have 4 bytes before the int

• But we only really need 1 byte, so the compiler inserts 3 unused bytes

44 / 77

Class Types
Padding & Alignment

• After the int we store another charmeaning we have add one more byte

• This puts the total size of X at 9

• But what happens if we need to store objects of type X in an array?

• Then the objects must be placed at addresses which are multiples of 4
(since the alignment of X is 4)

• But this can never happen if the size is not evenly divisible by 4

• So the compiler extends the size to 12 (it adds 3 more unused bytes at the
end)

44 / 77

Class Types
Padding & Alignment

• All of these unused bytes are called padding and can be inserted by the
compiler before any data member, as well as at the end of a struct/class

• However, we can control the padding somewhat by thinking about the
order we store our data members in (see next example)

• A general rule of thumb is to sort your data members based on size

• The best method is to sort your data members in descending order
(meaning you put the largest types first)

45 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 int b;
4 char a;
5 char c;
6 };

45 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 int b;
4 char a;
5 char c;
6 }; ab c

45 / 77

Class Types
Padding & Alignment

1 struct X
2 {
3 int b;
4 char a;
5 char c;
6 }; ab c

Padding

46 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

What we write

46 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

A member function

What we write

46 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

How to call a member function

What we write

47 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

≈What the compiler sees

47 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

≈ what the compiler translates member functions to

≈What the compiler sees

47 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

How the compiler calls the member function

≈What the compiler sees

48 / 77

Class Types
Mental Model

• We call member functions on objects

• The compiler translates member functions to ordinary
functions which takes the object as the first parameter

• Then every call to a member function is just translated
to a normal function call.

• This means that member functions are NOT stored in
the object itself. So length() doesn’t change the
memory representation of Vector at all

49 / 77

Class Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?

49 / 77

Class Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?

49 / 77

Class Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?

49 / 77

Class Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?

49 / 77

Class Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?

50 / 77

Class Types

Let’s translate to our mental model

51 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

51 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

What is the type of &v?

51 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

It is Vector const*

51 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

Which doesn’t match the parameter...

51 / 77

Class Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

We need the parameter to take Vector const*

52 / 77

Class Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

The code

Works!

52 / 77

Class Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector const* this)
8 {
9 double x2 { this->x * this->x };

10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << length(&v) << endl;
18 }

The code The compilers view

Works!

52 / 77

Class Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector const* this)
8 {
9 double x2 { this->x * this->x };

10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << length(&v) << endl;
18 }

The code The compilers view

Works!

52 / 77

Class Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector const* this)
8 {
9 double x2 { this->x * this->x };

10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << length(&v) << endl;
18 }

The code The compilers view

Works!

53 / 77

Class Types
Initialization

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 int main()
8 {
9 Vector v { };

10 }

x: ?

y: ?

Vector

v:

53 / 77

Class Types
Initialization

1 struct Vector
2 {
3 int x { 1 };
4 int y { 0 };
5 };
6
7 int main()
8 {
9 Vector v { };

10 }

x: 1

y: 0

Vector

v:

53 / 77

Class Types
Initialization

1 struct Vector
2 {
3 int x { 1 };
4 int y { 0 };
5 };
6
7 int main()
8 {
9 Vector v { 2, 3 };

10 }

x: 2

y: 3

Vector

v:

54 / 77

Class Types
Initialization

• If we don’t explicitly initialize the data members they
will be undefined (in the first example)

• But we can give each data member a default value by
adding initialization to the data members (second
example)

• But we can always override the default if we explicitly
initialize the data members (third example)

55 / 77

Class Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:

55 / 77

Class Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:
Constructor

55 / 77

Class Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:

Constructor call

55 / 77

Class Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:

member initializer list

56 / 77

Class Types
member initializer list

• The member initializer list is a special syntax for
constructors

• It allows us to override the default initializers for data
members in a specific constructor call

• The member initializer list is a comma separated list of
initialization statements for all/any data members (see
example on previous slide)

• This is prefered over assignment (see next example)

57 / 77

Class Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9

10 private:
11 int a;
12 int b;
13 };

Don’t write code like this...

57 / 77

Class Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9

10 private:
11 int const a;
12 int b;
13 };

...It doesn’t work for const

57 / 77

Class Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9

10 private:
11 int const a;
12 int b;
13 };

...It doesn’t work for const

57 / 77

Class Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9

10 private:
11 int const a;
12 int b;
13 };

...It doesn’t work for const

58 / 77

Class Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 : a { c },
6 b { c + 1 }
7 {
8 }
9

10 private:
11 int a;
12 int b;
13 };

Prefer this...

58 / 77

Class Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 : a { c },
6 b { c + 1 }
7 {
8 }
9

10 private:
11 int const a;
12 int b;
13 };

... It does work for const!

59 / 77

Class Types
What will be printed?

1 class X
2 {
3 public:
4 void print(int&) { std::cout << "1"; }
5 void print(int const&) { std::cout << "2"; }
6 void print(int const&) const { std::cout << "3"; }
7 };
8
9 int main()
10 {
11 X x1 { };
12 X const x2 { };
13 int y1 { };
14 int const y2 { };
15
16 x1.print(y1);
17 x2.print(y1);
18 x1.print(y2);
19 x2.print(y2);
20 }

1 Pointers & References
2 Value categories
3 Class Types
4 Operator Overloading
5 User‐defined conversions

61 / 77

Operator Overloading
Introduction

• A powerful aspect of C++ is the fact that we can define
operators for our own user‐defined types

• This allows us to greatly simplify how we use our
classes/structs (i.e. simplify the interface)

• This is called operator overloading

• If used correctly it will make our code easier to
understand by relating it to mathmatical notation

• BUT, if used incorrectly it will make our code harder to
understand, so we have to be careful...

62 / 77

Operator Overloading
Extending Vector

1 Vector v { 1, 2 };
2 Vector u { 3, 1 };
3
4 // This is our aim
5 Vector w { 3*v + u };
6
7 assert(w.x == 3*v.x + u.x);
8 assert(w.y == 3*v.y + u.y);

63 / 77

Operator Overloading
How it works

3*v + u

63 / 77

Operator Overloading
How it works

(3*v) + u

63 / 77

Operator Overloading
How it works

((3*v) + u)

63 / 77

Operator Overloading
How it works

operator+((3*v), u)

63 / 77

Operator Overloading
How it works

operator+(operator*(3, v), u)

64 / 77

Operator Overloading
How it works

• Whenever the compiler encounters an operator involving a class type it
knows that this must be an operator overload

• If it for example finds a+b then the compiler will translate it to a function
call

• Specifically, the compiler will call: operator+(a, b)

• Note that a is to the left of + so it will be the first parameter and b is to the
right so it is the second parameter.

• If operator+(a, b) doesn’t exist, then it will instead try
a.operator+(b)

• Note: If both versions exists then it is ambigious...

• Read more: https://en.cppreference.com/w/cpp/language/operators

https://en.cppreference.com/w/cpp/language/operators

65 / 77

Operator Overloading
When it works

1 // With operator overloads
2 5*(u + v) + w;
3
4 // Without
5 add(multiply(5, add(u, v)), w);

Which is easier to understand/read?

65 / 77

Operator Overloading
When it works

1 // With operator overloads
2 5*(u + v) + w;
3
4 // Without
5 add(multiply(5, add(u, v)), w);

Which is easier to understand/read?

66 / 77

Operator Overloading
When it doesn’t work...

u * v

Dot product?

Scalar product?

Element‐wise multiplication?

66 / 77

Operator Overloading
When it doesn’t work...

u * v

Dot product?

Scalar product?

Element‐wise multiplication?

66 / 77

Operator Overloading
When it doesn’t work...

u * v

Dot product?

Scalar product?

Element‐wise multiplication?

66 / 77

Operator Overloading
When it doesn’t work...

u * v

Dot product?

Scalar product?

Element‐wise multiplication?

67 / 77

Operator Overloading
When it doesn’t work...

• Lesson #1: Operator overloading only works if it is obvious
what it means.

• The example given on the previous slide multiplies a vector
with a vector

• But there are multiple ways to define “vector multiplication”
so it is not clear from just reading the code what is meant.

• This is bad, but accepted by the language.

• It is our job to carefully consider whether an operator
overload will lead to ambiguity or not...

68 / 77

Operator Overloading
When it doesn’t work...

1 Vector v { 1, 2 };
2 Vector u { 3, 1 };
3 Vector w { v + u };
4
5 // What do we expect to be printed?
6 cout << v.x << endl;

68 / 77

Operator Overloading
When it doesn’t work...

Compare with the int case

68 / 77

Operator Overloading
When it doesn’t work...

1 int v { 1 };
2 int u { 3 };
3 int w { v + u };
4
5 // Here we expect v to be unchanged
6 cout << v << endl;

68 / 77

Operator Overloading
When it doesn’t work...

1 Vector v { 1, 2 };
2 Vector u { 3, 1 };
3 Vector w { v + u };
4
5 // So here v.x should be unchanged
6 cout << v.x << endl;

69 / 77

Operator Overloading
When it doesn’t work...

• Lesson #2: Operators should have the expected behaviour

• This means that an operators semantics should be as similar to the
behaviour of corresponding operator on fundamental types

• On the previous slide we for example saw that operator+ should not
modify any of the operands.

• So before doing an operator overload, ask yourself whether it behaves the
same way as for the builtin types.

• Note: It is legal to break the semantics, but it is a very bad practice to do so.

70 / 77

Operator Overloading
Design principle

When overloading an operator make sure that:

• The behaviour is obvious and makes sense

• It is similar to the fundamental type operators

70 / 77

Operator Overloading
Design principle

When overloading an operator make sure that:

• The behaviour is obvious and makes sense

• It is similar to the fundamental type operators

70 / 77

Operator Overloading
Design principle

When overloading an operator make sure that:

• The behaviour is obvious and makes sense

• It is similar to the fundamental type operators

1 Pointers & References
2 Value categories
3 Class Types
4 Operator Overloading
5 User‐defined conversions

72 / 77

User‐defined conversions
Type conversions

1 class Cls
2 {
3 public:
4 Cls(int i) : i{i} { }
5 operator int() const
6 {
7 return i;
8 }
9 private:

10 int i;
11 };

73 / 77

User‐defined conversions
Type conversions

• A constructor that can take one argument is called a
type converting constructor;

• these constructors can be used by the compiler to
perform conversions.

• The special operator Cls::operator TYPE() is
called whenever the class Cls is converted to TYPE;

• the compiler is allowed to use this operator to perform
implicit type conversions;

• but can also be explicitly called through casting.

74 / 77

User‐defined conversions
Explicit keyword

1 class Cls
2 {
3 public:
4 explicit Cls(int i) : i{i} { }
5 explicit operator int() const
6 {
7 return i;
8 }
9 private:

10 int i;
11 };

75 / 77

User‐defined conversions
Explicit keyword

• Declaring type converting constructors or operators as
explicitmeans;

• the compiler is not allowed to use these functions for
implicit type conversion;

• with the exception of operator bool which can be
used for contextual conversion.

76 / 77

User‐defined conversions
Contextual Conversion

1 struct Cls
2 {
3 explicit operator bool() const { return flag; }
4 bool flag{};
5 };
6 int main()
7 {
8 Cls c{};
9 if (c)

10 {
11 // ...
12 }
13 }

77 / 77

User‐defined conversions
Read more

• https://en.cppreference.com/w/cpp/
language/converting_constructor

• https://en.cppreference.com/w/cpp/
language/cast_operator

https://en.cppreference.com/w/cpp/language/converting_constructor
https://en.cppreference.com/w/cpp/language/converting_constructor
https://en.cppreference.com/w/cpp/language/cast_operator
https://en.cppreference.com/w/cpp/language/cast_operator

www.liu.se

www.liu.se

	Pointers & References
	Value categories
	Class Types
	Operator Overloading
	User-defined conversions

